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Abstract
BACKGROUND
Prolonged cardiac arrest (CA) produces extensive neuronal death and microglial
proliferation and activation resulting in neuro-cognitive disabilities. Among other
potential mechanisms, microglia have been implicated as triggers of neuronal
death after hypoxic-ischemic insults. Minocycline is neuroprotective in some
brain ischemia models, either by blunting the microglial response or by a direct
effect on neurons.

AIM
To improve survival, attenuate neurologic deficits, neuroinflammation, and
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histological damage after ventricular fibrillation (VF) CA in rats.

METHODS
Adult male isoflurane-anesthetized rats were subjected to 6 min VF CA followed
by 2 min resuscitation including chest compression, epinephrine, bicarbonate,
and defibrillation. After return of spontaneous circulation (ROSC), rats were
randomized to two groups: (1) Minocycline 90 mg/kg intraperitoneally (i.p.) at
15 min ROSC, followed by 22.5 mg/kg i.p. every 12 h for 72 h; and (2) Controls,
receiving the same volume of vehicle (phosphate-buffered saline). The rats were
kept normothermic during the postoperative course. Neurologic injury was
assessed daily using Overall Performance Category (OPC; 1 = normal, 5 = dead)
and Neurologic Deficit Score (NDS; 0% = normal, 100% = dead). Rats were
sacrificed at 72 h. Neuronal degeneration (Fluoro-Jade C staining) and microglia
proliferation (anti-Iba-1 staining) were quantified in four selectively vulnerable
brain regions (hippocampus, striatum, cerebellum, cortex) by three independent
reviewers masked to the group assignment.

RESULTS
In the minocycline group, 8 out of 14 rats survived to 72 h compared to 8 out of
19 rats in the control group (P = 0.46). The degree of neurologic deficit at 72 h
[median, (interquartile range)] was not different between survivors in
minocycline vs controls: OPC 1.5 (1-2.75) vs 2 (1.25-3), P = 0.442; NDS 12 (2-20) vs
17 (7-51), P = 0.328) or between all studied rats. The number of degenerating
neurons (minocycline vs controls, mean ± SEM: Hippocampus 58 ± 8 vs 76 ± 8;
striatum 121 ± 43 vs 153 ± 32; cerebellum 20 ± 7 vs 22 ± 8; cortex 0 ± 0 vs 0 ± 0) or
proliferating microglia (hippocampus 157 ± 15 vs 193 cortex 0 ± 0 vs 0 ± 0; 16;
striatum 150 ± 22 vs 161 ± 23; cerebellum 20 ± 7 vs 22 ± 8; cortex 26 ± 6 vs 31 ± 7)
was not different between groups in any region (all P > 0.05). Numerically, there
were approximately 20% less degenerating neurons and proliferating microglia
in the hippocampus and striatum in the minocycline group, with a consistent
pattern of histological damage across the individual regions of interest.

CONCLUSION
Minocycline did not improve survival and failed to confer substantial benefits on
neurologic function, neuronal loss or microglial proliferation across multiple
brain regions in our model of rat VF CA.

Key words: Heart arrest/pathology; Cardiopulmonary resuscitation; Survival rate;
Neurons/drug effects; Microglia/drug effects; Minocycline/pharmacology

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Prolonged cardiac arrest (CA) produces extensive neuronal death and
neuroinflammation resulting in neuro-cognitive disabilities via ischemia-reperfusion
injury. Minocycline was shown neuroprotective in some brain ischemia models, in part
by blunting the microglial response or by a direct effect on neurons. In our established
experimental CA model in adult rats, minocycline did not improve survival and failed to
confer substantial benefits on survival, neurobehavioral outcome, neuronal loss or
microglial proliferation across multiple brain regions.

