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Abstract
Adenomatous polyposis (AP) is classified according to cumulative adenoma
number in classical AP (CAP) and attenuated AP (AAP). Genetic susceptibility is
the major risk factor in CAP due to mutations in the known high predisposition
genes APC and MUTYH. However, the contribution of genetic susceptibility to
AAP is lower and less understood. New predisposition genes have been recently
proposed, and some of them have been validated, but their scarcity hinders
accurate risk estimations and prevalence calculations. AAP is a heterogeneous
condition in terms of severity, clinical features and heritability. Therefore,
clinicians do not have strong discriminating criteria for the recommendation of
the genetic study of known predisposition genes, and the detection rate is low.
Elucidation and knowledge of new AAP high predisposition genes are of great
importance to offer accurate genetic counseling to the patient and family
members. This review aims to update the genetic knowledge of AAP, and to
expound the difficulties involved in the genetic analysis of a highly
heterogeneous condition such as AAP.

Key words: Attenuated adenomatous polyposis; Genetic susceptibility; High
predisposition gene; Genetic heterogeneity; Colorectal cancer
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Core tip: Attenuated adenomatous polyposis (AAP) is a highly genetically and clinically
heterogeneous condition in terms of severity, clinical features, heritability, and genetics.
The major high predisposition genes APC and MUTYH explain a small fraction of AAP
(10%-20%). Several predisposition genes have been recently proposed, and some of
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them have been validated, but studies addressing their global contribution to AAP
genetic predisposition is scarce. Clinicians do not have strong discriminating criteria for
the recommendation of genetic testing, and the detection rate is low. Therefore,
multigene panel testing and a redefinition of strong clinical criteria could improve the
outcome of AAP genetic testing.
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INTRODUCTION
Adenomatous polyposis (AP) can be defined as the tendency to develop adenomatous
polyps (adenomas) along the large intestine and/or rectum. Although adenomas are
benign growths, they are considered the precursor lesions of colorectal carcinoma
(CRC)[1];  thus,  AP is  classified  as  a  cancer  risk  syndrome with  cumulative  risks
ranging from 40% to 100% depending on the severity of the polyposis (adenoma
burden).

AP is usually classified according to the adenoma burden in two major groups:
classical AP (CAP) and attenuated AP (AAP). Classical forms are characterized by the
detection of hundreds or thousands of adenomas, and have a very low prevalence in
the population (1/10000[2]), whereas attenuated forms are defined by the detection of
between 10-100 adenomas, and are more prevalent in the adult population. CAP
shows aggressive phenotypes, usually triggered during the second decade of life, and
with a cumulative absolute cancer risk if adenomas are not removed. Extracolonic
manifestations are frequent,  and most  of  the cases show a dominant inheritance
pattern[3].  By  contrast,  AAP  is  a  much  more  heterogeneous  group  in  terms  of
polyposis severity and family history[4-6]. Clinical features are distinctive from classical
forms;  adenoma  detection  is  low  or  mild,  ranging  from  ten  synchronic  or  20
cumulative to 100 adenomas, and the polyposis diagnosis age is significantly later
than CAP. Cancer risk is also lower and later, ranging from 40% to 80% depending on
the  adenoma burden.  Extracolonic  manifestations  are  uncommon,  and a  family
history of polyposis is frequently absent. AAP is sometimes accompanied by other
types of polyps, such as hyperplastic or serrated polyps[3,7].

There are currently two clearly clinically-actionable genes that can lead to AP: APC
(MIM#611731)  and  MUTYH  (MIM#604933).  Thus,  prevalence  and  cancer  risk
estimations are well-defined, allowing accurate genetic counseling and effective high-
risk monitoring programs for carriers. Heterozygous germline truncating mutations
in the tumor suppressor gene APC mainly give rise to CAP, and sometimes to AAP,
with dominant inheritance patterns. In contrast, germline biallelic mutations in the
DNA repair gene MUTYH  mainly lead to AAP and less frequently to CAP, with
recessive inheritance patterns. In these cases, identification of APC or MUTYH carriers
is important, not only to define the risks and follow-up strategies for the patient, but
also  to  discriminate  between  high-  and  low-risk  individuals  among  the  family
members who could benefit  from high-risk follow-up or,  on the contrary,  avoid
unnecessary and invasive monitoring. Ambiguously, even though both genes explain
the vast majority of CAP, together they are only able to explain between 10%-20% of
AAP.

