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Abstract

Alzheimer’s disease (AD) is still a major public health challenge without an
effective treatment to prevent or stop it. Routinely used acetylcholinesterase
inhibitors and memantine seem to slow disease progression only to a limited
extend. Therefore, many investigations on new drugs and other treatment
modalities are ongoing in close association with increasing knowledge of the
pathophysiology of the disease. Here, we review the studies about the new
treatment modalities in AD with a classification based on their main targets,
specifically pathologic structures of the disease, amyloid and tau, neural network
dysfunction with special interest to the regulation of gamma oscillations, and
attempts for the restoration of neural tissue via regenerative medicine.
Additionally, we describe the evolving modalities related to gut microbiota,
modulation, microglial function, and glucose metabolism.

Key words: Alzheimer’s disease treatment; Anti-amyloid; Anti-tau; Gamma oscillations;
Stem cell therapy
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Core tip: This review discusses various new treatment modalities in Alzheimer’s disease
(AD) based on the classification of their mechanism of action. New anti-amyloid, anti-
tau, and treatments targeting network dysfunction with particular attention to deep brain
stimulation to modulate gamma oscillations in the brain are evaluated. Moreover exciting
developments in stem cell therapy especially combined with tissue engineering
techniques are presented. Lastly some other modalities including microglial function
modulators, gut microbiome transplantation, modulation of vagus nerve and metabolic
arrangements are mentioned. It seems that new treatments in AD will involve each of
them individually or in combination.
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INTRODUCTION

Alzheimer’s disease (AD) is a major public health challenge in the 21st century. For
this reason, near to 500 clinical trials have been conducted and huge amounts of
money have been spent in an effort to handle the diseasel'. At present, cholinesterase
inhibitors donepezil, rivastigmine, and galantamine and, memantine, which acts as a
N-methyl D-aspartate receptor antagonist and also as a dopamine antagonist, are
approved as symptomatic treatments for use in ADP”L. Other alternative treatments
and measures include nutraceutical huperzine A, correction of vitamin D deficiency,
use of non-steroidal anti-inflammatory drugs, omega 3 fatty acid supplements,
management of cardiovascular risk factors, and aerobic physical exercisel**l. The
benefits of these options are limited to slowing the disease, not matching the expec-
tation of stopping it.

With advances in molecular biology and pharmacology, some new treatment
modalities related to the pathognomonic pathological features of the disease have
come onto the scene. Additionally, new therapeutic neurophysiological interventions
have aimed to resolve the neural network dysfunction that emerge through progressi-
on of the disease, and trials of stem cell therapy have been initiated. Early therapeutic
intervention is an important factor for the success of treatment. Moreover, some
environmental regulations can be considered as measures of prevention, especially in
persons who are at high risk of developing AD.

Here, we review investigations on the new treatment modalities in AD with a
classification based on their main targets, specifically pathologic structures of the
disease (i.e., amyloid and tau), neural network dysfunction with special attention to
the regulation of gamma oscillations and attempts for the restoration of neural tissue
via regenerative medicine. Additionally, we describe the evolving modalities related
to gut microbiota, modulation, microglial function, and glucose metabolism.

ANTI-AMYLOID

Amyloid plaques are the earliest manifestation of AD, and can be detected 20 years
prior to the onset of symptoms!”. The most direct action in anti-Amyloid treatment is
to reduce Amyloid-p (AB) production from its precursor, Amyloid precursor protein
(APP), by targeting  and y-secretases, but some safety problems exist for these drugs.
For y-secretase inhibitors, unwanted side effects are unavoidable due to its physiolo-
gical substrates, which are essential in normal biological processes, such as the Notch
signaling protein!’l. B-Amyloid secretase inhibitors (B-site APP cleaving enzyme 1:
BACE1) have some challenges such as the large catalytic pocket and adverse side
effects including blindness!"l. Additionally, there are some handicaps with the use of
these drugs, because the majority of AD patients do not have over-produced APP and
some A isoforms can increase neurotransmitter release at hippocampal synapses by
some regulatory mechanisms ['”l.