Citation: Janata A, Magnet IA, Schreiber KL, Wilson CD, Stezoski JP, Janesko-Feldman K,
Kochanek PM, Drabek T. Minocycline fails to improve neurologic and histologic outcome
after ventricular fibrillation cardiac arrest in rats. World J Crit Care Med 2019; 8(7): 106-119
URL: https://www.wjgnet.com/2220-3141/full/v8/i7/106.htm
DOI: https://dx.doi.org/10.5492/wjccm.v8.i7.106

INTRODUCTION
Currently, outcomes after cardiac arrest (CA) are poor, with an approximately 10%
survival  rate,  and  significant  seuro-cognitive  disabilities  in  survivors.  No
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E-Editor: Liu MY pharmacological adjuncts have as yet been shown to improve outcomes after CA in a
clinical setting. Exploration of novel strategies and compounds for neuroprotection
thus has scientific merit.

Janata  et  al[1],  Drabek  et  al[2],  Uray  et  al[3],  and  others[4-6]  have  reported  that
experimental CA produces extensive neuronal death and microglial proliferation and
activation.  Among other  potential  mechanisms,  microglial  activation have  been
implicated as significantly contributing to neuronal death and cerebral edema after
insults  to  the  central  nervous  system  (CNS).  Minocycline  is  suggestive  to  be
neuroprotective  in  multiple  brain  ischemia  models  including  CA[4-9],  in  part  by
blunting the microglial response[6], or by a direct effect on neurons[10].

Minocycline is neuroprotective in chronic inflammation models and stroke, most
likely via attenuation of microglial activation. Minocycline was effective in improving
functional outcome and neuronal death in a pediatric asphyxial CA model, concurrent
with decrease in microglial proliferation and CNS cytokine expression at 72 h[7].

We have previously reported that minocycline at sufficient doses had only modest
effect  in  our  prolonged  deep  hypothermic  CA  model[2].  We  concluded  that  the
expected salutary effects of minocycline might have been masked by the concomitant
beneficial effects of hypothermia, leaving little space for the detection of benefits of
minocycline. Thus, in the current study, we chose to test minocylcine’s effects in our
newly established model of normothermic ventricular fibrillation (VF) CA. We tested
the hypothesis that minocycline would improve survival, functional and histological
outcome  after  VF  CA  in  rats.  Primary  outcomes  were  survival  and  functional
outcome;  secondary  outcomes  were  histological  damage  (neuronal  death  and
microglial activation) in multiple selectively vulnerable brain regions.

MATERIALS AND METHODS

Animal model
The  study  protocol  was  approved  by  the  Institutional  Animal  Care  and  Use
Committee  of  the  University  of  Pittsburgh  (Protocol  #13021161).  We  used  our
previously established model of VF CA[1].

Preparation phase
In brief, adult male Sprague-Dawley rats (350-400 g) were obtained from a licensed
vendor (Hilltop Lab Animals, Scottdale, PA, United States) and housed under 12 h/12
h light/dark in a holding facility for at least two days prior to the experiment. Water
was provided ad libitum until the experiment. Standard chow was removed 12 h
prior to experiment. On the day of the experiment, rats were anesthetized with 4%
isoflurane (Baxter, Deerfield, IL, United States) in FiO2 1.0 in a plexiglass jar, intubated
with a 14-gauge cannula (Becton Dickinson, Sandy, UT), and mechanically ventilated
(Harvard Ventilator 683,  Harvard Rodent Apparatus,  South Natick,  MA, United
States) with tidal volume 8 mL/kg, PEEP 3 cm H2O and respiratory rate 30-40/min to
maintain normocapnia. Anesthesia was maintained with 2% isoflurane (FiO2 of 0.5).
Arterial (PE50) and venous (PE90) femoral lines were inserted via cut-downs for blood
pressure  monitoring  and  drug  administration.  Electrocardiogram  (ECG),  mean
arterial pressure (MAP) and central venous pressure were continuously monitored
and recorded (Polygraph, Grass Instruments, Quincy, MA, United States).  Rectal
temperature (Trec) was controlled at 37.0 ± 0.5 °C with a temperature controlled
operating table, overhead heating lamp and a fan. After surgery, FiO2 was reduced to
0.3 and isoflurane was weaned over 5 min. VF CA was induced by a 2 min impulse of
12 V/50 Hz alternating current and ensured by ECG readings and reduction in MAP.