AAP incidence is significantly increasing in hospital settings, mainly due to the
improvement of imaging techniques and the implementation of CRC population
screening programs. This increase translates into a problem in the Genetic Counseling
Units due to the high heterogeneity of the disease. On the one hand, it is difficult to
discriminate not only between sporadic multiple polyposis and real AP in patients
with  low  adenoma  burden,  but  also  between  attenuated  and  classical  forms  in
patients with adenoma counts close to 100. On the other hand, family history is not a
discriminant criterion for genetic studies due to the high rate of de novo mutations
described in APC (10%-25%)[8,9] and the recessive inheritance pattern of MUTYH[10].
Furthermore,  only  a  minority  of  AAP  cases  (<  20%)  is  explained  by  germline
mutations  in  APC  or  MUTYH[11,12],  leaving  a  substantial  fraction  of  AAP  cases
unexplained. This means that undiscriminating and invasive follow-up programs will
be recommended to all first-degree relatives of these patients.
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Under this scenario, the elucidation of genetic susceptibility, which could explain
the  etiology of  the  disease  and improve the  accuracy of  genetic  counseling,  has
become a priority for scientists and clinicians. Thanks to the advance of sequencing
technologies, new genes have been recently associated with primary predisposition to
the development of adenomas by genome/exome sequencing studies in unexplained
AP  cohorts[13-16].  In  the  same  way,  other  genetic  alterations  not  detected  by
conventional coding germline DNA sequencing screening strategies have also been
described in the APC gene, such as mutations in the promoter[17] or introns[18], large
inversions[19] or mosaicism phenomes[20]. In addition, the use of wide gene panels for
the genetic diagnosis of AP has incidentally revealed an overlap between different
polyposis syndromes[21]. However, all these studies together are only able to explain
the etiology of a very small fraction of AAP cases, and the unexplained cases are still a
major group that needs to be clarified. Most likely, polygenic inheritance models in
which the accumulation of multiple low penetrance alleles[22] and lifestyle risk factors
such as smoking, alcohol, body mass index, diet and physical activity[23] play a major
role in unexplained AAP cases.

Despite the low frequency of high predisposition genes in AAP, their knowledge is
important  for  the detection of  carriers,  allowing the discrimination of  high-  and
normal-risk individuals among family members, and leading to accurate and cost-
effective monitoring programs.

The  aim  of  this  review  is  to  describe  the  current  knowledge  of  the  genetic
susceptibility of AAP, with emphasis on genes with a primary predisposition to AP
that have been described so far, which are either already implemented in clinical
practice, in process, or have recently been proposed.

AP PRIMARY PREDISPOSITION ASSOCIATED GENES
Until recently, APC and MUTYH were the only known AP syndrome predisposition
genes. With the advent of next-generation sequencing (NGS) technologies, new AP
predisposition genes have emerged. There are currently three new validated genes
[POLE (MIM#174762), POLD1 (MIM#174761), NTHL1 (MIM#602656)], and two more
genes  that  have  been described but  not  validated [MSH3  (MIM#600887),  MLH3
(MIM#604395)].  The  discovery  of  new AP predisposition genes  has  allowed for
considerable  advancement  in  the  biology  of  AP development  and,  therefore,  in
colorectal  carcinogenesis.  However,  the  newly  described  genes  are  still  poorly
implemented in clinical practice, mainly because of their low frequency and the lack
of accurate risk estimations. Thus, time is needed to increase the number of described
cases that allow better prevalence and risk estimations to be obtained.

