Name of Journal: World Journal of Stem Cells
Manuscript NO: 47658
Manuscript Type: REVIEW

[bookmark: OLE_LINK198]Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies
[bookmark: OLE_LINK200]
[bookmark: OLE_LINK199]Vincent A et al. Targeting colon cancer stemness with epigenetic therapies

Audrey Vincent, Aïcha Ouelkdite-Oumouchal, Mouloud Souidi, Julie Leclerc, Bernadette Neve, Isabelle Van Seuningen

Audrey Vincent, Aïcha Ouelkdite-Oumouchal, Mouloud Souidi, Julie Leclerc, Bernadette Neve, Isabelle Van Seuningen, Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France

Julie Leclerc, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France

ORCID number: Audrey Vincent (0000-0003-0058-2058); Aïcha Ouelkdite-Oumouchal (0000-0002-7048-5555); Julie Leclerc (0000-0003-1130-7211); Bernadette Neve (0000-0003-1516-1379); Isabelle Van Seuningen (0000-0002-3131-2694).

Author contributions: Vincent A and Ouelkdite-Oumouchal A equally contributed to this paper with literature review, analysis, and drafting; Neve B contributed to the design of the correlation studies; Aall authors equally contributed to the critical revision and editing, and final approval of the final version.

Supported by “Institut National de la Santé et de la Recherche Médicale” (Inserm) ; “Centre National de la Recherche Scientifique” (CNRS); “la Ligue Nationale contre le Cancer” (Committees 59, 60 and 62).

Conflict-of-interest statement: The aAuthors declare no conflicts of interests for this article.

[bookmark: OLE_LINK507][bookmark: OLE_LINK506][bookmark: OLE_LINK496][bookmark: OLE_LINK479]Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Corresponding author: Isabelle Van Seuningen, PhD, Director, Inserm UMR-S 1172-Jean-Pierre Aubert Research Center, Bâtiment Cancer, 1 Rue Michel Polonovski, Lille F-59045, France. isabelle.vanseuningen@inserm.fr
Telephone: +33-320-298867
Fax: +33-320-538562
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]
Received: March 26, 2019
Peer-review started: March 28, 2019
First decision: June 3, 2019
Revised: August 29, 2019
[bookmark: OLE_LINK98][bookmark: OLE_LINK99][bookmark: OLE_LINK104][bookmark: OLE_LINK110][bookmark: OLE_LINK111][bookmark: OLE_LINK115][bookmark: OLE_LINK116]Accepted: September 11, 2019
Article in press:
Published online: 



Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and Hhistone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while and the expression of numerous cancer stem cell markers, including three cCluster of dDifferentiation (CD) that have been extensively used for the isolation of colon CSCs. : CDluster of Differentiation-133, CD44, and CD166 are often repressed by epigenetic mechanisms. Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant cancer stem cell markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
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[bookmark: OLE_LINK209]Core tip: The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. In this review, we try to understand why current epigenetic treatments have failed to prove their efficacy in solid tumors including colorectal cancer and we hypothesize that, using correlation tools comparing associations of relevant cancer stem cell markers with chromatin modifier expression, we may identify better candidates for epienzyme targeting.
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INTRODUCTION
Hierarchy of the tumor: turning an old concept into a new dogma
Although only recently upgraded as the keystone of the natural history of tumors, the concept of “cancer stem cells (CSCs)” was anticipated several decades ago as researchers soon discovered that cancer cells possessed unequal capacities when it comes to initiating a new tumor or resisting to therapies[1]. Indeed already during the 1960’s, ethically disputed experiments of auto-transplantation that were conducted in human patients demonstrated that numerous cancer cells were necessary to establish cancer transplants, giving hints on the rare nature (1/1000000) of tumor-initiating cells[2].
With the arrival of the first commercially available cell sorters, followed by immunocompromised mouse models that allowed selective xenotransplantionxenotransplantation of cancer cells, the interest in this cancer cell subpopulation has then been growing exponentially, with the field of hematologic malignancies as pioneers[1-3]. As early stem or progenitor cells were shown to be involved in leukemias and myeloproliferative disorders, tumor initiating cells have rapidly been renamed “cancer stem cells”, hence creating a link with histological observations from the 1850’s when pathologists had first hypothesized that tumors could develop from residual embryonic tissues[1-3]. Indeed, CSCs share numerous characteristics with normal embryonic stem cells, such as rareness, cell cycle arrest and quiescence, unlimited self-renewal through asymmetric division, and addiction to stem cell signaling pathways.
In solid tumors, the cancer stem cell model (Figure 1B) was initially considered as a concept that could not be applied to all tumor types and was often opposed to the stochastic clonal evolution hypothesis[4,5], where genetic mutations are the major cause of tumor heterogeneity (Figure 1A)[6,7]. Increasing evidence of cancer plasticity, where cells easily exchange their position in the tumor hierarchy, switching from stem to non-stem states[8,9] and also from non-stem to stem states, reconcile these two models (Figure 1C). Indeed, several studies have demonstrated that cancer cells from different types of tumors, including colon cancer, can naturally convert to CSCs in culture, in total absence of therapeutic agents inducing genetic alteration[8]. Additionally, anti-cancer treatments such as chemotherapies[10] or radiotherapy[9] not only participate to in the selection of resistant clones in the bulk of a tumor but also induce stemness characteristics in non-stem cancer cells. These findings are transposable to tumors from patients in whichwhom stemness-related aggressiveness (invasion capacities, release of circulating tumor cells) is either innate or acquired after exposure to hypoxia, metabolic stress, and treatments.
[bookmark: _Toc491350169]More importantly, the extreme cellular plasticity involving rapid phenotype switches between CSCs and their non-stem counterpart, is probably mediated by epigenetic mechanisms that are reversible in nature, rather than newly acquired genetic mutations. Indeed, we (unpublished data) and others have shown a systematic equilibrium between cancer stem cell marker expressing and non-expressing cells that spontaneously occurs after cell sorting of negative vs positive populations[11]. In accordance with epigenetic mechanisms involved in this balance between stem an non-stem cancer cells, cancerous stem cells harbor a permissive epigenetic state[12-14], comparable to normal stem cells, while epigenetic profiles of differentiated cells are locked in order to shape cellular identity and functions. However, numerous genetic alterations may render cancer cell reprogramming more complicated to target. Understanding this flexibility is crucial for the development of new anticancer drugs. Therefore, new therapeutic strategies will have to combine the targeting of the bulk of the tumor and of the CSCs, whether they are pre-existing or induced. Hence, if these different types of CSCs share the same reversible reprogramming mechanisms, epigenetic therapies would represent an interesting strategy (Figure 2).

