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Abstract
Breast cancer (BC) is the most common cancer among women, and current
available therapies often have high success rates. Nevertheless, BC might acquire
drug resistance and sometimes relapse. Current knowledge about the most
aggressive forms of BC points to the role of specific cells with stem properties
located within BC, the so-called “BC stem cells” (BCSCs). The role of BCSCs in
cancer formation, growth, invasiveness, therapy resistance and tumor recurrence
is becoming increasingly clear. The growth and metastatic properties of BCSCs
are regulated by different pathways, which are only partially known. Sex steroid
receptors (SSRs), which are involved in BC etiology and progression, promote
BCSC proliferation, dedifferentiation and migration. However, in the literature,
there is incomplete information about their roles. Particularly, there are
contrasting conclusions about the expression and role of the classical BC
hormonal biomarkers, such as estrogen receptor alpha (ERα), together with scant,
albeit promising information concerning ER beta (ERβ) and androgen receptor
(AR) properties that control different transduction pathways in BCSCs. In this
review, we will discuss the role that SRs expressed in BCSCs play to BC
progression and recurrence and how these findings have opened new therapeutic
possibilities.

Key words: Breast cancer; Steroids; Sex steroid receptors; Cancer stem cells; Therapeutic
implications
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Core tip: Many studies have reported the presence of cancer stem cells (CSCs) in breast
cancer (BC), highlighting the correlation between CSCs and BC aggressiveness. Sex
steroids and steroid receptors play a pivotal role in BCSCs. By controlling different
pathways, BCSCs are able to influence both BC recurrence and drug resistance.
Therefore, better knowledge of BCSC features and behavior would be useful to employ
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these cells as BC prognostic factors, and develop new promising therapies targeting
these cells and improving BC recurrence.

Citation: Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Medici N, Bilancio A,
Migliaccio A, Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J
Stem Cells 2019; 11(9): 594-603
URL: https://www.wjgnet.com/1948-0210/full/v11/i9/594.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i9.594

INTRODUCTION
Breast cancer (BC) is the most common cancer in women worldwide and the second
most common cancer overall[1].  Although it is considered to be a postmenopausal
disease, genetic predisposition, aging, gender, age of menarca, null parity, late age
menopause and familial history of BC still represent the leading risk factors for BC[2].

Transformation  of  breast  stem/progenitor  cells  is  involved in  breast  carcino-
genesis[3] and many studies have reported the presence of cancer stem cells (CSCs) in
malignant BC[4-6]. CSCs might positively affect tumor survival, metastatic spreading
and therapy escape[7]. Specifically, secretion of interleukins 6 and 8 (IL-6 and IL-8) by
tumor associated fibroblasts,  mesenchymal stem cells and macrophages promote
CSCs self-renewal in BC, further pointing to the role of tumor micro-environment in
cancer progression[7]. Estradiol also influences the breast cancer stem cells (BCSCs)
population in a paracrine manner, as well as other factors, including metalloproteases
(MMPs),  insulin  growth factor  (IGF),  platelet  growth factor  (PDGF)  released by
cancer-surrounding  cells,  which  might  affect  proliferation,  invasiveness  and
metastatic spreading of BC cells[8,9].

The presence and frequency of CSCs are, however, related to BC type, and many
findings have shown a strong correlation between CSCs and BC aggressiveness. Meta-
analyses from twelve published studies have shown that BCSCs are significantly
associated  with  high  histological  grade,  human  epidermal  receptor-2  (Her-2)
positivity, estrogen receptor (ER) and progesterone receptor (PR) negativity, as well as
the absence of any correlation with tumor size or nodal status[10]. Moreover, BCSCs are
resistant to classical therapies. By enriching for the BCSC population, anti-cancer
treatments often fail.  Chemo- or radio-resistance of BCSCs has been attributed to
different factors. As it occurs in SCs, they persistently remain in a quiescent state (G0
phase), while the cancer cells quickly replicate. Therefore, the standard therapies,
which only act on rapidly dividing cells,  are ineffective against BCSCs[11].  Again,
BCSCs have enhanced expression of ATP-binding cassette (ABC) transporters and
aldehyde dehydrogenase (ALDH), both capable of reducing the drug concentration
inside cells[12].  Lastly,  BCSCs exhibit  an altered response to DNA damage, which
protects them from apoptosis[11]. All of these properties make them resistant to the
currently available antineoplastic therapies.