APC
APC is a tumor suppressor gene closely involved in colorectal carcinogenesis; APC
somatic mutations are the first event in the canonical CRC carcinogenesis model,
which  is  followed  by  more  than  80%  of  all  CRCs[24].  The  APC  gene  encodes  a
multifunctional protein that is mainly involved in signal transduction, cell adhesion
and migration, microtubule assembly and chromosome segregation[25].  Its tumor-
suppressing ability relies on its capacity to negatively regulate intracellular β-catenin
levels, the main effector of the Wnt pathway. Therefore, inactivation of APC leads to
increased β-catenin levels and overexpression of its different target genes involved in
cell proliferation, differentiation, migration and apoptosis[26],  which histologically
correlates with adenoma formation.

APC is located on the long arm of chromosome 5 (5q21), has 15 exons, and encodes
a 2,843 amino acid protein[27]. Most of the somatic mutations lie in the mutation cluster
region (MCR), which is located between amino acids 1286 and 1513 and overlaps with
the β-catenin binding region[28]. Heterozygous APC germline mutations have been
associated with AP predisposition in a gene location-dependent manner[29]. Most of
the germline APC mutations are truncating variants lying between codons 178 and
1580, and give rise to stable mutant peptides that exert a dominant-negative effect on
the wild-type protein[30,31]. These mutations lead to classical forms of the disease called
familial AP (FAP), whereas germline mutations located at both the 5’ and 3’ ends of
the transcript, as well as splicing mutations that lead to exon 9 skipping, give rise to
attenuated forms of the disease called attenuated familial AP (AFAP) (Figure 1A).
Germline mutations at the 3’ end give rise to stable proteins with a certain capability
to regulate β-catenin levels[30], and 5’ end mutations upstream of codon 177 produce
functional proteins by initiation of translation at codon 184[31,32]. This internal initiation
of translation is relatively inefficient, leading to a haploinsufficient phenotype rather
than a dominant-negative phenotype. Mutations at the splice donor site in intron 9

WJGO https://www.wjgnet.com December 15, 2019 Volume 11 Issue 12

Lorca V et al. Genetics of attenuated adenomatous polyposis

1103



lead to inefficient exon skipping with some expression of normal transcript,  and
therefore with an attenuated form of the disease[33].

Both FAP and AFAP show autosomal dominant inheritance patterns. However,
there are some exceptions without any family history. De novo mutations have been
described in 10%-25% of APC carriers[8,9], and recent studies report APC mosaicism
rates of 20%-50% in unexplained AP cases[20,34]. Whereas de novo mutations have been
observed in both FAP and AFAP, it is noteworthy that mosaicism carriers present an
attenuated form of the disease[20], likely due to the nonubiquitous distribution of the
mutant allele.

MUTYH
MUTYH is a DNA repair gene involved in the base excision repair (BER) pathway[35].
It encodes a monofunctional DNA glycosylase responsible for the recognition and
excision of the deoxyadenosine misincorporated with 8-hydroxy-2' -deoxyguanosine
(8-OHdG) in the DNA molecule. 8-OHdG arises as a consequence of the oxidation of
deoxyguanosine,  which  is  a  mutagenic  base  because  it  has  the  ability  to  pair
indiscriminately with deoxycytosine or deoxyadenosine, leading to an increase in
somatic G>T transversions[36]. Therefore, inactivation of MUTYH leads to an increase
in the G>T mutation rate, which especially affects known cancer driver genes such as
KRAS or APC[37], both of which are involved in adenoma formation.