UNRAVELING THE EPIGENETIC SIGNATURE OF CANCER STEM CELLSCSCs: A KEY TO UNDERSTANDING CANCER CELL PLASTICITY AND REPROGRAMMING
Current research on induced pluripotent stem cells teaches us that erasing epigenetic marks of the differentiated cell of origin greatly improves reprogramming[15,16]. Mapping stemness-associated chromatin modifications would surely facilitate the development of therapeutic strategies evoking differentiation of CSCs. Indeed, the “differentiating strategy” has proven its efficiency in certain types of hematologic tumors years ago[17]. On the other hand, these strategies have failed to prove their systematic efficacy in solid tumors, where CSCs may come from multiple origins, including normal differentiated cells[8,18], or stochastic genetic events altering cancer cells along tumor evolution.
Molecular mechanisms involved in the shaping of the cancer epigenetic landscapes, and especially in CSCs, are complex. Genetic alterations leading to loss or gain of epienzyme functions have been described[19] , but only rare studies focus exclusively on CSCs. Furthermore, overexpression of epienzymes may not reflect an oncogenic role. The histone methyltransferase enhancer of zeste 2 (EZH2) is the perfect example of this paradox, while its overactivation in certain types of cancers is the sole sign of a compensation mechanisms in cells where hHistone H3 K27 trimethylation is diluted over excessive proliferation[20-22].
Because of the rareness and diversity of CSCs and the fact that no consensus has been found for markers that would allow their proper isolation, few studies have been able to clearly define clearly the cancer stemness-associated epigenetic profiles. It has been shown, however, that mammary and hepatic CSCs harbor more permissive chromatin profiles, more prone to gene activation, than non-stem cancer cells[12]. They also harbor decreased DNA methylation and trimethylation of lysine 27 on histone 3H3K27me3 at tumor suppressor genes[12]. Similarly, trimethylation of lysine 4 on Histone 3H3K4me3 is found preferentially at pluripotency genes such as BMI1, NOTCH1, and WNT1 in CSCs from aAcute mMyeloid Lleukemia patients[13]. CSCs from head and neck carcinomas harbor an epigenetic signature with only 22 differentially methylated genes between cCluster of dDifferentiation (CD)-44+ CSCs and CD44 non-stem cancer cell populations[14], pointing out subtle and specific differences between stem and non-stem cancer cells. The same type of signature has been identified in breast tumors[23], but still needs to be defined for CSCs from the different colon cancer molecular subtypes.
The common findings from studies on cancer stem cell epigenetic profiles are that cancer stem cell markers are either regulated by epigenetic mechanisms in normal and/or cancer cells or harbor different epigenetic profiles between stem and non-stem cancer cells[24]. Alternatively, cancer stem cell markers can themselves be directly or indirectly responsible for chromatin modifications through their presence in Polycomb Repressive Complexes (BMI1) or through histone demethylation (JARID1B).
[bookmark: _Hlk18587257]Among cancer stem cell markers, CDluster of Differentiation-133 (CD133) and CD44 have been extensively utilized to isolate cancer cells with tumorigenic characteristics in numerous types of cancers, including colon cancers in which CD133 predicts low survival. In combination with CD166, these two markers better stratify low, intermediate, and high-risk cases of colorectal cancer[25] (CRC) than the three markers alone. We have shown that combined expression of these three markers is associated with stemness and resistance to 5-fFluoroUuracil (5-FU)e in colon cancer cells[26,27]. Interestingly, expression and splicing of these three markers are epigenetically regulated in cancer cells.

