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Abstract
Except for the most organized mature hepatocytes, 
liver stem/progenitor cells (LSPCs) can differentiate into 
many other types of cells in the liver including cholan-
giocytes. In addition, LSPCs are demonstrated to be 
able to give birth to other kinds of extra-hepatic cell 
types such as insulin-producing cells. Even more, un-
der some bad conditions, these LSPCs could generate 
liver cancer stem like cells (LCSCs) through malignant 
transformation. In this review, we mainly concentrate 
on the molecular mechanisms for controlling cell fates 
of LSPCs, especially differentiation of cholangiocytes, 
insulin-producing cells and LCSCs. First of all, to cer-
tificate the cell fates of LSPCs, the following three 
features need to be taken into account to perform 
accurate phenotyping: (1) morphological properties; 
(2) specific markers; and (3) functional assessment 
including in vivo transplantation. Secondly, to promote 
LSPCs differentiation, systematical attention should be 
paid to inductive materials (such as growth factors and 
chemical stimulators), progressive materials including 
intracellular and extracellular signaling pathways, and 
implementary materials (such as liver enriched tran-
scriptive factors). Accordingly, some recommendations 
were proposed to standardize, optimize, and enrich the 

effective production of cholangiocyte-like cells out of 
LSPCs. At the end, the potential regulating mechanisms 
for generation of cholangiocytes by LSPCs were care-
fully analyzed. The differentiation of LSPCs is a gradu-
ally progressing process, which consists of three main 
steps: initiation, progression and accomplishment. It’s the 
unbalanced distribution of affecting materials in each 
step decides the cell fates of LSPCs.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: After liver stem/progenitor cells (LSPCs) are 
isolated by different groups from both fetal and adult 
livers, it is urgent to decide the cell fates of LSPCs. 
Especially, it is found that the core issue for LSPCs ap-
plication lies in their accurate differentiation. Because 
there are lots of literatures concentrating on self-renew-
al and hepatic differentiation of LSPCs, in this review, 
we mainly summarize the molecular mechanisms for 
controlling other cell fates of LSPCs, especially differ-
entiation into cholangiocytes. For biliary differentiation, 
we propose that it is a gradually progressing process 
consisting of three main steps: initiation, progression 
and accomplishment.
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INTRODUCTION
Liver stem/progenitor cells (LSPCs) possess high pro-
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liferative capacity and low immunogenicity and are ro-
bust in the face of  cryopreservation or ischemic injury: 
properties that could enhance their engraftment within 
a recipient liver. Because of  this, these LSPCs are very 
promising for the treatment of  end-stage liver disease[1]. 
A series of  animal models transplanted with LSPCs have 
been established, and several clinical trials have been re-
ported. In one animal model, transplanted rat embryonic 
day (ED) 14 fetal liver stem/progenitor cells (FLSPCs) 
differentiated into the two mature epithelial cell pheno-
types in the liver, i.e., hepatocytes and cholangiocytes, and 
long-term, in vivo functional reconstitution of  the liver 
tissue was achieved (Figure 1)[2,3]. The important recent 
progress is the use of  human FLSPCs engrafted into 
naturally derived scaffolds to create a liver-like tissue in 
vitro[4]. However promising LSPCs are for cell therapy or 
tissue engineering, the fundamental purpose lies in gener-
ating mature, functional cells[5,6].

LSPCs constitute approximately 0.5%-2.5% of  liver 
parenchyma at all donor ages. The self-renewal capacity 
of  LSPCs is demonstrated by their phenotypic stabil-
ity after expansion for > 150 population doublings in a 
serum-free, defined medium, with a doubling time of  
approximately 36 h[7]. In fetal liver, LSPCs are commonly 
called hepatoblasts[2,3]. In some studies, some groups have 
used other terms than hepatoblasts to represent the cell 
populations with stem properties in fetal liver, such as 
embryonic hepatic stem cells or fetal liver stem-like epi-
thelia. Thus, it would be more appropriate to denote these 