Though early investigations of BACE1 inhibitors failed to show meaningful results
in human subjects, a recent study declared that the novel medication verubecestat
caused a decrease in AP levels at a level of more than 40 fold in animals and showed
good safety profile in early human trials!"”! (Table 1).

Another approach for decreasing AP plaque deposition is immunotherapy.
Although active AB-immunotherapeutic agents showed some beneficial clinical
effects, the studies were suspended due to serious side effects such as meningoencep-
halitis!"*'?). Monoclonal antibodies initially developed as passive immunotherapy
agents removed plaques from the brains of patients, but did not improve cognitive
scores in patients with mild to moderate diseasel'*’\. These results have led investi-
gators to believe that these agents may be beneficial solely in the early phases of mild
cognitive impairment. Solanezumab did not yield beneficial clinical effects in patients
with few symptoms, despite some improvements in amyloid PET imaging and in
assessments of Mini Mental State Examination!”?*?*""l. Another agent named
aducanumab is currently under investigation (EARLY study) for its clinical effects in
elderly persons with positive biomarkers or family history of AD, and has promising
initial results!®'*>*,

To overcome the failures with monoclonal antibodies, multiple functional subregi-
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Table 1 Potential treatments related to BACE1 and p-tau undergoing clinical trials

Target Drug Study phase Expected completion date Results
BACE1  Lanabecestat 2 September 2019

JNJ-54861911 2 October 2022

Elenbecestat 3 December 2020

Verubecestat 3 March 2021

LY450139 3 Completed April 2011 Not effective
P-tau IONIS-MAPTRx 1,2 February 2020

JNJ-63733657 1 February 2019

RO7105705 2 September 2022

ABBV-8E12 2 June 2021

AADvac1 2 June 2019

BIIB-092 2 September 2020

BIIB-080 1 February 2020

TPI-287 1 Completed May 2017

TRx0237 3 February 2019

LY3303560 1 June 2019

MTAU9937A 2 (-) Continuing

E2814 1 (-) Continuing

BACEL: B-site amyloid precursor protein cleaving enzyme 1; p-tau: Hyperphosphorylated tau peptide.

ons of AP may be targeted'). Moreover, combination therapy with a monoclonal
antibody and BACE1 inhibitor may be more promising, because it has been shown to
reduce the amount of amyloid plaques in mice significantly™’. Despite many
problems, immunotherapy is still a promising approach to modify the extend of
neuro-degeneration in AD™I,

ANTI-TAU

Since the anti-amyloid treatment measures have not been as successful as expected so
far, some other targets are starting to being investigated. Tau-targeted trials are the
major new interest for this aim, since biomarker studies propose that tau pathology is
closely correlated to the clinical follow up of AD. Initially, inhibitors of kinases and
tau aggregation or stabilizators of microtubules were tried as potential anti-tau
therapies. However, most of these approaches have failed because of their toxicity
and/or lack of efficacy. Recently, most of the anti-tau clinical investigations are based
on immunotherapeutic approaches. There are 8 ongoing clinical trials, (in Phase I,
Phase II) and several preclinical studies on tau immunotherapies. TRx0237 as a tau
aggregation blocker failed to yield beneficial treatment effects in a phase III trial™!.
Intravenous immunoglobulin, the passive immunotherapy among Phase III clinical
trials, did not fulfill primary end points in mild to moderate ADI. AADvacl as a tau
vaccine showed good results in terms of both safety and immunological response in
Alzheimer patients. Further studies are needed to prove its clinical efficacy!™! (Table
1).

Goldstein ef al reported that cholesterol esters (CE), the storage form of excess
cholesterol within cells, regulate tau activity. Moreover, they found that the anti-HIV
drug efavirenz decreased CE by activating the neuronal enzyme “CYP46A1” and
thereby reduced phosphorylated tau within neurons of patients with AD. Furth-
ermore, they observed that CE promotes formation of tau even in the absence of Ap,
indicating that simply removing Af from the brain, which was the target of many
candidate drugs for AD treatment, would not be adequate to halt the disease. They
thought that the CYP46A1-CE-tau axis was a target and a potential mechanism
against which new drugs could be developed in the treatment of early AD. The
researchers also confirmed previous reports declaring that reducing CE prevented
amyloid formation additionally. They stated that CE were upstream of both Ap and
tau, presenting a way to prevent abnormal deposition of these proteins.