MUTYH is located on the short arm of chromosome 1 (1p34.1) and is formed by 6
exons,  encoding  two  major  transcripts,  which  leads  to  546  and  535  amino  acid
isoforms[35].  Biallelic  MUTYH  germline mutations  have been associated with AP
predisposition,  leading  to  an  autosomal  recessive  syndrome[10].  Because  it  is  a
recessive condition, there is no vertical transmission of the disease, and family history
is often absent or is presented horizontally (siblings)[38]. MUTYH-associated polyposis
(MAP) is characterized by the presence of 10–100 adenomatous polyps in the colon
rectum resembling AFAP, but in some cases it may be accompanied by hyperplastic
or serrated polyps[39]. A minor fraction of MAP presents classical forms of the disease
with the detection of more than 100 adenomas. In contrast to APC, no relationship has
been observed between the location of the mutation and the phenotype of the disease.
Mutations located throughout the entire MUTYH have been described in MAP, but
only  two  missense  mutations,  NM_001128425:  c.1187G>A  p.(Gly396Asp)  and
c.536A>G p.(Tyr179Cys),  are  the  most  prevalent  in  Caucasians.  Other  recurrent
mutations have been described in more specific populations[40] (Figure 1B).

POLE and POLD1
POLE and POLD1 encode the catalytic subunits of the polymerase enzyme complexes
ε (Polε) and δ (Polδ), respectively, which are the principal leading- and lagging-strand
DNA polymerases during S phase[41]. In addition, they also catalyze DNA synthesis in
several DNA repair pathways, such as nucleotide excision repair (NER) or mismatch
repair (MMR). Both POLE and POLD1 encompass not only a binding DNA region
and polymerase domain, but also an exonuclease domain, which confers proofreading
capability by the recognition and removal of misincorporated nucleotides during
DNA  replication[42].  Polymerase  proofreading  activity,  together  with  high  base
selectivity and the MMR pathway, are the main cellular mechanisms responsible for
minimizing errors during DNA replication[43]. Inactivating point mutations within the
exonuclease domains lead to proteins with an active polymerase domain that lack
proofreading activity, which causes high genetic instability during DNA replication.
Indeed, somatic mutations within the exonuclease domains have been described in
human cancer, leading to a high increase in mutational rates[44]. Tumor mutations in
the POLE exonuclease domain have been identified in 1%-2% of sporadic CRC and in
7%-12% of endometrial cancers, as well as in tumors of the brain, pancreas, ovary,
breast and stomach, showing ultramutated and microsatellite-stable tumors[45].

POLE is located on the long arm of chromosome 12 (12q24.33), consists of 49 exons,
and encodes a 2,286 amino acid protein. Its exonuclease domain lies between codons
268 and 471[46]. POLD1 is located on the long arm of chromosome 19 (19q13.33) and
consists of 27 exons, encoding an 1,133 amino acid protein. Its exonuclease domain is
located between codons 304 and 517[47]. Heterozygous germline mutations within the
exonuclease  (proofreading)  domains  of  both  POLE  and  POLD1  were  recently
associated with AAP[13], leading to an autosomal dominant inheritance condition that
is characterized by high-penetrance predisposition to multiple colorectal adenomas,
large adenomas, early-onset CRC, or multiple CRCs, as well as other extracolonic
tumors such as endometrial tumors[48].

Since the first association of POLE  and POLD1  with AAP, several studies have
validated  the  results  and  found  new  germline  mutations  in  the  exonuclease
domains[49-55]  (Figures 1C and 1D). However, due to the small number of families
described so far, accurate risk estimations and the contribution of polymerases to AP
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Figure 1

Figure 1  Distribution of germline mutations in attenuated adenomatous polyposis predisposition genes across protein domains. A: APC likely pathogenic
and pathogenic variants described in the LOVD database[115]. Most of the mutations are truncating variants. Mutations associated with AAP are located at both the 3’-
end and 5’-end of the gene (indicated with arrows); B: MUTYH likely pathogenic and pathogenic mutations described in the LOVD database[115]. The two most
prevalent mutations in Caucasians are shown; C-G: POLE, POLD1, NTHL1, MSH3 and MLH3 likely pathogenic and pathogenic mutations described in the literature
and associated with AAP. Unclassified variants in the polymerase proofreading POLE and POLD1 domains are in gray. All lolliplots were designed with The cBio
Cancer Genomics Portal[116,117]. Mutation types are coded as follows: black dots for nonsense variants; pink dots for frameshift and splicing variants; green dots for
missense mutations; brown dots for in-frame indels. Reference sequences: APC: NM_000038, NP_000029; MUTYH: NM_001128425, NP_036354; POLE:
NM_006231, NP_006222; POLD1: NM_001256849, NP_001121897; NTHL1: NM_002528, NP_002519; MSH3: NM_002439, NP_002430; MLH3: NM_001040108,
NP_001035197.
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are still not well-defined.