Epigenetic regulation of PROM1, encoding the cancer stem cellCSC marker CD133
CD133 is a 120 kDa transmembrane glycoprotein that was initially identified in hematopoietic stem cells[28] and is involved in cell-cell interactions and membrane organization, through its binding to phospholipids[29]. CD133 is now used as a stem cell marker in most solid tumors including colorectal cancers[29]. More importantly, CD133 is directly involved in stemness properties as its inhibition alters self-renewal and tumorigenic capacities[30]. CD133 is also associated with metastasis and invasiveness through the decrease of metalloprotease MMP-2 expression. Interestingly, its expression is positively correlated with the expression of ATP-binding cassette (ABC) transporters ABCG1 and ABCG2, hence associating cancer stem cell properties to chemoresistance through the presence of multidrug efflux pumps[28]. CD133 is correlated to poor prognosis in numerous cancers including CRC.
The human PROM1 gene, which encodes CD133 (pProminin-1), consists of 28 exons and is localized on chromosome 4p15. The regulation of PROM1 transcription includes five alternative promoters (P1-5) involved in embryonic phase development. PROM1 harbors seven alternative spliced variants, of which the most documented are CD133s1 and CD133s2 (lacking exon 3)[31,32]. Of those only CD133s1 is mainly associated with normal tissue in brain, bone marrow, and blood[31]. CD133s2 expression is widely observed in human fetal tissue and, adult tissues and in several cancers, including breast, colon, lung, and pancreatic carcinomas. CD133s2 is also associated with the human stem cell niche[33].
PROM1 expression is inversely correlated with methylation of CpG islands in its promoter in numerous cancer cell lines[34,35]. For example, in glioma tissues, an inverse correlation has been shown between the CpG methylation status of promoter P1 and P2 and expression levels of PROM1 transcripts. Epigenetic regulation of PROM1 also includes histone modifications, since synergistic effects are observed when using histone deacetylation (HDAC) inhibitors in combination with DNA methyltransferase (DNMT) inhibitors to re-express the cell surface marker CD133 in ovarian cancer cells[24].

Epigenetic regulation of CD44
CD44 is a transmembrane glycoprotein interacting with components of the extracellular matrix including hyaluronic acid, collagens, fibronectins, integrins, and laminin[36]. These interactions induce cytoskeleton modifications and activation of signaling pathways involved in cell adhesion and migration. CD44 expression has been associated with tumor progression, epithelial-to-mesenchymal transition[37] , and poor survival in colon cancers[38]. Mutations have been described in solid tumors, suggesting its implication in carcinogenesis[37]. Most importantly, CD44-variant-6 (v6) is a well-recognized marker of colon and gastric CSCs[39,40].
The hHuman CD44 gene consists of 20 exons and is located on chromosome 11p13. Exons 1-5 and 15-19 encode homologous N-Ter (extracellular) and C-ter (extracellular, transmembrane and intracellular) domains respectively forming the standard isoform CD44s. Alternative splicing of Eexons 5a-14 result in different variants/isoforms of CD44 (CD44v). CD44 variants are overexpressed in numerous types of solid tumors including pancreatic (CD44v2-6), breast (CD44v6/v8-10), prostate (CD44v2/v6), head and neck (CD44v3), and colon (CD44v6/v10) cancers[37]. In contrast with CD44s variant that is absent from mouse normal intestinal stem cells[37], CD44 variants (CD44v4-10) have been associated with normal and cancer stemness. For instance, CD44v6 and CD44v4 are largely overexpressed in stem cells compared to their progeny (transit-amplifying cells). CD44 variants, and not CD44s, are involved in adenoma formation in mouse models of familial polycystic adenomas[41]. Similarly, expression of CD44v6 is restricted to colon CSCs and is associated with worse survival in patients with CRC[39]. In most studies, CD44v4-10 variants are associated with aggressiveness, resistance, metastasis, and poor prognosis in solid tumors including colon cancers.
Epigenetic regulation of the CD44 gene has recently been described. DNA methylation at CpG islands located in the promoter and histone H3 acetylation regulate its silencing or expression[37], respectively. DNMT inhibition induced DNA methylation and histone modification changes at the CD44 gene promoter, increasing CD44 mRNA levels in cancer cell lines[37,42]. More importantly, alternative splicing of CD44 and, hence, the expression of cancer stem cell specific variants is epigenetically regulated. Indeed, accumulation of hHistone H3 lysine 9 trimethylation and HP1 stabilizes pre-mRNA binding to the chromatin and therefore facilitates exon inclusion[43].

Epigenetic regulation of ALCAM encoding the cancer stem cellCSC marker CD166
CD166 is a member of the immunoglobulin superfamily and is engaged in homophilic or heterophilic interactions with the cell surface receptor CD6. CD166, which is expressed on antigen-presenting cells, is involved in maturation of CD6-expressing resting T-cells and is also expressed in mesenchymal stem cells, neural cells, osteoblasts, and stromal cells of the bone marrow. It is involved in hematopoiesis, development of central and peripheral nervous system, sense organs, and differentiation of endothelial as well as epithelial lineages[44]. CD166 has proven its relevance as a cancer stem cell marker alone or in combination with CD44 in several studies including studies on colon cancer cell lines[45,46].
The human gene ALCAM, encoding CD166, is located on chromosome 3q.13 and consists of 16 exons. A soluble isoform, produced through alternative splicing, has been described, but its role remains unknown[47].
The ALCAM promoter harbors several CpG islands regulated by DNA methylation. It has been shown that the DNMT inhibitor 5-Aza-2’-deoxycytidine increased its expression in breast cancer cells[48], hence raising questions about the use of these inhibitors in breast cancer patients.
Interestingly, the three discussed cancer stem cell and survival markers (CD44, CD166, and CD133, Figure 3) are not only epigenetically regulated in cancer cells, but our transcriptomic analyses of public CRC data also revealed that the combined expression of these markers in colon cancer is correlated with a specific panel of epienzyme expression (both positive and negative correlations are listed in Tables 1 to 8).