Key opinion leaders believe that the research field of tau therapies is still premature
and trials may face the similar difficulties as in amyloid therapies!'l. However, if these
trials become successful, they may cause enrichment in the alternative choices
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including combination therapies against accumulation of pathologic amyloid and tau
proteins, in the early stages of the disease.

TARGETING NEURAL NETWORK DYSFUNCTION

In recent years, it has been discovered that alterations at the genetic and cellular levels
initiate neural network dysfunction which causes further deterioriation in cognition.
Additionally, a novel hypothesis has been proposed, stating that AD patients are able
to encode memories but unable to retrieve them!””.. Therefore, in addition to tre-
atments targeting the pathological structures, strategies restoring neural network
connectivity may be directly useful in reversing memory loss!"*l. These therapeutic
drugs and interventions also have positive feedback effects on molecular processes to
re-establish cellular health!“!.

Deep brain stimulation techniques used in Phase 1 studies to directly target the
activity of brain networks ended with positive results!**l. Stimulation of the fornix in
animal models changed protein expression and in turn restored cellular health and
network function”’l. Likewise, increased histone acetylation using inhibitors of
histone deacetylases in a mouse model caused the sprouting of dendrites and
increased number of synapses, thereby inducing repair of neural networks and
leading to recovery of learning behaviour and access to long-term memories!™. Excita-
tion of hippocampal engram cells using optogenetic techniques in a transgenic mouse
model of early AD increased the number of dendritic cells and recovered learning and
memory"’. Arrangement of gamma oscillations in the hippocampus is also a new
technique that has been shown to have positive effects on cognitive activity by
restoring interneuron activity and by some non-neuronal effects!*’l.

Gamma oscillations are rthymic fluctuations of brain waves in local field potentials
with a wide range of high frequencies (approximately 25-100 Hz) and are associated
with inter-neuronal communication in virtually all brain networks. These oscillations
may actually be two functionally distinct rhythms, slow (approximately 25-50 Hz) and
fast (approximately 55-100 Hz) gammal"l. Although slow and fast gamma waves are
found to be generated locally, gamma oscillators with similar frequencies in various
brain regions can be synchronized through anatomical connections”'l. There is
growing evidence that gamma rhythms are important for hippocampal memory
processing, as fast gamma stimulates new memory encoding by conveying current
sensory information to the hippocampus ***! and slow gamma plays a role in
memory retrieval by facilitating hippocampal CA3 inputs to CA1F>**l. Sharp wave-
ripples (SWRs)P are also important in memory retrieval, because slow gamma power
and harmony between CA3 and CA1 increases during them*"! .

A decrease in SWR-associated slow gamma was demonstrated in AD mouse
models. The rescue of slow gamma rhythms resulted in alleviation of deficits in
learning-memory and mitigation of AD pathology by the modulation of gamma
oscillations!-**l. Hippocampal fast-spiking parvalbumin-positive interneurons were
excited optogenetically by using a non-invasive 40 Hz photic stimulator. This
technique also decreased AP production and stimulated its attenuation by increasing
microglial engulfment!*.

RESTORATION OF NEURAL TISSUE V/IA REGENERATIVE
MEDICINE

Elimination or blocking of amyloid or hyperphosphorylated tau protein cannot
restore or replace the degenerated neurons in AD. Stem cell therapy seems to be a
convenient candidate for repopulation and regeneration of degenerating neuronal
networks in the disease. The designs of stem cell therapies target two theoretical aims.
One of these is designed to induce endogenous repair by upregulating resident brain-
derived neural stem cell (NSC) niches within the adult brain and stimulating adult
hippocampal neurogenesis, which is particularly important in the early stages of the
disease. Nevertheless, this approach failed in clinical trials probably due to the
ineffectiveness of the procedure to functionally compensate for the lost hippocampal
neurons or because the method does not adequately address other features of the
diseasel I,

The other design is exogenous cell therapy, aiming to restore the neuronal
networks using native or induced production of neuroprotective growth factors as
contributers, based on the fact that the production of neurotrophins, which are factors
supporting the growth and survival of neurons, is low in AD patients. Moreover,
differentiation and participation of the stem cells in repopulating regions of

Baishidengs WJCC | https://www.wjgnet.com 1767 July 26, 2019 | Volume7 | Issuel4 |



Koseoglu E. New treatments in AD

degenerated neurons can lead to therapeutic restoration.