Resuscitation phase
After 6 min CA, manual chest compressions were started at a rate approximately
275/min along with  mechanical  ventilation  with  FiO2  1.0.  Epinephrine  (Abbott,
Abbott  Park,  IL,  United States)  20 mg/kg was given with start  of  compressions;
additional epinephrine 10 mg/kg was given at 1 min resuscitation time (RT). Sodium
bicarbonate (Abbott, Abbott Park, IL, United States) 1 mEq/kg was given at start of
resuscitation. At 2 min RT, defibrillation was attempted with biphasic 10 J impulse
(Zoll M series defibrillator; Zoll, Chelmsford, MA, United States). If unsuccessful,
subsequent shocks were delivered every 30 s, with maximum 5 attempts over 4 min
resuscitation effort.

ICU phase
A  Mini-mitter  probe  (Mini-mitter  Co.  Inc.,  Bend,  OR)  was  advanced  into  the
peritoneal cavity via small laparotomy to allow postoperative temperature control
using overhead heating lamp and fan and monitoring via advanced telemetry system.
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Rats were weaned to spontaneous ventilation at 30 min RT. The rats were extubated
and lines were removed at 60 min RT.

Postoperative care
Controlled normothermia (36.5-37.5 °C) was maintained for 12 h, followed by an
additional 12 h monitoring period. Rats that did not resume eating/drinking were
given D5W/0.9NS (Baxter, Deerfield, IL, United States) sq twice daily. Morphine 0.15
mg was given twice daily subcutaneously for pain/distress. Neurologic status was
assessed daily using Overall Performance Category (OPC, 1 = normal, 5 = dead)[11]

and Neurologic Deficit Score (NDS, 0-10% = normal, 100% max deficit)[12].
At 72 h, rats were deeply anesthetized with isoflurane and perfused transcardially

with normal saline followed by 10% formalin. Fixed tissues were paraffin-embedded
and standard coronal sections were performed at levels of aforementioned regions.
Histological damage score was assessed in the striatum, hippocampus, cerebellum
and cortex.  Fluoro-Jade C was used to  assess  neuronal  degeneration.  Anti-Iba-1
staining was used to label activated microglia.

Experimental protocol
A randomization schedule was created prior to study commencement with balancing
for each sequential groups of 4 rats, with two rats in each block assigned to receive
minocycline and two rats assigned to receive vehicle treatment, in order to balance the
number of rats allocated to each condition for each shipping container, thus reducing
the possibility of bias and confounding. Rats that either did not achieve return of
spontaneous circulation (ROSC), or died prior to the scheduled time-point of sacrifice
were replaced at the end of the study following the same randomization protocol. The
ongoing block was finished as originally designed. Minocycline (Sigma-Aldrich, Cat.
No. M9511, St. Louis, MO) 90 mg/kg i.p. was administered at 15 min RT, followed by
22.5 mg/kg i.p. twice daily (6 am-6 pm) for 72 h. This regimen was based on prior
studies which have demonstrated benefits[13]. In controls, vehicle (phosphate-buffered
saline) was administered at the same time points and at the same volume.

Histology
The tissue samples were processed for embedding in paraffin. The resulting paraffin
blocks were sequentially sectioned at 5 micrometer slices. All sections were stained
with  Fluoro-Jade  C  (Millipore,  CA,  United  States)  as  a  marker  neuronal
degeneration[14] and with anti-Iba-1 staining visualizing microglia. Iba-1 is a calcium-
binding protein expressed specifically in activated microglia[15]. For the Iba-1 staining,
sections were washed in tris-buffered saline and Tween 20 (TBST) (Biocare Medical,
CA, United States), incubated in 0.3% H2O2 in TBST for 30 min to inhibit endogenous
peroxidase activity, washed in TBST, and blocked in TBST containing 3% normal goat
serum for 30 min. The sections were incubated with a rabbit anti-Iba1 polyclonal
antibody (1:250, Wako, Richmond, VA, United States) overnight at 4 °C. The sections
were then washed in TBST and incubated with a FITC-conjugated goat anti-rabbit IgG
secondary  antibody  (Invitrogen,  Carlsbad,  CA,  United  States)  for  1  h  at  room
temperature.  Sections  were  then  washed  and  cover-slipped  with  Vectashield
Mounting media containing 4',6-diamidino-2-phenylindole counterstain.