EPIENZYME CORRELATION WITH COLON CSC CANCER STEM CELL MARKERS: A HINT FOR SUCCESS IN EPIGENETIC THERAPEUTIC STRATEGIES?
Current epigenetic strategies
Most solid tumors, including CRC, acquire chemoresistance over time. In addition to expected chemo-induced genetic alterations, the molecular mechanisms involved include transcriptional plasticity that is regulated epigenetically, for example by multiple DNA methylation changes at CpG islands[49]. Contrary to genetic alterations, epigenetic modifications are potentially reversible, paving the way for novel cancer therapies.
This past decade has seen the emergence of many epigenetic therapies, especially DNA hypomethylating drugs (DNA methyltransferase inhibitors) and HHDACistone deacetylase inhibitors (HDACi), as well as lLysine-specific histone demethylase-1 (LSD1), EZH2 inhibitors, and many others[50].
Epigenetic drugs have shown beneficial effects for the treatment of hematological malignancies and led to the approval of epidrugs like 5-aAzacitidine, decitabine, vorinostat, romidepsin, belinostat, and panobinostat for patient treatment[50]. In contrast, clinical trials assessing the efficacy of these epigenetic drugs in monotherapies for CRC and other solid tumors failed to improve clinical outcomes with, in some cases, no response at all[51], never passing the phase III trial necessary for approval (Cclinical trials for CRC listed in Tables 1 to 6).
Several hypotheses could be raised regarding this apparent lack of efficacy of epidrugs for solid tumors. First, compared to hematologic malignancies, solid tumors harbor a weaker penetrance of mutations in genes encoding chromatin modifying enzymes[19]. Second, the pleiotropic effect of current epidrugs leads to the combined inhibition of many members of a given family of epienzymes that have a broad spectrum of action and opposing roles in cancer cells. Third, and most importantly, cancer cell plasticity, and the switch between stem and non-stem state, is orchestrated by complex mechanisms, including epigenetic silencing of cancer stem cell markers and pluripotency genes. Despite genetic heterogeneity among cancer cells[52] (due to stochastic or chemo-/radio-induced mutations along tumor evolution/treatment), DNA methylation and histone deacetylation seem to represent typical mechanisms involved in repressing stemness markers in non-stem cancer cells, as previously demonstrated for CD44, CD133, and CD166. Therefore, inhibiting DNMT and HDAC may result in increased expression of cancer stem cell markers[37,42,48] along with an increased stemness potential. Last, patients included in these clinical trials often present metastatic or advanced disease and are recruited regardless of the molecular subtype of cancer. As aberrant DNA methylation is an early step of carcinogenesis, advanced disease may not be the relevant stage for treatments with DNMTi and HDACi.
To refine these treatment strategies, tumor grade, heterogeneity, and subtypes of cancers will have to be considered. Indeed, determining which tumors will benefit from epigenetic differentiation strategies[53] and which tumors would acquire stemness capacities after epigenetic resetting is mandatory. Hence, modulating epigenetic alterations to sensitize cancer cells to other conventional therapies[54] or to lower their aggressiveness seems to be a reasonable goal when it comes to epigenetic strategies for advanced disease, as shown by numerous studies on cancer cell lines[53]. HDAC and DNMT inhibitors, used alone or in combination, are able to sensitize resistant cancer cells and their use after conventional or targeted therapies have proven their efficacy in clinical trials[55]. For instance, treatment with 5-aAzacitidine or 5-Aza-2’-deoxycitidine increases sensitivity of colon cancer cells to irinotecan and 5-FU[56]. Irinotecan sensitivity with DNMTi was confirmed in in vivo CRC models showing tumor regression and increased survival in contrast with monotherapies. The same results were observed with the combination of 5-Aazacitidine and a BRAF inhibitor in CRC xenograft models[57]. Synergetic therapies were also observed with HDACi in combination with 5-FU. Indeed, Ttrichostatine A in combination with 5-FU suppresses colon cancer cell viability[58]. However, initiating re-differentiation in CSCs remains a challenge dependent on the characteristics of each tumor type and with their specific genetic alterations.
Molecular subtypes of CRC or chemoresistance also predicts how, and whether or not patients will benefit from existing epidrug treatments. For instance, it has been shown that treatment with 5-Aazacitidine can restore chemosensitivity to irinotecan in microsatellite stable CRC cell lines, but not in microsatellite instable CRC cell lines[56]. Moreover, microsatellite instabilityMSI CRC status is associated with the hypermethylation of Gglutathione Pperoxidase 3 (GPX3), a gene encoding an antioxidant selenoprotein involved in drug metabolism. In this case, treatment with 5-Aazacitidine induced an increase of glutathione peroxidase 3 GPX3 expression and a decrease of chemosensitivity to oxaliplatin in microsatellite instabilityMSI CRC cell lines[59]. These findings emphasize the need for personalized therapies that consider CRC interindividual heterogeneity and classification.