The role of sex steroids (estrogens, progestins and androgens) as well as SSRs in BC
is largely recognized[13]. It is also currently accepted that sex steroids sustain the stem
cell  population  in  normal  and  malignant  breast.  An  increase  in  the  stem  cell
population might lead to cancer susceptibility in normal breast, while an increase in
BCSCs influences both drug resistance and tumor recurrence[14,15].  Taken together,
findings collected thus far suggest that CSCs represent a very promising prognostic
factor in BC, although additional studies are required to confirm their importance in
clinical practice.

In  this  review,  we  will  present  the  recent  findings  on  the  role  of  sex  steroid
receptors (SSRs) in BCSCs. The therapeutic implication of these studies will also be
discussed,  since  BCSC-targeted  therapies  seem  very  promising  in  the  clinical
management of BC patients.

BCSCs
Mammary gland morphology continuously changes throughout life. At birth, human
mammary gland epithelium is  made up of  a  network of  ducts.  During puberty,
mammary ducts form side branches,  while also forming numerous lobulo-acinar
structures containing the milk-secreting alveolar cells during pregnancy and lactation.
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By activating massive apoptosis and tissue remodeling, the mammary gland then
reduces its dimensions at the end of lactation[16]. To do this, a group of cells with high
proliferative potential  and differentiation ability have to be localized within the
mammary tissue.  Despite different studies demonstrating the presence of SCs in
mammary tissue,  these  cells  have not  yet  been identified and isolated to  date[3].
Mammary (Ma)SCs are undifferentiated and their cell division can be symmetric,
resulting in the production of  two self-renewing or asymmetric  cells.  As such,  a
variety of pluripotent differentiated cells, including luminal and basal SCs as well as
pluripotent progenitors, might differentiate into ductal, alveolar and myoepithelial
cells. Consistent with the CSCs theory, both MaSCs and progenitor cells can give rise
to BCSCs during these cell divisions, thereby fostering carcinogenesis[17]. A different
theory claims that BCSCs are derived from de-differentiated cancer cells induced by
changes in the tumor microenvironment, or chemotherapy or other targeted therapies.
Through genetic or epigenetic modifications, transformed cells might acquire a stem-
like phenotype[17-20].

BCSCs are more resistant than MaSCs, and are characterized by the expression of
specific cell surface markers, such as high levels of cluster of differentiation 44 (CD44)
and low levels of cluster of differentiation 24 (CD24). Particularly, high expression of
CD44  maintains  BCSC  multipotency,  while  low  levels  of  CD24  maintain  cell
stemness[21].  More  recently,  additional  markers  have  been  identified,  including
ALDH1, which oxidizes retinol to retinoic acid, thereby playing a role in the first step
of  BCSC  differentiation.  Elevated  expression  of  ALDH1  identifies  BCSCs  and
correlates with poor prognosis in receptor-negative BCs[22,23]. Again, other cell surface
markers, such as the cluster of differentiation 133 (CD133), 49f (CD49f), and 90 (CD90)
have been identified as CSC markers and are associated with drug resistance, poor
prognosis, and reduced BC survival[24].

These  findings,  summarized  in  Table  1,  have  made  it  possible  to  design  and
synthesize  specific  antibodies  to  target  these  BCSC  markers  and  create  more
efficacious therapies for aggressive BCs. To make this landscape more intricate, a
plethora of pathways activated in MaSCs are deregulated in BCSCs. These include the
Notch, Wnt, Hedgehog and Hippo pathways that, in addition to cross-reacting with
each other, intersect with the main signaling pathways (PI3-K/Akt; MEK-dependent
pathway)  in  BCSCs.  As  such,  their  successful  targeting  is  very  ambitious,  since
inhibition of one circuit frequently induces up-regulation and/or hyper-activation of
the other pathways[24].  Unfortunately,  less is  known about the classical  and non-
classical pathways commonly activated by SSRs in BC cells. In the subsequent sections
of this review, we will discuss the scant data in the literature that integrates and
improves our knowledge about this topic.