In  addition,  colorimetric  visualization  of  Iba-1  immunostaining  using
diaminobenzamide  (DAB)  (Vector,  CA,  United  States)  was  used as  a  secondary
confirmatory method to visualize microglia. In short, sections were incubated with a
primary antibody using a 1:250 dilution of anti-rabbit Iba-1 overnight at 4 °C. Sections
were washed with TBST, incubated at RT for 1 h with a biotinylated secondary anti-
rabbit IgG (Sigma-Aldrich Cat. No. 21537, St. Louis, MO, United States), followed by 1
h of avidin-biotin complex binding using an ABC kit (Vector, CA, United States).
Sections were washed and incubated for 10 min with DAB followed by hematoxylin
counterstaining. Tissue was dehydrated, cleared and cover-slipped for microscopic
analysis. For control staining, normal rabbit IgG was used as the primary antibody.

A photograph of  the  representative  section  of  the  aforementioned  regions  of
interest  was taken under  10 × magnification (Nikon Eclipse  90i).  The regions of
interest were defined as follows: Hippocampus and cortex, bregma -3.2 mm; striatum,
bregma  +0.48  mm;  and  cerebellum,  bregma  -10.04  mm.  Fluoro-Jade  C  positive
neurons and Iba-1 positive activated microglia (characterized by ameboid cell body
and  retracted  processes  without  thin  ramifications)[16]  were  then  quantitated
morphometrically by three independent evaluators (KLS, CDW, KJ-F) masked to the
treatment assignment using the National Institutes of Health Image-J software. No
automated features of the software were used. Image-J was used solely to track the
cell counts and provide a controlled feedback between the independent evaluators.

Statistical evaluation
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The analysis was performed using IBM SPSS Statistics 24.0 software (International
Business Machines Corporation, Armonk, United States). All data were expressed as
the mean ± SD except stated otherwise. We have targeted n  = 8 survivors in each
group to allow for evaluation of neuronal death. This was based on power sample size
calculation for a continuous parameter (neuronal count),  using two independent
sample analysis with alpha = 0.05, power = 0.8, to detect 20% reduction in neuronal
death.  Survival  and favorable  (OPC 1-2)  vs  unfavorable  (OPC 3-5)  outcome was
evaluated with Fisher’s exact test. Survival time was evaluated using a Kaplan-Meier
survival analysis. Differences in OPC categories were evaluated with chi square test.
NDS was evaluated with Mann-Whitney U-test. Differences in HDS and physiological
and biochemical values between groups were evaluated with an independent samples
t-test.  Differences  in  physiological  and  biochemical  parameters  vs.  respective
baselines  were  evaluated  by  a  paired  samples  t-test.  P  <  0.05  was  considered
statistically significant.

RESULTS
A total of 39 rats was used (Figure 1). Prolonged CA resulted in significant early
biochemical derangements heralded by marked metabolic acidosis and significantly
increased  lactate  levels  that  clearly  indicated  a  severe  insult.  Post-resuscitation
treatment with minocycline did not change survival rate or survival time, neurologic
outcome or histological damage at 72 h that included marked neuronal degeneration
and microglial activation in multiple selectively vulnerable brain regions.

Baseline and early resuscitation outcome
Three rats did not achieve ROSC. Three additional rats were excluded for technical
complications (bleeding during cannulation or decannulation). ROSC was achieved
after  155  ±  51  s  in  the  control  group  vs  141  ±  16  s  in  the  minocycline  group,
respectively (P = 0.492). The number of defibrillation shocks (median, interquartile
range) did not differ between groups [control: 1.9 (0, 4) vs minocycline: 1.7 (1, 2); P =
0.779].

Biochemical and physiological profiles were similar between groups at baseline and
in the early post-resuscitation period, characterized by transient marked increased in
lactate and metabolic acidosis. These changes were mostly normalized by RT 60 min
(Table 1).