The types of stem cells used in cell therapy are highly important from the points of
providing unique distinctive cells required and for their different abilities to promote
neurotrophic factors. In general two major stem cell types exist. One type is
pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs). The other type is adult stem cells which comprise NSCs, hematopo-
ietic stem cells (HSC), mesenchymal stem cells (MSCs), and olfactory ensheathing
cells (OECs)!l.

ESCs are capable of unlimited self-renewal. They are a perfect choice for cell
replacement therapy, when their pluiropotency is precisely arranged into necessary
neuronal types. Nevertheless their use is largely limited due to ethical concerns.
Induced PSCs produced from fully differentiated somatic cells provide an
opportunity to deliver patients specific pluiropotent cells suitable for autologous
transplantation®’l. There have been successful trials with iPSC-derived cholinergic
neuronal precursors, iPSC-derived macrophage-like cells, and iPSC-derived NSCs!***l,
It seems that the niche of stem cell is very important in stimulating the differentiation
of transplanted cells toward a special type from the point that some beneficial
immunological or biochemical effects become possible. Use of neurotrophins leading
to a shift from proinflammatory to anti-inflammatory cytokine reactions and use of
proteins causing apotransferrin release from the cells are good examples of this
phenomenon®l. Both adult NSCs and adult MSCs can be affected and expanded
with extrinsic chemical agents and growth factors!’l. Both are effective through
replacement of degenerated cells and release of neurotrophic factors enhancing
neurogenesis, such as vascular endothelial growth factor, brain-derived neurotrophic
factor (BDNF), insulin growth factor-1, nerve growth factor (NGF), and fibroblast
growth factor 2 (FGF2). In addition to enhancing neurogenesis, these secreted
neurotrophic factors promote AP clearance, reduce tau hyperphoshorylation, enhance
synaptogenesis, modify innate and adaptive immune cell responses by upregulating
neuroprotective cytokines and decreasing proinflammatory cytokines, increase
microglial phagocytic activity, enhance neovascularization, and modulate autophagy
pathwaysl®*74. Both NSCs and MSCs can be genetically improved to increase the
success of transplanta-tion and to enable delivery of more efficient therapeutic and
neurotrophic factors’>’?l. Several investigations have clearly shown that exogenous
transplanted NSCs migrate precisely and may differentiate into various types nerve
cells 'l MSCs can be derived from a variety of adult tissues and organs, comprising
peripheral blood, bone marrow, umbilical cord, amniotic fluid, Wharton jelly, fetal
liver, muscle, lung and adipose tissuel””). MSCs have been a good option in practice
due to their high potency of proliferation, anti-inflammatory features, easy
accessibility, high capability of propagation in vitro, secretion of an extensive range of
cytokines, and absence of ethical problems. They can be administered intravenously,
which is the least invasive method making multiple injections possiblel*'l.
Additionally, MSC-extracellular vesicles (MSC-EVs), especially genetically modified
ones, may be a new horizon in the treatment of AD. EVs are membrane vesicles that
are secreted by various mammalian cell types, and have been demonstrated to deliver
biologically effective molecules to neighbouring diseased or harmed cells, stimulating
immune modulation, angiogene-sis, neurogenesis, and synaptogenesis. They also
modulate physiological or pathological processes by echoing the genetic profile of
their parent cell to recipient cellsl’®. MSCs can be genetically modified to secret EVs
supplied with therapeutic agents like growth factors and small interfering RNA
(siRNAs) that target useful enzymes to the brain”*. OECs are another source of
multipotent stem cells found in the lamina propria, generally supporting neurons in
structural, metabolic, and trophic aspects through secretion of neurotrophic growth
factors (e.g., NGF, BDNF) along with extracellular matrix molecules like fibronectin.
By this way, OECs causes a synergistic effect for other transplanted stem cells.
Genetically modified olfactory bulb-NSC/NPCs expressing hNGF showed beneficial
effects on cognitive decline caused by ibotenic acid-induced lesions*!l.