Exploring new avenues for colon cancer treatment
In order to better anticipate how colon CSCs will respond to the different existing therapies, we analyzed TCGA_COADREAD data of 379 colon cancer patients using LinkedOmics[60]. With this meta-analysis we assessed the correlation Z-score estimate (Stouffer method-based) and a P -value between the combined expression of the three colon cancer stem cell markers CD133, CD44, and CD166 and an exhaustive list of known chromatin modifying enzymes (epigenetic writers and erasers) and chromatin binding proteins (epigenetic readers). The observed negative and positive correlation of expression between the three cancer stem cell markers and a significant number of epienzymes are highlighted in Tables 1 to 6.
Strikingly, DNMT3A, DNMT3B, and DNMT3L, the DNA methyltransferases that are responsible for de novo DNA methylation, showed a negative correlation score with the combined expression of the three cancer stem cell markers studied (Table 1), while the expression of DNMT1, responsible for DNA methylation maintenance, was not significantly correlated with the combination of these markers (-2 < score < 2). Similarly, three class I and II HDAC as well as two sirtuins were found negatively correlated to the combination of markers (Table 3). None of the known HDAC where found positively correlated with the expression of the three cancer stem cell markers. This strongly suggests that inhibiting DNMT or HDAC activity would have no effect in colon cancers overexpressing cancer stem cell markers (and potentially harbor high stemness properties), but may have adverse effect in low-expressing and maybe less aggressive colon cancers. These data are in accordance with disappointing clinical trials that have been conducted so far with these inhibitors in colon cancer patients. Interestingly, our analyses suggest that another strategy to regulate DNA methylation in colon CSCs may be the inhibition of the methylcytosine dioxygenase TET2, known to trigger DNA demethylation and found correlated to cancer stem cell marker expression in our analyses (Table 6).
The correlation scores we obtained for other chromatin writers, readers, and erasers seem more specific to the enzyme itself than to their role in the shaping of epigenetic landscapes (Tables 1 to 6).
We found a negative correlation between the expression of the three markers and several histone lysine methyltransferases associated with the establishment of constitutive or facultative heterochromatin, including EZH2 that has recently emerged as one of the new favorite targets for epigenetic therapies[20] (Table 1). These estimated scores in colon cancer expressing CD133, CD44, and CD166 suggest that an activator of EZH2, such as CPI-1205, may have better efficacy than known inhibitors in clinical trials to influence cancer stemness and are in accordance with a protective role of EZH2 in cell differentiation. Similarly, expression of EHMT2 (also known as G9A and KMT1C), encoding another lysine methyltransferase that also recently raised interests in the epidrug field, was inversely correlated with the three cancer stem cell markers expression (Table 1).
Only few lLysine methyltransferases associated with gene activation were found correlated or inversely correlated with the combined expression of the three markers. Among them, SETD7 (Table 4), but not SETD6 (Table 1), may be a good candidate to inhibit stemness in colon cancer cells.
Recently, small molecules that can target specific bromodomains have been extensively developed[61]. Bromodomains are part of a family of epigenetic readers that play pivotal roles in transcriptional regulation through the binding of acetylated histones and the recruitment of other epienzymes in epigenetic complexes at specific sites. We found only a few bromodomain-containing proteins whose expression was negatively (BRD7, Table 2) or positively (BPTF, BAZ2B, Table 5) correlated to the combined expression of the three cancer stem cell markers.
Among epigenetic readers, methylated DNA binding proteins have probably been overlooked as epidrug targets since expression of both MBD1 and MBD2 is positively correlated with cancer stem cell markers (Table 5).
Targeting members of the lysine-specific histone demethylaseLSD family of histone demethylases using inhibitors such as GSK-J1 may also be a good option since only a few of them are inversely correlated with the three cancer stem cell markers while KDM3B, KDM4B/C, KDM5B, KDM6A (UTX), and KDM6B (JMJD3) are positively correlated to their expression (Table 6).
Finally, JAK1/2 kinases, which possess a histone phosphorylation activity and are the targets of numerous inhibitors already tested in the clinic, mainly for other diseases, should probably be reconsidered for colon cancer patients with high expression of CD133, CD44, and CD166 or after conventional therapies. Indeed, our meta-analyses suggest that their expression is positively correlated to the expression of the three cancer stem cell markers (Table 4).
As mentioned above, CD44, CD133, and CD166 are potent markers of CSCs from multiple tissues including digestive (gastric, pancreatic) and non-digestive cancers in which they are epigenetically regulated. Therefore, these considerations could be largely applicable to other types of cancers, in which correlation studies between epienzymes and cancer stem cell markers may be of great interest.