Survival /neurological outcome
There were no differences in overall survival (8/19 in control group vs 8/14 in the
minocycline group; Figure 2). The final NDS at 72 h was not different in all animals
entering the study or in survivors only (Figure 3). Similarly, survival time was not
different  between groups  (Figure  4).  The  weight  of  the  rats  did  not  different  at
baseline  or  on  individual  survival  days.  However,  the  overall  weight  decrease
(baseline - D3) was greater in the control group (63 ± 19 g) vs minocycline group (42 ±
14 g; P = 0.04).

Histological outcome
Histological damage assessed in survivors showed similar degree of neuronal loss
and microglia proliferation in hippocampus, striatum, cerebellum and cortex in both
control  and  minocycline  groups  at  72  h.  Despite  a  relatively  lower  number  of
degenerating neurons and proliferating microglia (approximately 20% decrease) in
the minocycline group, histologic damage score was not different between groups
(Figure 5). Hippocampal neuronal degeneration was limited to the CA1 region, which
is known to be selectively vulnerable hypoxia-ischemia, and to neurons in dentate
gyrus.  In  striatum,  medium  spiny  neurons,  comprising  about  80%  of  striatal
population,  showed  extensive  neurodegeneration.  Large  Purkinje  neurons  in
cerebellum were also affected. No evidence of neuronal degeneration was apparent in
cortex in either group (Figure 6). Regions with extensive neurodegeneration were also
hallmarked  by  extensive  microglia  activation  and  proliferation  with  thickened,
shortened  processes.  Interestingly,  signs  of  mild  microglial  activation  and
proliferation were present in the cortex even in the absence of neuronal death at this
stage (Figure 7).

DISCUSSION
Our model of VF CA is characterized by extensive neuronal cell death and microglial

WJCCM https://www.wjgnet.com November 19, 2019 Volume 8 Issue 7

Janata A et al. Minocycline in VF CA in rats

110



Figure 1

Figure 1  A flow-chart of the study. Please refer to the text for details on randomization protocol. ROSC: Return of
spontaneous circulation.

activation across multiple brain regions. We have characterized in detail the temporal
pattern of evolving neuronal death in this model previously[1], identifying several
selectively  vulnerable  regions  as  potential  therapeutical  targets.  In  this  study,
minocycline did not improve survival and failed to confer substantial benefits on
neurologic injury, neuronal loss or microglial proliferation in multiple brain regions in
our  rat  model  of  VF  CA.  The  relative  lack  of  effect  of  minocycline  in  this
normothermic  VF  CA  model  is  consistent  with  our  prior  results  from  deep
hypothermic CA[2], as well as with the previous work by others documenting limited
effect of minocycline in asphyxial CA in adult rats[5]. In contrast, other groups have
demonstrated sustained beneficial effects of minocycline on hippocampal cell death
and  neuro-behavioral  cognitive  tasks  both  after  a  single  dose  pretreatment  of
minocycline[17], or after once-daily treatment for 7 d[18]. It is possible that differences
between  our  models  and  treatment  regimens  might  have  contributed  to  these
conflicting results. Also, minocycline has previously showed benefits in immature rats
subjected to asphyxial  CA[7],  suggesting significant age-dependent differences in
neuroinflammation after CA.

Traditionally, microglia have been viewed as the resident immune cell of the CNS,
which serve a role of immune surveillance. While the early brain injury in ischemia-
reperfusion is caused by release of excitatory mediators resulting from energy failure,
secondary  damage  could  also  be  triggered  by  microglia,  which  transform  into
phagocytes,  purportedly  aggravating  the  injury.  From  a  temporal  standpoint,
microglial activation starts immediately after ischemia and thus importantly precedes
morphologically detectable neuronal damage.