ER in BCSCs
Two isoforms of ER, ERα and ERβ, are expressed in BCs[25-28], with ERα representing
the most important hormonal biomarker in this cancer. ERα is expressed in almost
75%  of  BCs,  and  its  presence  positively  correlates  with  response  to  endocrine
therapy[29]. In some studies, ERβ has also been associated with improved survival in
tamoxifen-treated  patients[30,31].  The  two  ER  subtypes  are  encoded  by  genes  on
different  chromosomes,  and  differentially  activate  common  estrogen  response
elements  (ERE) in gene reporter  assays[32,33].  In target  cells,  both ER isoforms act
through transcriptional and non-transcriptional mechanisms, thereby controlling cell
cycle  progression,  invasiveness  and metastatic  phenotypes[34-36].  Recently,  a  new
36KDa truncated variant of ERα (ERα36) has been identified, which is expressed in
both ERα-positive and negative BC cells. ERα36 lacks both of the transactivation ER
domains,  localizes  to  plasma membrane  as  well  as  cytoplasm,  and  responds  to
estrogens and anti-estrogens. It also regulates BC cell proliferation and contributes to
BC aggressiveness[37].

The expression and role of each ER isoform in BCSCs, however, still remains under
debate. The majority of studies points to the absence of ERα in BCSCs[38]. It has been
consistently reported that CD44+/CD24-/ALDH+ CSCs lack ER or express it at very
low levels[15,39]. Although considered ERα-negative, the number of both BCSCs and
MaSCs  can  be  increased  by  stimulation  with  estradiol[38],  likely  because  other
receptors (for instance, G-protein coupled receptor 30, ERα36 or ERβ) might mediate
estrogen action in these cells. These findings will be extensively discussed below.

Additional studies also argue that BCSCs do not harbor ERα, and that the receptor
rather arises from the original BC. As a result, ERα would be expressed in BCSCs
derived from ERα-positive BCs, while it would be absent in BCSCs derived from ERα-
negative BCs[40]. As it occurs in prostate CSCs[41,42], these quite divergent findings may
be due to experimental differences, such as ER assays, cell culture conditions and BC
cell populations.

It is, however, currently accepted that estrogens act on BCSCs via  non-genomic
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Table 1  Breast cancer stem cell biomarkers

Biomarkers Expression Role Ref.

CD44 Positive/high Maintenance of breast cancer stem cell multipotency, cell proliferation and cell migration Schabath et al[21], 2006

CD24 Negative/low Cell migration and metastases Jaggupilli et al[82], 2012

ALDH1 Positive/high Stemness, cell migration, invasion, and tumor metastases Ma et al[28], 2017

CD133 Positive Cellular differentiation Sin et al[83], 2017

CD49f Positive Tumor initiation and metastases Sin et al[83], 2017

CD90 Positive Drug-resistance and poor prognosis Schabath et al[21], 2006

CD44: Cluster of differentiation 44; CD24: Cluster of differentiation 24; ALDH1: Aldehyde dehydrogenase 1; CD133: Cluster of differentiation 133; CD49f:
Cluster of differentiation 49f; CD90: Cluster of differentiation 90.

signaling, by activating GPR30, a seven domain trans-membrane receptor expressed
in both ER-positive and ER-negative breast cancers[43]. It has been reported that this
influences the Hippo pathway via tafazzin (TAZ) activation. In BCSCs, TAZ activation
is responsible for BC metastatic features[44]. Again, elevated levels of TAZ combined
with its increased activation can be detected in poorly differentiated BCs, where it
confers self-renewal capacity to non-CSCs[45]. Other reports indicate that estrogens act
by  activating  ERα or  its  variant,  ERα36.  In  ERα-positive,  MCF-7-derived tumor
spheres collected on day 21 (tertiary tumor spheres), when they possess high levels of
stemness markers and self-renewal ability, estrogen stimulation increases the levels of
PI-9,  a  granzyme  B  inhibitor.  Such  an  effect  impairs  immune  surveillance,  and
increases  both  the  number  and  size  of  tumor  spheres[46].  ERα36,  which  lacks
transcriptional  activity  and exclusively  acts  through non-genomic  action,  could
mediate these responses since estrogen treatment of tertiary tumor spheres increases
ERα36 levels and decreases the level of the full-length ERα[46]. In spite of ERα36 being
predominantly a plasma membrane-based receptor and lacks both the AF-1 and AF-2
transactivation domains of ERα66 (ERαwt), it  also acts as a negative regulator of
genomic estrogen signaling mediated by both ERα wt and the ERβ[47]. A small amount
of ERα36 is located in nuclei  where it  competes with the two receptors for DNA
binding sites (ERE, [47]).

Again,  upon  estrogen  stimulation,  ERα36  rapidly  activates  the  MAPKs/ERK
pathway,  thus  triggering  cellular  proliferation[47].  The  MAPK/ERK  pathway  is
activated not only by estrogens but also by the antiestrogen tamoxifen in a stronger
and prolonged way[47]. These findings might explain the pivotal role of ERα36 in anti-
estrogen BC resistance.