NTHL1
Similar to MUTYH, NTHL1 is a DNA repair gene involved in the BER pathway. It
encodes a bifunctional N-glycosylase protein that recognizes and removes oxidized
pyrimidines,  such  as  2′-deoxy-5-hydroxycytldine  (5-OHdC)  and  ring-opened
purines[56]. 5-OHdC arises as a consequence of the oxidation of deoxycytosine, and it
has  the  ability  to  pair  both  deoxyguanosine  and  deoxyadenine,  leading  to  an
accumulation of somatic C>T transitions, which can affect important CRC driver
genes such as APC, TP53 or KRAS, among others.

NTHL1 is located on the short arm of chromosome 16 (16p13.3), consists of 6 exons,
and  encodes  a  312  amino  acid  protein[57].  NTHL1  homozygous  or  compound
heterozygous germline mutations have been recently detected in AAP, delineating an
autosomal recessive polyposis syndrome called NTHL1-associated polyposis (NAP)[14].
All  NTHL1  biallelic  carriers  described  so  far  showed AAP,  and  also  frequently
showed other extracolonic tumors such as endometrial or breast[58].  One nonsense
mutation at codon 90 seems to be involved in nearly all the biallelic carriers described;
however, novel pathogenic mutations are arising as new studies emerge[58-62] (Figure
1E).

Theoretical estimations of NAP suggest a prevalence of at least five times lower
than that of MAP[62]. Due to the limited number of NAP families described until now,
the  phenotypic  spectrum  and  cancer  risk  estimates  have  not  been  properly
established.

MSH3
MSH3  is  one of  the six  MMR  genes  identified to  date  in  eukaryotic  cells[63].  It  is
involved in the detection of replication errors in microsatellite sequences together
with MSH2  and MSH6.  MSH3  encodes an alternative binding partner for MSH2,
which is required for the specific detection of insertion or deletion loops of two or
more nucleotides[64], as well as for double strand break repair[65]. MSH2 requires the
binding  of  MSH6  or  MSH3  to  exercise  its  function.  The  MSH2-MSH6  dimer
recognizes  single  substitutions  and small  indel  mispairs,  whereas  MSH2-MSH3
recognizes errors in di- and larger nucleotide repeats[66]. Inactivation of MSH3 leads to
a high microsatellite instability of di- and tetranucleotides (EMAST), which has been
associated  with  a  characteristic  somatic  APC  mutation  spectrum  in  colorectal
adenoma from AAP patients[15].

The MSH3 gene is located in the long arm of chromosome 5 (5q14.1) and consists of
24 exons, encoding an 1,137 amino acid protein[67].  Biallelic truncating variants in
MSH3  have  been  recently  reported  in  two  patients  with  AAP,  suggesting  an
additional recessive subtype of colorectal AP[15] (Figure 1F).

Until now, no more studies have validated these results, so its association with
AAP and phenotype estimations remain to be defined.

MLH3
MLH3 is a member of the MutL homolog family of MMR proteins[63]. MLH3 dimerizes
with MLH1, resulting in the MutLγ complex, which is primarily involved in meiotic
recombination rather than in mitotic genetic stability[68].

The MLH3 gene is located in the long arm of chromosome 14 (14q24.3), consists of
13  exons,  and  encodes  a  1,453  amino  acid  protein.  The  homozygous  truncating
germline variant S1188* was first detected in an unexplained Swedish AAP case[21],
and more recently in one more AAP and two CAP subjects from Finland, suggesting a
founder effect[16]  (Figure 1G). Authors hypothesize the involvement of a defective
DNA damage response and/or recombination-related processes in the pathogenesis
of these cases[16].