Microglial activation has been suggested to be a major cause of delayed neuronal
death, most likely through releasing neurotoxic substances, including reactive oxygen
radicals, nitric oxide, and pro-inflammatory cytokines[19]. Microglial activation could
contribute to neuronal death or microglial-mediated synaptic injury and/or neuronal
dysfunction – which could mediate cognitive deficits even in the absence of overt
neuronal death. After hypoxic-ischemic injury, inactive microglia and macrophages in
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Table 1  Physiologic and biochemical profile after cardiac arrest

BL RT5 RT15 RT30 RT60 RT72H

HR (bpm) Control 355 ± 21 335 ± 47 354 ± 20 378 ± 45 366 ± 26 N/A

Minocycline 348 ± 20 335 ± 38 355 ± 21 369 ± 22 374 ± 28 N/A

MAP (mmHg) Control 91 ± 5 98 ± 31 100 ± 20 89 ± 13 94 ± 19 N/A

Minocycline 90 ± 9 98 ± 13 86 ± 11 94 ± 13 102 ± 9 N/A

pHa Control 7.39 ± 0.02 7.12 ± 0.06c 7.24 ± 0.08c 7.37 ± 0.05 7.41 ± 0.03 7.38 ± 0.15

Minocycline 7.46 ± 0.13 7.14 ± 0.04c 7.27 ± 0.05c 7.39 ± 0.03 7.42 ± 0.02 7.46 ± 0.15

paO2 (mmHg) Control 136 ± 15 381 ± 56c 373 ± 41c 144 ± 36 136 ± 37 306 ± 187

Minocycline 133 ± 14 378 ± 35c 384 ± 43c 145 ± 48 145 ± 38 427 ± 56c

paCO2 (mmHg) Control 39 ± 3 51 ± 2c 45 ± 2c 40 ± 4 45 ± 5c 41 ± 17

Minocycline 40 ± 4 51 ± 5c 47 ± 4c 40 ± 2 41 ± 2 35 ± 15

BE (mEq/L) Control -1.3 ± 1.5a -12.6 ± 1.3c -8.1 ± 4.2c -1.8 ± 3.3 2.7 ± 1.9c -1.8 ± 5

Minocycline 0.5 ± 1.6 -12.1 ± 1.3c -5.9 ± 2.1c -0.2 ± 1.5 1.9 ± 1.6 0.0±3.5

Lactate (mmol/L) Control 1.7 ± 0.6 13.0 ± 2.6c 9.7 ± 2.8c 5.4 ± 2.0c 2.0 ± 1.2 3.9 ± 1.1c

Minocycline 1.2 ± 0.4 12.5 ± 1.6c 8.7 ± 1.4c 4.6 ± 1.0c 1.9 ± 0.7c 3.0 ± 0.7c

Hct (%) Control 39 ± 1a 38 ± 2 39 ± 2 39 ± 2 37 ± 3a 43 ± 5c

Minocycline 40 ± 1 38 ± 3 39 ± 2 40 ± 3 40 ± 1 41 ± 6

Glucose (g/dL) Control 218 ± 28 325 ± 31c 277 ± 44c 213 ± 41 134 ± 24c 243 ± 48

Minocycline 223 ± 16 337 ± 19c 293 ± 18c 205 ± 41 162 ± 51c 183 ± 15ac

BL: Baseline; RT: Resuscitation time; HR: Heart rate; MAP: Mean arterial pressure; BE: Base excess; Hct: Hematocrit; N/A: Not assessed.
aP < 0.05 vs minocycline;
cP < 0.05 vs respective baseline.

the  neurovasculature  change  expression  patterns,  producing  active  substances,
affecting survival vs. apoptosis[20].

Minocycline is a widely used antibiotic with anti-inflammatory and anti-apoptotic
properties,  and has been tested in several models of neurologic injury, including
global[21-23]  and  focal  brain  ischemia[24-27],  traumatic  brain  injury[28,29],  spinal  cord
injury[30,31] and intracerebral hemorrhage[32]. Most recently, minocycline has showed
promise in a clinical trial in acute stroke patients[33]. Minocycline has been shown to
penetrate  the  blood-brain  barrier  well[34],  reduce  tissue  injury  and also  improve
functional recovery[9,21,35]. On a molecular level, minocycline inhibits inflammatory cell
migration and degranulation and formation of free oxygen radicals[36-38],  leads to
decreased  expression  of  inducible  nitric-oxide  synthetase[39-42]  and  augments
expression of cyclooxygenase-2[43]. It also suppresses both caspase-dependent[28,44-47]