cells as the “FLSPCs”, and we will adopt this description 
in this review. In adult liver, LSPCs are generally referred 
to as oval cells (OCs), with scant, lightly basophilic 
cytoplasm and pale blue-staining nuclei[8]. The appear-
ance of  OCs has been reported in rat livers treated with 
hepatotoxins, such as 2-acetylaminofluorene, combined 
with partial hepatectomy (PHx) and D-galactosamine[9,10]. 
However, in addition to OCs, small hepatocytes (SHs) are 
also well known in adult liver, and they are better suited 
to the appellation “progenitor” cells. As it is not an easy 
task to distinguish stem cells from progenitors because of  
the difficulty of  proving the unlimited self-renewal activ-
ity of  stem cells in many situations, we use the term “adult 
liver stem/progenitor cells (ALSPCs)” to describe such 
cells, including both OCs and SHs in this review article. 
In the field of  liver biology, the definitions of  “LSPCs” 
include the following: (1) cells responsible for normal tis-
sue turnover; (2) cells that regenerate liver after PHx; (3) 
cells responsible for progenitor-dependent regeneration; 
(4) transplantable liver repopulating cells; and (5) cells 
that adopt hepatocyte and bile duct phenotypes in vitro.

Currently, researchers are working hard to character-
ize, localize and isolate LSPCs, though this has been dif-
ficult because of  the lack of  specific markers[11]. To avoid 
the restriction of  lacking specific markers, Liu et al[12,13] 
have tried other strategies for isolating LSPCs. Based on 
the concept that stem cells have specific physical and 
morphological properties, Liu et al[12] isolated FLSPCs 
by a percoll continuous gradient centrifugation-centered 
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Figure 1  The different cell fates of liver stem/
progenitor cells under distinct situations. 
Under special stem microenviroment, LSPCs 
would probably self renew to keep stem proper-
ties. In the contrary, under differentiating stimuli, 
LSPCs could give birth to two kinds of funder-
mental mature cells in the liver, hepatocytes and 
cholangiocytes. This is very important for liver 
development and liver regeneration. Except for 
the traditional differentiation directions, LSPCs 
have the capacity to trans-differentiate into 
insulin producing cells, which is promising for 
treating diabetes. While in some bad situations, 
LSPCs may carry out malignant transformation 
to become liver cancer cells, even liver cancer 
stem cells, as a result, these cancer cells repli-
cate themselves to cause liver cancer. This is a 
different way from mutation of hepatocytes for 
liver carcinogenesis. LSPC: Liver stem/progeni-
tor cell.

LSPCs



three-step method. Because stem cells have specific func-
tional characteristics, such as excluding biological vital 
dyes such as Hoechst 33342, Liu et al[13] obtained ALSPCs 
by side population (SP) enrichment. Although many 
groups have isolated LSPCs using various strategies, 
LSPCs for disease application remain far off. The core 
issue is how to manipulate LSPC differentiation, which is 
essential for both cell therapy and liver regeneration[14,15]. 
Thus, to guarantee the efficiency and security of  LSPC-
based therapy for liver diseases, it is important to clarify 
the strategies and related mechanisms for proper differ-
entiation of  LSPCs.

In recent years, many studies have shed light on the 
tangle of  regulatory mechanisms that govern the com-
plex process of  LSPC differentiation, but an overall 
understanding remains a challenge. Here, we review the 
current understanding of  the exact mechanisms related 
to the differentiation of  LSPCs, especially toward cholan-
giocytic differentiation. We divided the process of  LSPC 
differentiation into three stages (Figure 2). The first stage 
is the onset of  differentiation, when LSPCs are induced 
to mature into certain cell types. In this stage, the lineage-
specific cytokines/growth factors (GFs), their (relative) 
doses and order of  application are crucial for directing 
the lineage specification of  the LSPCs[16]. The second 
stage is the acceleration of  differentiation, when LSPCs 
are quickly progressing through the process. Many de-
velopmental regulatory signaling pathways, including the 
Wnt, Notch, bone morphogenetic protein and fibroblast 
growth factor pathways, may play a role in directing the 
cell fates of  LSPCs[17]. The third stage is to guarantee the 
accomplishment of  differentiation. In this stage, tran-
scription factors are vital to make cells express lineage-
specific markers[5].