Once again, research on additional cohorts is needed to reinforce the significance of
MLH3 as an AP predisposition gene.

OTHER CANDIDATE GENES SUGGESTED FOR AP
PREDISPOSITION
Other candidate genes,  including AXIN2 (MIM#604025),  FOCAD (MIM#614606),
GALNT12  (MIM#610290)  and  BUB1  (MIM#602452)  /BUB3  (MIM#603719),  are
involved in  the  AP predisposition.  However,  evidence  for  these  genes  is  not  as
thorough as those previously discussed.

AXIN2
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AXIN2 encodes the Wnt pathway component conductin; it is the scaffold protein of
the β-catenin destruction complex and main negative regulator of the pathway[69].
Mutations in this gene have been described in CRC, and similar to APC, they increase
β-catenin levels and activate β-catenin/T-cell factor signaling, thus promoting CRC
development[70].  AXIN2  is  located on the  long arm of  chromosome 17  (17q24.1),
consists of 11 exons, and encodes two major transcripts, which leads to 843 and 778
amino acid isoforms[69]. Deleterious germline mutations have been reported in four
families, showing a strong association with oligodontia as well as gastrointestinal
neoplasias[71-73]. More recently, a novel missense variant has been described in an AAP
family  without  signs  of  oligodontia  or  ectodermal  dysplasia,  suggesting  the
possibility of different phenotypes depending on the protein domain affected[74]. Two
other works have screened mutations for AXIN2 in different CRC populations, both in
polyposis and nonpolyposis, without any success[75,76]. Therefore, although there is a
clear association between AXIN2 and oligodontia, further studies are needed to clarify
its role in CRC syndromes, particularly with AAP.

FOCAD
FOCAD encodes a focal adhesion protein with a potential tumor suppressor function
in glyomas[77]. The FOCAD gene is located on the short arm of chromosome 9 (9p21.3)
and is formed by 46 exons encoding an 1,801 amino acid protein[77].  Two studies
identified large deletions and truncating point mutations in a total of five CRC cases:
2/221 cases of unexplained AP[78] and 3/1232 early-onset and familial CRC cases[79].
Altogether, four cases had a diagnosis of AAP. Since FOCAD shows high expression
levels  in  colonic  epithelial  cells  and  has  been  involved  in  cell  survival  and
proliferation, the authors suggest a potential  role of this gene in polyposis/CRC
susceptibility [79 ].  Regardless,  this  association  and  its  contribution  to  AAP
predisposition requires further clarification.

GALNT12
GALNT12 encodes a hexosyltransferase involved in the initial steps of the mucin-type
O-glycosylation process[80]. Alterations in this process lead to aberrant glycosylation,
which  has  been  associated  with  alterations  in  cell  growth,  differentiation,
transformation, adhesion, metastasis and immune surveillance in cancers[81]. GALNT12
is highly expressed in the digestive tract, and is frequently downregulated in CRC[82].
The GALNT12  gene is located on the long arm of chromosome 9 (9q22.33), has 10
exons, and encodes a 581 amino acid protein[80]. Evidence for the association between
GALNT12  and  CRC has  been  reported[83],  but  its  association  with  familial  CRC,
particularly AP, remains a controversial issue. Partially inactivating variants have
been  detected  in  familial  CRC along  with  a  mild  polyp  burden,  suggesting  the
involvement of this gene in CRC predisposition[84].  However, later studies do not
support its involvement in nonpolyposis and polyposis CRC predisposition[85,86].