PERSPECTIVES
Although epigenetic therapies are conceptually very promising, several pitfalls will have to be overcome in order to take a step forward in clinical trials for solid tumors. First, while intra-tumor and inter-individual heterogeneity of CRC is now evident, epigenetic landscapes and epienzyme activity will have to be studied in all types of tumor cells. Single cell approaches will be very useful to circumvent the difficulty of exploring rare CSCs from different CRC consensus molecular subtypes. Second, studies to prove causal correlations between epienzyme expression and the control of stemness will be mandatory in order to clear up confusion relative to the oncogenic or tumor suppressive roles of chromatin modifiers. Finally, the major difficulty for the design of new epidrugs is to target efficiently target a single member of entire families of epienzymes that have homologous domains but different roles in stemness. To circumvent this difficulty, increasing specificity by targeting epigenetic complexes and therefore epienzyme-epienzyme interactions may be a better option for new designs. Based on these considerations, epigenetic personalized medicine will be truly envisioned.
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Figure 1 The cancer cell plasticity model reconciles cancer stem cell and stochastic models. A: In the stochastic model, cancer cells are heterogeneous because of accumulation of genetic and epigenetic alterations acquired through excessive proliferation, but most cells are able to proliferate and initiate new tumors; B: In the cancer stem cell model, cancer cells are organized in a hierarchy comparable to normal tissues where CSCs (in purple) are the only cells able to regenerate a tumor with its whole heterogeneity; C: In the cancer plasticity model, cancer cells are able to rapidly switch back and forth between a stem and a non-stem state. CSCsancer stem cell change to non-stem cell most likely occurs through epigenetic programming and silencing of cancer stem cell/pluripotency markers. Reprogramming, leading to induced CSCs (in green) from non-stem cancer cells, can either occur through reversible epigenetic modifications or genetic alterations, hence leading to a new clonal population of cancer cells in the tumor. CSC: Cancer stem cellSCs; iCSC: Induced CSCs.
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Figure 2 Epigenetic programming and reprogramming of cancer cells and consequences for therapeutic strategies. New therapeutics will have to combine the targeting of the bulk of the tumor, pre-existing CSCs, and induced CSCs through inhibition of cancer cell reprogramming. Epigenetic therapies could inhibit CSCs to sensitize cancer cells to conventional therapies (A, C), inhibit cancer cells reprogramming (B), and inhibit relapse through inhibition of self-renewal (D). CSC: CSCsCancer stem cell; iCSC: Induced CSCs; DNMTi: DNA mMethylTtransferase inhibitor; HDACi: Histone Ddeacetylase inhibitor; TET2i: Ten-eleven-translocation 2 inhibitor; SETD7i: SET Ddomain cContaining 7 inhibitor; H3K4me3: Ttrimethylation of lysine 4 on hHistone 3; H3K9me3: Trimethylation of lysine 9 on Histone 3; H3K27me3: Trimethylation of lysine 27 on hHistone 3. 
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Figure 3 Survival analysis for CD133/CD44/CD166 expression profiles in colorectal cancer. The association of CD133/CD44/CD166 transcript expression with cancer survival in the COADREAD Cancer Genome Atlas dataset was analyzed using the SurvExpress portal[62]. Kaplan-Meier plot and Cox survival statistics were established with maximized risk group assessment (466 patients with 255 in low vs 211 in high risk profile). The log rank for equal curves indicated a significant difference (P -value = 0.0007) with a hazard ration of 2.12 (95%CI: 1.35-3.31, P -value = 0.0009).
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Table 1 Negative correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic writers
	Family/Gene sSymbol
	Epidrug/Cchemical probe
	Clinical trials for CRC
	Results/Status
	Z-score
	P value

	DNA methyltransferases
	5-azacytidine (Vidaza)1
	Early Phase I to phase II[63,64]
	No OR[63,65]
	

	
	5-aza-2’-désoxycytidine (Decitabine)1
	Phase I to phase II[66-68]
	No OR[66]; beneficial with Panitumumab[68]

	
	EGCG (Green tea extract)
	Preclinical spheroid-derived cancer stem cell xenograft models[69]
	Sensitization to chemotherapy 
	
	

	
	Zebularine
	Preclinical xenografts[70]
	Anticancer activity
	
	

	
	RG108, Procainamide2
	
	
	
	

	DNMT3A, DNMT3B, DNMT3L
	
	
	-2.788/-4.848/-4.321
	< 0.005

	Activating Lysine methyltransferases
	
	
	
	

	SETD6
	vp22-RelA302-3163[71]
	
	
	-4.641
	3.47Ee-06

	SETD1A
	
	
	
	-4.375
	1.212Ee-05

	Repressive Lysine methyltransferases
	
	
	
	

	SMYD5
	-
	
	
	-4.514
	6.371Ee-06

	EHMT2
	UNC02243, UNC06423, BIX-012943
	
	-4.322
	1.545Ee-05

	SETDB2
	-
	
	
	-3.6
	0.0003176

	PRDM13
	-
	
	
	-3.442
	< 0.005

	SUV39H1, SUV39H2
	Chaetocin3
	
	
	-3.422/-2.934
	0.0006216

	PRDM12
	-
	
	
	-3.089
	0.00201

	EZH1
	UNC19993
	
	
	-2.787
	0.005314

	EZH2
	CPI-12052,4, EPZ-6438 (Tazemetostat)2, DZNep2, UNC19993
	
	
	-2.495
	0.01259

	Arginine methyltransferases
	
	
	
	

	CARM1
	MS0493, SGC20853, TP-0643[72]
	
	-3.812
	0.0001381

	PRMT1
	MS0233[72]
	