ERβ and stem cell marker expression have been recently studied in mammospheres
derived from fresh primary BC specimens and BC cells. In about 50% of cases, ERβ
was upregulated in BCSCs. More importantly, it was co-expressed with CD44 and
ALDH1  in  the  absence  of  ERα.  Again,  ERβ  was  responsible  for  the  growth  of
mammospheres and the upregulation of glycolysis.  Thus,  ERβ might actually be
considered as a stemness marker in BC cells[28]. This study offers new hints for a better
understanding of ERβ function in BC and, in contrast with the concept that BCSCs
respond to  estradiol  via  paracrine  signaling,  it  proposes  that  estrogens  directly
challenge BCSCs through ERβ activation.  At  last,  identification of  ERβ-enriched
BCSCs offers  new therapeutic  possibilities  based on the use  of  ERβ antagonists,
combined with  classical  drugs  (antiestrogens  or  aromatase  inhibitors)  routinely
employed in the clinical management of BC.

Altogether,  the  data  discussed  thus  far  show  that  ERα  and  ERβ  can  both  be
detected in BCSCs. Depending on the specific context, they can be targeted to limit the
proliferative and invasive rate of BCSCs. Although these cells are usually resistant to
the classical therapies that target ER, the presented data support the idea that ER acts
in an unconventional manner in BCSCs, paving the way for the exploration of new
GPR30[48]  or ERβ [28]  inhibitors or drugs/peptides that specifically inhibit the non-
genomic action induced by ERs in BC[25,35]. Some of the principal pathways operating
in BCSCs are sketched in Figure 1.

PR in BCSCs
Progesterone and its receptor play a pivotal role in mammary gland side branching
that  occurs  during  puberty,  as  well  as  lobular-alveolar  development  during
pregnancy. PR exists in two isoforms, PR-A (PR-A, 94KDa) and PR-B (PR-B, 114KDa).
The same gene encodes for the two PR isoforms, but PR-A lacks the first 164 amino
acids of the PR-B, and might act as a trans-repressor of PR-B transcriptional activity,
although it might even trans-repress the activity of ER, androgen receptor (AR), and
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Figure 1

Figure 1  The main pathways activated by different estrogen receptor isoforms in breast cancer stem cells,
responsible for cell proliferation and tamoxifen-resistance. GPER: G-protein coupled receptor; ERα36: estrogen
receptor alpha 36; ERβ: estrogen receptor beta; MEK: Mitogen activated protein kinase; ERK: extracellular signal-
regulated kinase; YAP: Yes-associated protein; TAZ: Tafazzin.

glucocorticoid and mineralcorticoid receptors[49]. The two isoforms are co-expressed at
similar levels in normal breast cells, but this balance is altered in cancer cells, where
one of the two isoforms, PR-A, is commonly overexpressed[50].

By  enhancing SC proliferation and increasing the  number  of  progenitor  cells,
progesterone influences mammary gland growth[50]  and induces mammary tumor
formation[38]. As it occurs for ER and AR, the ligand-activated PR works in BC cells
through genomic and non-genomic mechanisms, thus controlling transcriptional
machinery, epigenetic modifications and rapid signaling pathways depending on Src
or PI3-K activation[51]. This is, however, a simple picture of progesterone action in
target cells. We now appreciate that rapid activation of signaling cascades by ligand-
bound PR fuels chromatin remodeling and gene transcription, on the one hand[52]. On
the  other,  the  progestin-activated  transcriptional  machinery  might  regulate
cytoplasmic events, which impinges on signaling activation[53].

In women with pre-existing BC, progestins are responsible for the re-activation of
ER-/PR- cancer stem-like cells[54]. Progesterone stimulation of differentiated cancer
cells  (ER+,  PR+,  CK5-)  increases  the  number of  stem-like  colony cells  (ER-,  PR-,
CD44+, CK5+) within the tumor. Ligand activation of PR does not modify the cell
number, but rather de-differentiates the more abundant ER+/PR+/CK5- cells into ER-
/PR-/CK5+ cells harboring stem-like properties[54]. Specifically, activated PR binds
two putative progesterone response elements localized within the CK5 promoter. This
transcriptional regulation finally leads to an increase in CK5 expression and is more
effective in small, almost undetectable BCs, allowing their recurrence.