IDENTIFICATION OF CHOLANGIOCYTES 
GENERATED FROM LSPCs
LSPCs can differentiate into a wide range of  cell types, 
including hepatocytes, cholangiocytes, pancreatic cells 
and intestinal epithelial cells (Figure 1)[18]. However, in 
this review, we focus on cholangiocytic specification from 
LSPCs. To ascertain the cell fates of  LSPCs, the follow-
ing three features inherent to LSPC transitions must 
be taken into account for accurate phenotyping: (1) the 
differentiation of  LSPCs toward a specific lineage often 
involves uncontrolled processes, resulting in a heteroge-
neous cell population; (2) the differentiation into mature 
cells is a steady process; and (3) the ultimate proof  of  
functional cell behavior is in vivo transplantation of  ex vivo 
generated LSPC-based mature cells into immunodeficient 
animal models with liver injury[19,20].

As LSPCs differentiate into cholangiocytes, the cells 
grow in size to > 12 μm and display a keystone morphol-
ogy with cholangiocyte-type epithelial polarity. These cells 
are concentrically layered to form a cyclic structure or ar-
ranged in lines to form ductal plates. Under the electron 
microscope, these cells acquired the classic cholangiocyte 
features of  small numbers of  organelles and many pri-
mary cilia on their surface.

Aside from morphological identification, the analyti-
cal work is limited to the elucidation of  (1) cholangiocytic 
RNA transcripts via (quantitative) reverse transcriptase 
polymerase chain reaction and (2) cholangiocytic proteins 
by immunofluorescence. During the process of  LSPC 
differentiation into cholangiocytes, cells transition from 
the expression of  early biliary markers (such as Sox9, 
which is a representative transcriptional factor expressed 
in biliary precursor cells), to the expression of  mid-stage 
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Figure 2  The molecular mechanisms in each step of biliary differentiation of liver stem/progenitor cells. The biliary differentiation of LSPCs can be divided into 
three main stages comprising of initiation, progression and maturation. Some important jacent or feeder cells and specific molecules are proposed to be responsible 
for initiating the first stage of biliary differentiation. When the biliary differentiation goes on, several key signaling pathways including Notch and TGFβ have essential 
impacts on guarantee of the second stage. After some transcription factors activated, the third stage of biliary differentiation could be accomplished and LSPCs could 
be matured into cholangiocytes. LSPCs: Liver stem/progenitor cells; TGFβ: Transforming growth factor β.
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MOLECULAR MECHANISMS OF 
CHOLANGIOCYTIC DIFFERENTIATION 
FROM LSPCs
The process of  intrahepatic bile duct (IHBD) forma-
tion from LSPCs involves cholangiocyte differentiation 
(lineage specification) and morphogenesis of  ductal 
structures[21]. Understanding how LSPCs can generate 
differentiated bile ducts is crucial for studies on epithelial 
morphogenesis and for development of  cell therapies for 
hepatobiliary diseases. Many groups[35-37] have demon-
strated that, during in vivo liver development and in vitro 
differentiation, LSPCs located around the portal vein 
first develop as biliary precursor cells and then generate 
cholangiocytes. Nevertheless, the molecular mechanisms 
behind these events have yet to be fully elucidated. It is 
shown that Wnt and Notch signaling are active in the 
adult human liver to drive proliferation and differentia-
tion of  LSPCs into the hepatocyte or cholangiocyte lin-
eages[38]. The Notch pathway is triggered by expression 
of  the Notch ligand Jagged1 by myofibroblasts, thereby 
promoting biliary differentiation of  LSPCs, and the en-
hancement of  Wnt3a expression in macrophages after 
uptake of  hepatocyte debris and paracrine activation of  
Wnt signaling in neighboring LSPCs specifies hepato-
cytic differentiation[39,40]. The opposing roles of  Wnt and 
Notch signals in cholangiocyte fate determination in the 
LSPCs are described below. The molecules responsible 
for differentiation of  LSPCs into cholangiocytes are also 
discussed in this section (Figure 2).