	
	-3.659
	0.0002534

	PRMT6
	MS0233, MS049c, EPZ0204113[72], 6′-methyleneamine sinefungin3[73]
	
	-3.521
	0.0004301

	Histone acetylation
	
	
	
	
	

	KAT2A
	CPTH23[74], γ-butyrolactone3 (MB-3)[75] 
	
	-4.683
	2.823Ee-06

	NAA10, NAA16, NAA20, NAA38, NAA40 
	-
	
	
	-4.335/-3.255/-3.786/-3.801/-2.665
	< 0.01

	NAT8, NAT9
	-
	
	
	-2.573/-3.995
	< 0.01

	NCOA5, NCOA6
	-
	
	
	-3.238/-3.112
	< 0.002

	Histone phosphorylation
	
	
	
	
	

	BAZ1B
	-
	
	
	-2.374
	0.01758

	Histone glycosylation
	
	
	
	
	

	OGT
	-
	
	
	-3.172
	0.001512


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials;. 4Activator. CRC: Colorectal cancer; OR: Objective response.

Table 2 Negative correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic readers
	Family/Gene sSymbol
	Putative epidrug/Cchemical probe
	
	
	Z-score
	P value

	Methylated DNA binding
	
	
	
	
	

	MBD3
	-
	
	
	-3.601
	0.0003174

	ZBTB38 (Kaiso family)
	-
	
	
	-2.557
	0.01055

	Histone binders
	
	
	
	
	

	Bromodomains
	
	
	
	
	

	BRD7
	BI72733, BI-95643, TP-4723[76]
	
	-4.906
	9.301Ee-07

	Zinc finger, Plant Homeodomain (PHD)-type
	
	
	
	

	ING1, ING5
	-
	
	
	-2.544/-4.255
	< 0.05

	PHF20
	-
	
	
	-3.094
	0.001973

	PHF14
	-
	
	
	-2.934
	0.003344

	PHF5A
	-
	
	
	-2.521
	0.01171

	DPF1
	-
	
	
	-2.78
	0.00543

	Tudor domain
	
	
	
	
	

	TDRKH
	-
	
	
	-2.755
	0.005875

	WD40 motif
	
	
	
	
	

	EED
	A-3953[77]
	
	
	-4.307
	1.652Ee-05

	Other cofactors of epigenetic complexes
	
	
	
	

	DPY30
	-
	
	
	-3.549
	0.0003863

	WDR5
	OICR-94293
	
	
	-3.31
	0.0009321

	TADA2A
	
	
	
	-2.473
	0.01341


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials.

Table 3 Negative correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic erasers
	Family/Gene sSymbol
	Epidrug/Cchemical probe
	Clinical trials for (CRC)
	Results
	Z-score
	P value

	Histone deacetylation (Zinc-dependantdependent)
	
	
	
	

	
	Acide valproïque1
	I to II
	In combination: OR in 64% patients or SD[78,79]

	
	Belinostat2, Apicidin3
	
	
	
	

	
	Entinostat
	I to I/II
	No OR[80] or SD[81]
	

	
	Panobinostat
	I
	PR and SD in combination with Bevacizumab[82]

	
	Vorinostat (SAHA)
	I to II
	No OR[83,84]; SD and PR with Bortezomib or 5FU 
and leucovorin or Doxorubicin[85-87]

	
	Trichostatine A2
	
	
	
	

	
	Mocetinostat2
	
	
	
	

	
	Sodium phenylbutyrate2
	I
	In combination with 5-FU: SD[88]

	Class I 
	Romidepsin (Istodax)1
	II
	Ineffective[88]
	
	

	
	CI-994
	I
	PR in combination with carboplatin and placlitaxel[89]

	HDAC8
	TM-2-514, CUDC-1012, Pracinostat2, Ricolinostat2, Citarinostat2, Abexinostat2, Quisinostat3, PCI-340513
	
	
	-2.527
	0.0115

	Class IIa (1 catalytic site, mainly cytoplasmic)
	
	
	
	

	HDAC5
	CUDC-1012, Pracinostat2, Domatinostat2, Quisinostat3, LMK-2353, TMP1953, TMP2693
	
	-4.133
	3.581Ee-05




	Class IIb (2 catalytic sites, mainly cytoplasmic)
	
	
	
	

	HDAC10
	CUDC-1012, CUDC-9072, Pracinostat2, Domatinostat2, Abexinostat2, Tucidinostat2, Quisinostat3
	
	
	-3.17
	0.001525

	Histone deacetylation NAD+ dependantdependent (Class III)
	
	
	
	

	
	Resveratrol4
	I
	Reduced cell proliferation[90]

	
	Salermide3[91]
	
	
	
	

	SIRT6
	OSS_1281673
	
	
	-3.467
	0.0005257

	SIRT7
	
	
	
	-2.582
	0.009835

	Histone demethylation
	
	
	
	

	LSD fFamily of dDemethylases
	
	
	
	

	
	ORY-10013, (±)-tranylcypromine3
	
	
	
	

	KDM2B
	-
	
	
	-3.54
	0.0004003

	KDM4D
	-
	
	
	-2.704
	0.006848

	JmjC cContaining lLysine dDemethylases
	
	
	
	

	
	JIB-043
	
	
	
	

	JMJD6
	IOX13
	
	
	-2.59
	0.00961

	JMJD5
	IOX13
	 
	 
	-2.588
	0.009654


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials;. 4Activator. CRC: Colorectal cancer; OR: Objective response; SD: Stable disease; PR: Partial response.