PRs are commonly considered as an indicator of the transcriptionally intact ER
axis[55].  In BC-derived T47D cells, which express the two PR isoforms under basal
conditions,  PR-A is  the principal  driver of  CSC expansion,  while PR-B regulates
anchorage-independent growth. Specifically, expansion and biochemical features of
CSCs (ALDH1, CD44+/CD24-, CD49f+/CD24-) are linked to PR-A phosphorylation at
the Ser 294 residue. PR-A+ tumor spheres are, hence, small but express an enriched
basal-like  CSC  phenotype  (CD49f+/CD24-),  which  is  suggestive  of  increased
malignancy and metastatic potential. On the other hand, PR-B+ tumor spheres are
larger than the PR-A+ ones and exhibit a CD49f+/CD24+ luminal phenotype. Cells
expressing a  PR-A mutant  that  cannot  be phosphorylated at  the Ser  294 residue
display an impaired CSC phenotype associated with an enhancement of anchorage-
independent growth[55].

Taken together, the data presented thus far highlight the role of the progestin/PR
axis in sustaining the survival and growth of BCSCs, and emphasize the role of each
PR isoform in these processes. A better understanding of the role of each PR isoform
in BCSCs might open new perspectives in the therapeutic approach of this cancer
type, particularly in its recurrent forms.
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AR in BCSCs
AR  expression  is  closely  associated  with  a  group  of  hormone-related  diseases,
including cancers of the prostate, breast, ovary, pancreas, liver and lung. It is also
linked to various diseases that include muscle atrophy, osteoporosis, diabetes and
neurodegenerative disorders[56-58].

AR is expressed in both ER-positive and ER-negative BCs[59]. In ER-positive BCs, AR
correlates  with a  more favorable  prognosis,  while  it  is  commonly considered to
control  progression  and  drug  resistance  in  triple  negative  BCs[2,60].  It  is  largely
accepted  that  AR activation  by  androgens  regulates  important  changes  in  gene
transcription  or  signaling  pathway  activation  (i.e.  Src/Ras/MAPKs,  PI3K/Akt,
filaminA/Rac).  These actions control different processes,  including proliferation,
migration, and invasiveness of normal and cancer cells[25,58,61,62].

The role of androgens and AR in BCSCs is poorly explored, and few data have been
published  in  the  literature.  By  perusing  the  United  States  National  Library  of
Medicine  (https://www.ncbi.nlm.nih.gov/pubmed/),  we found only  43  results
matching with our analysis. In a recent paper[63], AR expression has been correlated
with  “stemness”  markers  (i.e.  CD44,  CD24  and  ALDH1)  in  166  BC  patients.  A
significant correlation between AR and CD24 has been observed in stage I-III invasive
BC. Such a phenotype correlates with favorable clinicopathological features,  and
delineates a subgroup of patients with better disease-free survival[63]. However, AR
expression in CSCs might foster BC invasiveness. Forced suspension culture of AR-
positive MDA-MB453 with SUM195pt cells  induces an increase in the BCSC-like
population, and protects cells from anoikis. Such effects depend on AR, as shown by
experiments with the anti-androgen enzalutamide[64].

Again, dihydrotestosterone treatment increases the CK5+ population in MCF-7 but
not  T47D cells.  Notably,  CK5+  cells  are therapy resistant,  have increased tumor-
initiating potential, and express the SC marker CD44[65]. The finding that androgens
exert  different  actions  in  the  two BC-derived  cell  types  might  be  related  to  the
different intersection of AR with other SSRs occurring at the transcriptional or non-
transcriptional level in breast and prostate cancer-derived cells[41,42,66]. Furthermore, AR
maintains  the  BCSC population  in  AR-positive  TNBCs,  since  its  knockdown or
treatment  with  enzalutamide  reduces  the  number  of  ALDH1+  cells  as  well  as
mammosphere formation[67].  It  should be noted that synthetic progestins activate
AR [68].  Therefore,  progestin-induced  BCSC  enrichment  might  be  due  to  AR
activation[69]. In addition to reinforcing the concept that SRs substitute each other in
mediating important biological effects[25,70,71], such a mechanism might take place in
BCs expressing high levels of AR in association with low or undetectable PR levels.
Consistent with this hypothesis,  it  might also be argued that progestins launch a
double hit by acting on both AR and PR. Altogether, these considerations account for
the clinical correlation between progestin-treated women with increased BC risk, and
highlight the complexity of AR’s role in BC pathogenesis. The contribution of the
androgens/AR axis in BCSC regulation, however, still remains uncertain.