To increase the efficacy of stem cells and to protect them from the hostile microen-
vironment in AD, transplanting self-assembling proteins as three dimensional
scaffolds or optimising structures for encapsulating stem cells using the techniques of
tissue engineering and nanotechnology are highly recommended for the treatment of
AD. Likewise there are some successful trials of these methods in animals and
humans®*1,

There are several phase 1 or phase 1/1b clinical trial studies with positive results
using various methods such as transplantation of microencapsulated implants of
genetically modified retinal pigment epithelial cells and autologous fibroblasts
genetically programmed to produce NGFI¥ %1 A recent study performed with
human umbilical cord blood (hUCB)- derived MSCs on nine mild-moderate AD
patients showed no adverse effects and no significant clinical efficacy or neurop-
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rotective effect”]. Currently, several phase 1 or 2 studies in humans are ongoing
(Table 2). Stem cell treatment seems promising especially with the possible use of
genetically modified stem cells and application of different tissue engineering
techniques.

ADDITIONAL MODALITIES ON THE WAY

With the increase in knowledge about the fundamental mechanisms of gut microbiota
affecting the brain through the immune system, endocrine system, vagus nerve, and
bacteria-derived metabolites, some newer therapeutic approaches such as microbiome
transplant can be developed!”*l. Modulation of the vagus nerve, being in close
contact with the gastrointestinal tract, has the ability to regulate mood and the imm-
une system and may be another possible therapeutic modality!”>*.

Microglia-related pathways are also found to be related to the pathogenesis of AD
based on emerging genetic and transcriptomic studies”-'""l. In the very early stages of
the disease, microglia are active in synaptic pruning and in the regulation of neurop-
lasticity!"">'”l. In the advanced stages, reactive microglia and astrocytes engulf
amyloid plaques and secrete some pro-inflammatory cytokines. The recent obser-
vations that the blockade of PD-1 immune checkpoint decreases the pathology of AD
and improves memory in mouse models of AD are promising and inspiring for the
future """l New opportunities in the treatment of AD will arise with more studies,
leading to better understanding of the role of microglial dysfunction as related to
immunity, synaptic prunning, and neuroplasticity!**'*’l,

The early studies targeting mitochondria and bioenergetics as related to glucose
hypometabolism of the brain in AD have shown promise in preclinical stages, but
have not been successful in clinical trials!"'*'''l. However, this is still an important area
of investigation aiming to develop new treatment measures.

CONCLUSION

It is accepted that there is need for new treatment modalities and effective combi-
nations of these modalities. A foundation for effective approaches seems to be only
possible with better understanding of the pathophysiology in relation to the stages of
the disease and accurate follow-up of the disease with sensitive and comprehensive
biomarkers. Using different biomarkers related to different aspects and stages of the
disease will foster more plausible therapeutic strategies and assessment of outcomes.

While performing trials based on different therapeutic modalities, it will continue
to be important to give careful attention to the relationships among cells within the
brain and to the relationships between the brain and other organ systems.
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Table 2 Current clinical trials on stem cells

Clinical Trials. gov

Estimated number of

identifier Type of stem cell transplantation Study phase RS Status
NCT02054208 Intraventricular administration of hUCB- 1/2a 45 Recruiting

MSCs
NCT02672306 UCMSCs 1/2a 16 Active, not recruiting
NCT02833792 Allogeneic hMSCs 2a 40 Recruiting
NCT02600130 Allogeneic hMSCs 1 30 Recruiting
NCT03117738 Autologous adipose tissue derived MSCs 1/2 60 Recruiting

UCB-MSCs: Umbilical cord blood-derived mesenchymal stem cells; UCMSCs: Umbilical cord mesenchymal stem cells.
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