INITIATION OF CHOLANGIOCYTIC 
DIFFERENTIATION
When the LSPCs are cultured in Matrigel, they are likely 
to differentiate into cholangiocytes. Recently, the key 
stimulator has been found. Epimorphin/syntaxin 2 
(EPM) is a highly conserved and very abundant protein 
involved in epithelial morphogenesis in various epithelial 
organs[41], and in the liver, it is exclusively expressed on 
the surface of  hepatic stellate cells and myofibroblasts[42]. 
Biliary differentiation markers elevated by EPM include 
Yp, Cx43, aquaporin-1, CK19 and GGT[41]. Moreover, 
the signaling pathway of  EPM was analyzed by focal 
adhesion kinase (FAK), extracellular regulated kinase 
1/2 (ERK1/2) and RhoA. Most importantly, RhoA was 
found to be necessary for EPM-induced activation of  
FAK and ERK1/2 and bile duct formation. In addition, 
EPM regulated GGT Ⅳ and GGT Ⅴ expression dif-
ferentially, and this was possibly mediated by C/EBPβ. 
Taken together, these data demonstrated that EPM regu-
lates biliary differentiation of  LSPCs through effects on 
RhoA and C/EBPβ, implicating a dual aspect of  this 
morphoregulator in bile duct epithelial morphogenesis. 
In another study, it was reported that EPM selectively in-
duced bile duct formation through upregulation of  CK19 
expression and suppression of  hepatocyte nuclear factor 

biliary markers (such as the cytokine CK19 and E-cad-
herin), and then mature biliary markers (such as CK7)[21]. 
In addition, gamma-glutamyl transpeptidase (GGT), 
a major enzyme of  glutathione homeostasis, is often 
used as a biliary marker to follow the differentiation of  
LSPCs[22]. Furthermore, multidrug resistance-associated 
protein 3[23] and secretin receptors[24] are also found to be 
expressed in cholangiocytes.

Although the induced differentiation of  cholangio-
cytes has been performed, the functional examination 
of  LSPC-derived cholangiocytes is very scarce. Thus, 
the in vivo identification of  induced cholangiocytes is es-
sential, and to some extent it can be considered the “gold 
standard” of  certifying the cell fates of  LSPCs[25]. LSPC-
derived cholangiocytes in vivo should be able to replace 
injured cholangiocytes or lost bile duct cells.

STRATEGIES FOR CHOLANGIOCYTIC 
DIFFERENTIATION OF LSPCs
The components of  the stem-cell microenvironment 
regulating differentiation include distinct cell-cell interac-
tions and paracrine signals, which comprise both soluble 
and extracellular matrix factors, as well as the three-
dimensional architecture, which shapes and dictates the 
delivery of  these cues. It is reported that mature stellate 
cells and/or myofibroblasts resulted in differentiation of  
LSPCs into cholangiocytes[26]. These feeder cells control 
the cell fates of  LSPCs through either paracrine signaling 
pathways or cell-cell interaction[27-30]. Thus, if  the para-
crine signals produced by the feeders are replaced with 
similar components, the same induced differentiation of  
LSPCs could be achieved. There are feeder-free condi-
tions that yield equivalent results, consisting of  the em-
bedding of  LSPCs into hydrogels containing type I col-
lagen (60%) and Matrigel (40%) with modified Kubota's 
medium for cholangiocytes. It is also demonstrated that 
the murine FLSPC cell line, hepatoblast cell line-3, can be 
induced to differentiate toward cholangiocyte by plating 
in Matrigel[31]. Furthermore, Matrigel-coated films are also 
widely used for manipulating LSPCs. Although PLL-ter-
minal t-(poly-l-lysine/poly-l-glutamic acid) (PLL/PLGA) 
films are less favorable for stem cell cultures than PLGA-
terminal t-(PLL/PLGA) films, the cell fates of  LSPCs are 
correlated with the film thickness on both types of  film, 
with differentiation favored on the thinner films[32].

Recent evidence has shown that expression of  miR-
NAs can regulate the divergent differentiation pathways 
of  stem cells[33]. Therefore, Liu et al[13] reasoned that 
miRNAs could be responsible for regulating cell fate 
decisions in LSPCs by regulating the cells’ responses to 
ubiquitous GFs. It was found that the miR-23b cluster, 
including miR-23b, miR-27b, and miR-24-1 and miR-10a, 
miR-26a and miR-30a, was highly expressed in LSPCs[34]. 
MiR-23b cluster repressed bile duct gene expression in 
LSPCs while promoting their growth; low levels of  the 
miR-23b miRNAs were needed in cholangiocytic differ-
entiation and bile duct formation[34].
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(HNF) 3α and HNF6[43]. These results demonstrate a 
new biophysical action of  EPM in bile duct formation, 
during which the determination of  LSPCs play a crucial 
role. MiRNAs could also initiate biliary differentiation of  
LSPCs. In the previous section, we described the require-
ment for miR-23b miRNAs in growing hepatocytes to 
repress bile duct genes and repress tumor growth factor 
(TGF) β signaling. There has also been another report 
providing evidence that miR-30 family miRNAs were 
required for complete bile duct formation to repress he-
patocyte genes[44].