and caspase-independent apoptotic pathways[37,47] which are relevantly expressed in
our deep hypothermic CA model and similar models described elsewhere[48-50]. The
primary effect of minocycline is probably inhibition of activation of microglia[21,22,24,30,51].
A few studies suggest that minocycline may exert its effects independent of microglia
inhibition[9,52]. Both motor and neurocognitive behavior have improved after treatment
with minocycline, even when the initiation of treatment was delayed for several hours
after the insult[8,9,25,28].

Several studies have previously disputed a neuroprotective role of minocycline[53,54]

or showed only transient protection[5,52,55]. Surprisingly, minocycline ablated hypoxic-
ischemic injury in neonatal rat models[21,56-58] but was detrimental in a neonatal mouse
model[59]. A combination of drugs including minocycline, but not minocycline alone,
targeting multiple mechanisms operating after hypoxic-ischemic injury seemed to be
more effective than either drug alone[60].

We have demonstrated in prior studies that reperfusion after prolonged ischemia
results in extensive region-specific neuroinflammatory response. Interleukin (IL)-1a,
IL-1b and tumor necrosis factor (TNF)-α were the most prominent cytokines detected
early after reperfusion[61,62].  One of the purported actions of minocycline includes
blocking TNF-α release from activated microglia.  In our hypothermic CA model,
minocycline was able to attenuate the increase in TNF-α most prominently in the
striatum, although this was not associated with improved early outcome (24 h)[10]. One
important caveat may be that, in our model of VF CA, neurons rather than microglia
appeared  to  be  a  major  source  of  early  TNF-a  release[62].  This  finding  has  been
anecdotally reported earlier[63]. Direct protective effects of minocycline on neurons
subjected to  hypoxic-ischemic  injury might  be  associated with the  mitigation of
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Figure 2

Figure 2  Overall performance categories after cardiac arrest. Each dot represents one rat. No difference
between groups. OPC: Overall performance category.

neuronal  excitability,  glutamate  release,  Ca(2+)  overloading,  and  neu-
roinflammation[64,65].

In this study, we eliminated hypothermia as a confounding factor, and extended
the window of observation from 24 h to 72 h,  in order to allow a more sensitive
detection of potential benefits of minocycline. Our treatment protocol was based on
prior  studies [55].  Intraperitoneal  administration  of  minocycline  results  in  a
bioavailability of 10%-80% with variable serum concentrations. Peak concentrations
are achieved after  2.5  h,  with half-life  of  3  h.  With this  regard,  we chose a more
frequent dosing (b.i.d. rather than once daily) to ascertain adequate trough levels of
the drug. It should be noted that minocycline penetrates blood-brain barrier well.

We chose a  model  with considerable mortality to allow for  the tested drug to
demonstrate its beneficial or detrimental effects. Most studies exploring neuronal
death after  brain ischemia have focused on neuronal  death in the hippocampus,
making  this  selectively  vulnerable  region  a  proxy  for  therapeutic  efficacy.
Hippocampal structure and neuronal circuits have been well defined but represent
only one of the many selectively vulnerable regions with a unique cell population.
However, prior reports have suggested that microglial activation is dominant in the
striatum and neocortex  rather  than in  the  hippocampus[66].  This  prompted us  to
broaden our histological damage assessment to other relevant selectively vulnerable
brain  regions  with  different  neuronal  populations,  using  various  populations
predominantly.  For  example,  large  pyramidal  neurons  in  the  CA1 sector  of  the
hippocampus receive mostly glutamatergic input; Purkinje cells in the cerebellum are
solely GABAergic; medium spiny neurons in the striatum are glutamatergic. Large
pyramidal cells in cortical layer V use glutamate as the primary neurotransmitter; a
smaller population of inhibitory interneurons with local projections and chandelier
cells that make synaptic connections only to the axons protruding from other neurons,
are also found in layer V, and are GABAergic. We acknowledge that neuronal death is
a  continuum  and  that  individual  brain  regions  may  have  different  cell  death
trajectories, and thus our selection of regions of interest thus represents multiple types
of  neuronal  cells  across  several  brain  regions.  However,  we  did  not  observe  a
breakthrough effect  of  minocycline  in  any  of  these  selectively  vulnerable  brain
regions. In conclusion, in our experimental model of VF CA, minocycline did not
confer benefits on neurologic outcomes or histological damage at 72 h.
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Figure 3