BUB1 and BUB3 (mitotic checkpoint serine/threonine kinases)
BUB1 and BUB3 encode components of the spindle assembly checkpoint complex,

which  controls  chromosome  biorientation  on  the  mitotic  spindle,  delaying  the
anaphase transition until all kinetochores are properly attached[87]. Alterations in the
activity  of  this  complex  lead  to  alterations  in  chromosome  copy  number,  i.e.
aneuploidies[88]. The BUB1 gene is located on the long arm of chromosome 2 (2q13),
consists of 25 exons, and encodes a 1,085 amino acid protein, whereas BUB3 is located
on the long arm of chromosome 10 (10q26.13), has 8 exons, and encodes a 328 amino
acid protein[89]. Deleterious germline mutations in both genes have been associated not
only with increased levels of constitutive aneuploidy, but also with gastrointestinal
neoplasms, including adenocarcinomas and adenomas[90,91]. Furthermore, aneuploidy
caused by Bub1 insufficiency has been proven to drive colorectal adenoma formation
in mice through APC  loss of heterozygosity (LOH)[92].  Screening of the BUB1  and
BUB3 genes in familial and AP CRC cohorts has shown functionally relevant germline
mutations in a low fraction of patients with CRC who also presented increased levels
of  constitutive  aneuploidy[93,94].  However,  the  causality  of  these  mutations  in
CRC/adenoma susceptibility remains unproven.

AAP INCIDENTAL TO OTHER CANCER RISK SYNDROMES
Although phenotypes for related CRC risk syndromes are generally well-defined,
there are some overlapping features that can lead to confusion in the clinical suspicion
and  subsequent  misdirection  of  the  genetic  testing  approach.  The  cancer  risk
syndromes prone to phenotypically overlap with AAP are described below.

Lynch syndrome is the main hereditary nonpolyposis colorectal cancer syndrome
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caused by heterozygous deleterious mutations in MMR genes (MSH2, MLH1, MSH6
and  PMS2)  that  can  be  accompanied  by  early-onset  adenomas[95].  Usually,  the
adenoma burden does not exceed 10, but it can sometimes mimic AAP.

Constitutional  MMR  deficiency  is  due  to  loss-of-function  biallelic  germline
mutations in the main MMR genes. It is an aggressive recessive cancer predisposition
syndrome with a wide tumor spectrum, very early age of onset and poor outcome[96].
In addition, nearly 36% of affected subjects develop colorectal AP ranging from a few
up to 100 adenomas[97].

Hereditary mixed polyposis syndrome is characterized by multiple colon polyps of
mixed pathologic subtypes and an increased risk for CRC[98].  It is caused by large
duplications in the 5' regulatory region of GREM1 (MIM 603054), leading to an excess
of coding protein expression[99]. GREM1 is an antagonist of bone morphogenic protein
(BMP),  so  its  overexpression  can  lead  to  inactivation  of  the  BMP  pathway  and
subsequent hyperproliferation of colonic epithelium[100].

The  pathogenesis  of  polyps  in  hereditary  mixed  polyposis  syndrome  likely
overlaps  with  that  of  juvenile  polyposis  syndrome  (JPS),  which  is  caused  by
inactivating mutations in other genes of the BMP pathway, including BMPR1A (MIM
601299), SMAD4 (MIM 600993), ENG (MIM 131195) and BMP4 (MIM 112262)[101-104]. JPS
is a hamartomatous polyposis syndrome with an increased risk of CRC as well as
other digestive cancers. Cancer risk arises from adenomatous components present in
the juvenile polyps, which can sometimes lead to misinterpretations[105].

Germline alterations in genes involved in the PTEN/PI3K/AKT pathway are also
associated with hamartomatous polyposis syndromes. Cowden syndrome is caused
by heterozygous PTEN (MIM 601728) germline mutations, and is characterized by the
development  of  hamartomatous  and  neoplastic  lesions  of  the  skin,  mucous
membranes, thyroid, breast, endometrium, and brain[106]. Although hamartomatous
polyps are  the most  characteristic  gastrointestinal  lesions in Cowden syndrome,
adenomatous  polyps  in  the  colon  have  been  detected  in  30%  of  affected
individuals[107].