PROGRESSION OF CHOLANGIOCYTIC 
DIFFERENTIATION
Bile ducts are formed only around the portal side, sug-
gesting that region-specific signals induce cholangiocytes 
from LSPCs. Two signaling pathways, TGFβ/Activin[21,45] 
and Notch[46,47], are specifically activated in LSPCs near 
the portal vein. Although differentiation of  LSPCs to 
cholangiocytes by TGFβ and Notch signaling occurs in 
mid-gestation, surprisingly, LSPCs can be induced to 
differentiate into cholangiocytes and form ectopic duct 
structures in the parenchyma upon Notch activation after 
birth[48]. That is, the Notch pathway plays an essential role 
in the morphogenesis of  bile duct structures[49]. Indeed, 
conditional knockout of  Recombination signal binding 
protein Jκ, an essential downstream signal component of  
the Notch receptor, results in a reduced number of  chol-
angiocytes at ED 16.5, confirming a role for this signaling 
pathway in cholangiocyte cell fate specification[48]. In gen-
eral, Notch signaling is likely to play the most important 
role in controlling biliary differentiation of  LSPCs. 

A study using an in vitro culture of  FLSPCs has shown 
that activation of  the Notch signaling pathway promotes 
LSPC differentiation into the cholangiocyte lineage by 
coordinating a network of  LETFs including HNF1α/β, 
HNF4α and C/EBPα[46]. Among multiple Notch signal-
ing components, Notch1, Notch2 and Jagged1, Hes1 are 
widely accepted as essential for promoting bile duct dif-
ferentiation[49-51], while Notch3 and Jagged2 play key roles 
in hepatic differentiation[52]. Lacking Hes1, a target of  the 
Notch signaling, ductal plate formation occurs normally, 
but the subsequent remodeling and tubular structure for-
mation is completely blocked[53]. In humans, mutations in 
Jagged1, a ligand for the Notch receptors, are associated 
with Alagille syndrome, an autosomal dominant disorder 
characterized by multiple developmental defects including 
neonatal cholestasis caused by a paucity of  IHBD[54-56]. 
In addition, another form of  Alagille syndrome has been 
found to be caused by mutations in the Notch2 gene[57].

TGFβ is necessary for the formation of  bile ducts[58]. 
The inhibition of  TGFβ signaling allows LSPCs to un-
dergo normal hepatocyte differentiation[45]. Wnt signaling 
is also involved in regulating biliary epithelial cell fate. 
The addition of  Wnt3a in ex vivo culture experiments sup-
ports biliary epithelial cell differentiation of  FLSPCs[59]. 
However, as to Wnt5a, a non-canonical Wnt ligand, in 

vitro differentiation assays showed that Wnt5a-mediated 
signaling in FLSPCs suppresses biliary differentiation 
through the activation of  phosphorylated Calcium/
calmodulin-dependent protein kinase Ⅱ[60]. Similarly, in 
the absence of  Wnt1 signaling, LSPCs failed to differ-
entiate into hepatocytes and underwent atypical ductular 
hyperplasia, exhibiting epithelial metaplasia and mucin 
production[61,62]. Furthermore, the inhibition of  β-catenin, 
a core component of  canonical Wnt signaling, prevents 
LSPCs from expressing biliary markers[63].

In brief, Notch signaling promotes LSPCs differentia-
tion into the biliary epithelial lineage and concurrently 
inhibits hepatic differentiation by reducing the expression 
of  hepatic genes. In contrast, Wnt signaling is more likely 
to aid in promoting hepatic differentiation and repressing 
biliary differentiation. The unbalanced activation of  Wnt 
and Notch signaling pathways influences the cell fates of  
LSPCs.