Figure 3  Neurologic deficit score at 72 h in all rats studied (left panel) and in survivors only (right panel). Boxes represent interquartile ranges. The line across
each box indicates the median, and the whiskers are the highest and lowest values. No differences between groups. C: Control group; M: Minocycline group; NDS:
Neurologic deficit score.

Figure 4

Figure 4  Kaplan-Maier survival plot. No differences between groups.
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Figure 5

Figure 5  Regional neuronal degeneration (top) and microglial proliferation (bottom) after cardiac arrest. Regional neuronal loss and microglial proliferation
after cardiac arrest in controls and rats treated with minocycline were not different between groups in any region at 72 h. HIP: Hippocampus; STRI: Striatum; CEREB:
Cerebellum; CTX: Cortex. Mean ± SEM values are displayed.
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Figure 6

Figure 6  Representative samples of neuronal degeneration after 6 min ventricular fibrillation cardiac arrest at 72 h. Blue staining is 4',6-diamidino-2-
phenylindole, visualizing neurons, and green staining is Fluoro-Jade C, visualizing degenerating neurons. Hippocampal neuronal loss is visible in the cardiac arrest 1
sector and in hilar region of the dentate gyrus. The inset shows the mid-section of cardiac arrest 1 in closer detail. Marked neuronal degeneration of the medium spiny
neurons is seen in the striatum. Selectively vulnerable neuronal loss of Purkinje neurons visualized in the cerebellum. No neurodegeneration is observed in the cortex.
Magnification × 10 except the panoramic view of the hippocampus, magnification × 4. The scale bars in the far left and far right lower panels represent 10 µm.

Figure 7

Figure 7  Representative samples of microglial activation and proliferation after 6 min ventricular fibrillation cardiac arrest at 72 h. Sections are stained with
hematoxylin. Brown staining is anti-Iba-1 staining, visualizing microglia, counterstained with diaminobenzamide. Magnification × 10. The scale bars in the far left and
far right lower panels represent 10 µm.

ARTICLE HIGHLIGHTS
Research background
Outcomes from cardiac arrest (CA) are suboptimal and survivors are often left with significant
neuro-cognitive  disabilities.  No  pharmacological  adjuncts  have  been  shown  to  improve
outcomes  after  CA  in  a  clinical  setting.  Exploration  of  novel  therapeutical  adjuncts  for
neuroprotection in clinically relevant animal models is thus warranted.

Research motivation
Minocycline has been shown to be neuroprotective in several models of ischemia-reperfusion,
attenuating  microglial  activation  as  a  dominant  effect.  Minocycline  seemed  a  promising
candidate to be tested in an experimental CA model that is characterized by extensive neuronal
degeneration and microglial activation.

Research objectives
We tested the hypothesis that early treatment with minocycline at  a sufficient dose would
improve survival rate, survival time, neurologic outcome and histological damage in adult male
rats subjected to prolonged CA.

Research methods
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Rats were subjected to CA and randomized to either minocycline treatment or control group,
treated with vehicle, for 72 h. Minocycline treatment regimen was selected based on prior studies
that demonstrated benefits.

Research results
Minocycline did not improve survival rate, survival time, neurologic outcome or histological
damage (neuronal degeneration or microglial proliferation) in multiple selectively vulnerable
brain regions.

Research conclusions
Minocycline did not provide a breakthrough beneficial effect on neurologic injury or histological
damage resulting from prolonged experimental CA.

Research perspectives
Alternative pharmacological strategies should be explored to augment the outcome from CA.
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