In  contrast,  germline  heterozygous mutations  in  STK11  (MIM 602216)  lead to
Peutz-Jeghers  syndrome  (PJS),  which  is  characterized  by  mucocutaneous
pigmentation  and  diffuse  gastrointestinal  hamartomas [108].  Similar  to  other
hamartomatous syndromes, polyps with large adenomatous transformation areas and
adenomatous polyps have been described in PJS[109].

Currently, thanks to NGS technology and the widespread use of multigene panels
for  hereditary  cancer  testing,  the  detection  of  overlapping phenotypes  between
different CRC syndromes is greatly increasing, improving the diagnosis and follow-
up of these patients[12,21,110].

CONCLUSION
AAP is a highly heterogeneous disease, covering both moderate and mild forms of
AP, as well as hereditary and sporadic forms, recessive and dominant conditions, and
the presence or absence of other gastrointestinal or extracolonic manifestations. Thus,
the genetic heterogeneity of the syndrome, where several high predisposition genes
are  involved  in  the  polyposis  predisposition  of  a  minor  subset  of  AAP,  is  not
surprising. Two previous studies have investigated the prevalence of pathogenic
mutations in large cohorts of AP, detecting approximately 6%-15% of pathogenic
mutations in  either  the APC  or  MUTYH  genes  when analyzing patients  with an
adenoma burden between 10 and 99[11,12]. These detection rates were decreased (2%-
9%, respectively) when only patients between 10 and 19 adenomas were considered,
showing that adenoma burden and the likelihood of detecting pathogenic mutations
in APC and MUTYH are directly proportional in AAP. Regarding the prevalence of
the new AP predisposition genes, Stanich and collaborators included the analysis of
POLE and POLD1 in their cohorts, but the contribution of these genes was scarce (one
detection in 2,979 AAP cases),  and it  did not alter the overall mutation detection
rate[12]. The NTHL1 contribution to AAP has been recently estimated to be five times
less prevalent than that of MUTYH[62]. Therefore, it seems that the heritability of AAP
lies in different predisposition genes, each of which explains a small fraction of the
total.  Recently,  other  newly  associated  genes  have  been  described,  but  the
contribution of genetics to the etiology of the disease, as well as its heritability, are
difficult to estimate. The high clinical and genetic heterogeneity, as well as the low
prevalence of pathogenic mutations in the described genes, reflects the necessity of
multigene panel testing for the effective genetic diagnosis of AAP.

To increase  diagnostic  sensitivity  in  such a  heterogeneous  syndrome,  clinical
guidelines have been developed with broad criteria, recommending genetic testing in
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patients with more than 10 adenomas, even in those patients with oligopolyposis (<
10 adenomas) or early CRC[111-113]. These criteria increase the genetic testing requests in
diagnostic laboratories, thus decreasing the mutation detection rate, which makes
genetic studies not cost-effective, even if  they are performed by multigene panel
testing. Furthermore, most of the genetic testing results are not informative, and the
probability of unclassified variant detection with multigene panel testing is high,
which leads to a major group of patients with anxiety and confusion. Therefore, more
stringent clinical criteria, especially in the cumulative number of adenomas, should be
redefined to  ascertain those patients  who are  most  likely to  harbor a  hereditary
polyposis syndrome. The stricter the recommendation criteria for the genetic study is,
the greater the mutation detection rate and lower the ambiguous results. We are in
agreement  with  the  last  guideline  of  the  American  Society  of  Colon  and Rectal
Surgeons (ASCRS) that a cutoff of 20 cumulative adenomas should be used to prompt
genetic counseling and testing[114].

In conclusion, the contribution of genetics to the etiology of the disease and its
heritability are difficult to estimate. The high clinical and genetic heterogeneity, as
well as the low prevalence of each AP predisposing gene, reflects the necessity of
multigene panel testing for an effective diagnosis of AAP. Nevertheless, the decline in
diagnosis rates that comes with the decrease in adenoma burden shows the necessity
of  stricter  clinical  criteria  when  genetic  testing  is  recommended  for  AAP
predisposition genes.
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