ACCOMPLISHMENT OF 
CHOLANGIOCYTIC DIFFERENTIATION
With regard to the molecular mechanisms involved in 
cholangiocytic differentiation, several transcription factors 
have been implicated, including Sal-like 4 (Sall4), T-box 
transcription factor 3 (Tbx3), the Onecut transcription 
factor HNF6 and HNF1β, HES1, FOXA2, FOXA3, 
forkhead Box (Fox) m1β (Foxm1β), and Hex[36,37,64-68]. 
Sall4 is expressed in LSPCs but not in mature liver cells. 
The expression level of  Sall4 gradually falls during liver 
development. Sall4 has been shown to play a role in 
regulating the lineage commitment of  LSPCs by inhibit-
ing their differentiation into hepatocytes while driving 
differentiation toward cholangiocytes[36]. When bile duct-
like structures were induced by collagen gel-embedded 
culture conditions, overexpression of  Sall4 markedly 
augmented the size and number of  CK19+ branching 
structures. These results suggest that Sall4 plays a crucial 
role in controlling the lineage commitment of  LSPCs not 
only by inhibiting their differentiation into hepatocytes 
but also by driving their differentiation toward cholangio-
cytes[36]. Tbx3 also contributes to the hepato-biliary lin-
eage decision[37,69]. Tbx3 functions to maintain expression 
of  the hepatocyte transcription factors HNF4α and C/
EBPα while suppressing expression of  the cholangiocyte 
transcription factors HNF6 and HNF1β[69]. In addition, 
as a direct and critical target of  HNF6, HNF1β shows a 
decisive effect in bile duct development[65].

DIFFERENTIATION OF LSPCs INTO 
INSULIN-POSITIVE CELLS
Although organ-specific stem cells possess plasticity that 
permits differentiation along new lineages, production of  
endocrine pancreas and insulin-secreting beta cells from 
stem cells has not been fully demonstrated. The liver and 
pancreas share a common developmental origin, and a 
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bipotential precursor cell population for these organs has 
been identified within the embryonic endoderm[70]. Con-
sistent with these facts, many studies have demonstrated 
that LSPCs can be converted to insulin-producing cells 
by stable expression of  pancreatic duodenal homeobox 
1 (Pdx1) or its super-active form (Pdx1-VP16) or to 
functional pancreatic beta-cell-like cells, and/or islet-like 
cell clusters containing other pancreatic lineages under 
certain other conditions[71-74]. The most common condi-
tion under which LSPCs are induced to differentiate 
into insulin-producing cells is a high-glucose environ-
ment[75]. In addition, there are studies indicating an ef-
ficient chemical protocol for differentiating LSPCs into 
functional insulin-producing cells using small molecules, 
and they represent a promising LSPC-based treatment 
for diabetes mellitus. When ALSPCs were incubated 
with a combination of  5 mmol/L sodium butyrate and 
1 nmol/L betacellulin, most of  the cells were converted 
into morphologically beta cell-like cells. An immunore-
active pancreatic polypeptide, somatostatin, and insulin 
were detected in sodium butyrate and betacellulin-treated 
ALSPCs[72]. Based on induction by a combination of  
5-aza-2’-deoxycytidine, trichostatin A, retinoic acid and a 
mix of  insulin, transferrin and selenite, LSPCs could also 
trans-differentiate into beta-like cells[76]. Furthermore, 
transduction of  pancreatic transcription factors, such as 
Pdx1, Neurogenin3, NeuroD and MafA, can induce the 
formation of  ectopic islet-like cells and the production 
of  insulin in ALSPCs[77,78]. Stepwise differentiation from 
LSPCs into functional insulin-secreting cells will identify 
key steps in beta-cell development and may yet prove 
useful for transplantation therapy for diabetic patients[79].

MALIGNANT TRANSFORMATION OF 
LSPCs INTO LIVER CANCER STEM LIKE 
CELLS 
Stem cells have potential for therapy of  liver diseases, but 
they may also be involved in the formation of  cancer[80]. 
At present, it is widely accepted that cancer arises from 
the malignant transformation of  stem cells[81,82] because 
these are the only cells that persist sufficiently long to 
acquire the required number of  genetic changes. Specifi-
cally, LSPCs are hypothesized to be the precursors for a 
subset of  liver cancer[83,84]. Presently, accumulating evi-
dence supports the above notion as follows[85]: (1) similar 
signaling pathways may regulate self-renewal in LSPCs 
and liver cancer cells; and (2) liver cancer contains rare 
cells with stem cell-like properties, which may derive from 
malignant transformation of  LSPCs. Herein, we propose 
that liver cancer stem like cells (LCSCs) might arise from 
LSPCs it would facilitate our understanding of  stem-
cell origin of  liver cancer. It has been demonstrated that 
deletion of  p53 from LSPCs is sufficient to induce tumor 
formation[86]. Recently, through loss expression of  Tg737, 
You et al[87] successfully induced FLSPCs to malignantly 
transform into LCSCs. These LCSCs from LSPCs could 