Table 4 Positive correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic writers
	Family/Gene sSymbol
	Epidrug/Cchemical probe
	Clinical trials for CRC
	Results/Sstatus
	Z-score
	P value

	Histone acetyltransferases
	
	
	
	

	EP300
	Curcumin
	Early phase I to III
	Low bioavailability[92] 
	2.513
	0.01198

	
	Garcinol3, C6463
	
	
	
	

	NCOA1
	Bufalin2[93]
	
	
	5.45
	5.04E-08

	NCOA4
	-
	
	
	4.183
	2.88E-05

	NCOA7
	-
	
	
	5.788
	7.14E-09

	KAT2B
	Ischemin3[94]
	
	
	6.514
	7.31E-11

	Activating Lysine methyltransferases
	
	
	
	

	ASH1L
	-
	
	
	2.591
	0.009565

	SMYD1
	-
	
	
	2.739
	0.00616

	SETD7
	PFI-23
	
	
	5.11
	3.23E-07

	Repressing Lysine methyltransferases
	
	
	
	

	PRDM8
	-
	
	
	3.411
	0.0006465

	Putative Lysine methyltransferase
	
	
	
	

	PRDM10
	-
	
	
	2.448
	0.01438

	Arginine methyltransferases
	
	
	
	

	PRDM1
	-
	
	
	2.874
	0.004056

	PRMT2
	-
	
	
	2.901
	0.003726

	Histone ubiquitination
	
	
	
	

	UBE2B
	-
	
	
	2.748
	0.005991

	UBE2H
	-
	
	
	5.809
	6.30E-09

	Histone phosphorylation
	
	
	
	

	JAK1
	Ruxolitinib
	Phase I and II
	No benefit over Regorafenib alone[95]
	7.739
	1.01E-14

	
	Baricitinib2, Momelotinib2, Filgotinib2, Decernotinib2, Cerdulatinib2, Solcitinib2, Oclacitinib maleate2
	
	
	
	

	JAK2
	Ruxolitinib
	Phase I and II
	No benefit over Regorafenib alone[95]
	6.7
	2.09E-11

	
	Gandotinib2, AZD14802, BMS-9115432, AT92832, XL0192, Baricitinib2, Momelotinib2, Filgotinib2, Decernotinib2, Cerdulatinib2, JAK2/HDAC Dual Inhibitors3[96]
	
	
	

	Histone biotinylation
	
	
	
	

	BTD
	Biotinyl-methyl 4-(amidomethyl)benzoate3[97]
	
	4.379
	1.19E-05


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials. CRC: Colorectal cancer.


Table 5 Positive correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic readers
	Family/Gene symbol
	Epidrug/Cchemical probe
	Z-score
	P value

	Methylated DNA binding
	
	

	MBD1
	-
	2.593
	0.009517

	MBD2
	-
	3.477
	0.0005076

	ZBTB4
	-
	5.496
	3.89E-08

	Methylated histone binders
	
	

	Zinc finger, PHD-type
	
	

	DPF3
	
	3.503
	0.0004602

	Bromodomain
	Apabetalone2, Bromosporine3
	
	

	BPTF
	
	2.621
	0.008773

	BAZ2B
	GSK28013
	4.791
	1.66E-06

	Tudor domain
	
	
	

	TDRD1
	-
	2.459
	0.01394

	TP53BP1
	-
	2.965
	0.003029

	Other cofactors of epigenetic complexes
	
	

	RBBP5
	-
	2.966
	0.003014

	TADA2B
	-
	3.382
	0.0007189

	ELP2
	PLX-47203
	3.277
	0.00105

	ELP3
	-
	2.622
	0.00875

	TAB2
	-
	2.551
	0.01074

	NCOR1
	-
	3.62
	0.0002949

	Chromodomain (Chromatin Organization Modifier Domain)
	
	
	

	CHD1, CHD3, CHD9
	-
	3.007/4.099/4.367
	< 0.003


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials.

Table 6 Positive correlation between combined expression of cancer stem cell markers CD133, CD44 and CD166 and epigenetic erasers
	Family/Gene sSymbol
	Putative epidrug/Cchemical probe
	Z-score
	P value

	DNA demethylation
	
	

	TET2
	-
	5.968
	2.40E-09

	Histone demethylation
	
	

	LSD fFamily of dDemethylases
	
	

	
	ORY-10013, (±)-tranylcypromine3
	
	

	KDM3B
	
	5.636
	1.74E-08

	KDM4B
	CP23[98]
	5.212
	1.87E-07

	KDM4C
	CP23[98]
	3.895
	9.81E-05

	KDM5B
	CPI-4553, AS-83513, 593 (KDOAMA-253)[98] 
	9.092
	9.72E-20

	KDM6A
	GSK-J13
	2.84
	0.00451

	KDM6B
	GSK-J13
	4.014
	5.98E-05


1Approved for the treatment of other diseases;. 2Used in clinical trials for other diseases;. 3Not yet used in clinical trials.
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