STEROID RECEPTOR-REGULATED MIRNAs IN BCSCs
In BCSCs, steroid receptors are also able to control miRNA levels.  ERα regulates
microRNA (miRNA) expression, thereby controlling the ability of BCSCs to affect
proliferation, death, adhesion and cell-cell communication[72]. In BCSCs, activated ERα
binds a specific ERE flanking the promoter region of miRNA-140, thereby suppressing
miRNA-140 transcription and enhancing the expression of SOX2, a stemness marker,
which maintains SCs[73].

PR regulates different miRNAs in BC. Among them, miR-29 and mi-R 200 families
are involved in BCSC formation. The miR-29 family includes three members, miR-29
a, b and c, which are all down-regulated by progestins in BC. Such down-regulation is
linked to an increase in the transcription factor KLF4, as well as CD44 and CK5, with
the subsequent de-differentiation of cells[74]. It has also been shown that the progestin-
induced increase of GATA3 results in miR-29b down-regulation, and a subsequent
increase in the BCSC population[75].  Again,  the miR-200 family includes miR-141,
which  is  down-regulated  by  PR.  miR-141  increases  the  CD44+  and  CK5+  cell
population, while reducing PR and Stat-5 levels, two important transcription factors
implicated in the control of mammary cell fate[76].

There are no studies about miRNA regulation by AR in BCSCs. Few obtained data
have shown that AR is responsible for miRNA down-regulation[77]. In ER-/PR-/AR+
cells, AR up-regulates the pro-differentiation of miRNA let7a, which, in turn, inhibits
cell proliferation by downregulating c-MYC and K-Ras[78].

Altogether, the findings reported here indicate that ER and PR upregulate miRNA
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levels  involved  in  CSCs  formation  and  differentiation.  As  such,  they  represent
excellent targets to impair CSCs formation and, likely, BC recurrence.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
A growing number of studies is trying to clarify the role of BCSCs in BC pathogenesis
and progression. Although interest in the study of BCSCs is currently high, it is not
yet  well  known how these  cells  work within  the  cancer,  and the  identity  of  the
engaged pathways.

Based on the stem cell hypothesis, cancer might arise from a cell population with
the stem property of self-renewal. Such a property can already be owned by cells or
can be acquired. As such, cancers originating from these cells are organized in a
hierarchical fashion, in which SCs or stem-like cells drive the malignant process and
generate a population of non-renewing cells that regulate the cancer bulk[79].

Less is known about the role of SSRs in SCs. Despite the fact that some reports
claim that ERs are not expressed in BCSCs, many studies concerning the expression
and role of this receptor have been published, with very conflicting data. The classical
isoform of ERα acts, for instance, through a genomic pathway that regulates miRNA
expression and SC phenotype, while the ERα variant,  ERα 36 or GPR30, may act
through non-genomic pathways, thereby contributing to cell dedifferentiation, tumor
metastases  and therapy resistance.  Surprisingly,  ERβ is  commonly considered a
marker of stemness in BCSCs. Its targeting by specific antagonists can be envisaged as
mono or combinatorial therapy in the clinical management of BC.

Both PR isoforms seem to play a pivotal role in BCSC expansion and proliferation,
and  are  tightly  linked  to  BC  metastatic  and  malignant  properties.  In  this  way,
deepened knowledge of the machinery controlled by PR in BCSCs might be a big step
forward to predict BC relapse and inhibit the growth of BCs resistant to currently
employed therapies. The role of AR remains uncertain, and data about its behavior in
BCSCs  are  very  scant.  Therefore,  it  is  very  difficult  to  draw  any  conclusions
concerning the role of this receptor in BCSCs.

In conclusion, the data discussed thus far points to PR isoforms and ERβ as the
more  convincing  targets  to  reduce  the  BCSCs  population  within  human  BC.
Therefore, a better and more exhaustive understanding of other SSRs is required in
order to develop new treatments of BC and control drug resistance, which is often
imputable to BCSCs.

Preclinical and clinical evidence indicates that BCSCs control progression, invasion,
metastasis as well as drug and radiation therapy resistance. Therefore, eradication of
BC strictly depends on the elimination of BCSCs. New molecules such as GDC0449 or
eribulin have entered clinical trials for their anticancer stem cell activity [80,81]. Further
preclinical and clinical studies are needed to elucidate the relevance of CSCs signaling
in BC recurrence and therapy resistance.
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