generate liver cancer after transplantation into immuno-
insufficient mice. In addition to gene manipulation, dysreg-
ulated miRNAs may also initiate malignant transformation. 
To find the possible target miRNAs, Liu et al[13] compared 
the miRNA profiles between LSPCs and LCSCs. As a 
result, Liu et al[13] found 78 miRNAs were dysregulated, 
including miR-200a (the most down-regulated miRNA in 
LCSCs) and miR-181 (the most greatly upregulated miR-
NA in LCSCs)[13]. After inhibition of  miR-200a in LSPCs, 
Liu et al[13] found that cells displayed malignant properties 
such as unlimited proliferation and strong metastasis. A 
novel regulatory link between miR-181 and LCSCs was 
proven by a study from another group[88]. They found 
that miR-181 could induce LSPCs’ malignant transforma-
tion by directly targeting hepatic transcriptional regulators 
of  differentiation (for example, caudal type homeobox 
transcription factor 2 and GATA binding protein 6) and 
an inhibitor of  Wnt/beta-catenin signaling (nemo-like 
kinase).

CONCLUSIONS AND FUTURE 
DIRECTIONS
Despite uncertainty surrounding the mechanism under-
lying the role of  LSPCs in liver regeneration[89], there 
is great hope for the use of  these cells in liver-based 
therapies[90]. First, LSPCs can be used for the treatment 
of  inherited end-stage liver disease. Second, they can 
also serve as a source of  cells for cell transplantation in 
acquired liver diseases such as acute failure due to toxic 
or viral injury. Third, because LSPCs can be expanded 
in vitro to a desired extent, they can be used to populate 
liver assist devices or artificial livers based on bioengi-
neered matrices. Lastly, they can be used as targets for 
gene therapies in primary liver diseases or diseases where 
extra-hepatic manifestations arise from abnormal gene 
expression or defective protein production in the liver. 
Considering the strong proliferative potential and ame-
nability for in vitro manipulation, LSPCs may be attractive 
candidates for liver disease treatment. In addition, LSPCs 
may be useful for cell therapy to treat diabetic patients, 
given their potential to be effectively reprogrammed 
toward pancreatic lineages[91]. Furthermore, the develop-
ment of  such protocols would reduce the likelihood of  
malignant transformation upon transplantation.

Although LSPCs are promising for the future use in 
many fields, the accurate control of  cell fates of  LSPCs is 
far from accomplishment. Thus, it is necessary to clear the 
mechanisms for LSPCs differentiation and build stand-
ardisation of  the production of  functional cholangiocytes 
from LSPCs. Here, we want to list several directions that 
may help to guide future research of  LSPCs differentia-
tion: (1) The knowledge of  biliary development and liver 
regeneration can best provide detailed information for 
in vitro cholangiocytic differention of  LSPCs. It is a good 
choice to thoroughly investigate the molecular basis of  
biliary development during the period from fetal liver 
to adult liver; (2) LSPCs react differently to stimulative 
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materials at different stages. The dosage, timing, and com-
binations of  materials should thus be fine-tuned accord-
ing to the differentiated stage LSPCs located. Hence, it is 
important to figure out what state LSPCs are presented; (3) 
The molecular mechanism in each step of  cholangiocytic 
differentiation from LSPCs is essential for cell-based 
therapies. Both positive and negative factors responsible 
for the initiation, progression and maturation of  cholan-
giocytic differentiation should be specially considered; 
and (4) Although we divide the process of  cholangiocytic 
differentiation into three stages, it is actually a continuous 
evolving process. That is to say, it should be kept in mind 
that many key factors may not only take effect in some 
stage of  cholangiocytic differentiation from LSPCs.
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