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Abstract
In steady state, the intestinal epithelium forms an important part of the gut
barrier to defend against luminal bacterial attack. However, the intestinal
epithelium is compromised by ionizing irradiation due to its inherent self-
renewing capacity. In this process, small intestinal bacterial overgrowth is a
critical event that reciprocally alters the immune milieu. In other words, intestinal
bacterial dysbiosis induces inflammation in response to intestinal injuries, thus
influencing the repair process of irradiated lesions. In fact, it is accepted that
commensal bacteria can generally enhance the host radiation sensitivity. To
address the determination of radiation sensitivity, we hypothesize that Paneth
cells press a critical “button” because these cells are central to intestinal health
and disease by using their peptides, which are responsible for controlling stem
cell development in the small intestine and luminal bacterial diversity. Herein,
the most important question is whether Paneth cells alter their secretion profiles
in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells
to ionizing radiation and related mechanisms by which radiation affects Paneth
cell survival and death will be discussed in this review. We hope that the relevant
results will be helpful in developing new approaches against radiation
enteropathy.

Key words: Gut commensal bacteria; Paneth cell; Radiation enteropathy; Epithelial
homeostasis; Gut immunity; Intestinal defense
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Core tip: In healthy individuals, Paneth cells restrict the overgrowth of commensal
bacteria in the gut while killing luminal pathogenic bacteria by secreting antimicrobial
peptides. Such a property protects crypt intestinal stem cells against bacterial infection,
thus ensuring epithelial homeostasis in steady state. Among the active pool of intestinal
stem cells, apoptosis commonly occurs as a result of ionizing irradiation. Nevertheless,
the intestinal epithelium will recover its integrity after sublethal irradiation. On this
basis, the mechanism by which Paneth cells provide growth signals for intestinal stem
cells to facilitate epithelial regeneration is easy to understand, whereas the automatic
recovery of irradiated intestine from sublethal irradiation is perplexing. Being challenged
with luminal bacteria, the degranulation of Paneth cells can be stimulated in a
cholinergic- or inflammatory-substance-dependent manner. Then, Paneth cells can
perform an antibacterial function that influences the inflammatory milieu in irradiated
intestine. Therefore, radiation-induced intestinal bacterial dysbiosis can be managed.

Citation: Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and
their relations to radiation enteropathy. World J Stem Cells 2020; 12(3): 188-202
URL: https://www.wjgnet.com/1948-0210/full/v12/i3/188.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i3.188

INTRODUCTION
Ionizing irradiation is indeed a useful tool for treating malignant tumors. In current
guidelines, radiation therapy is highly recommended for local rectal cancers with
indications after preoperative or postoperative evaluations[1]. However, the standard
target volume includes the iliac lymph drainage area, thus enabling a portion of the
small intestine and colon to be irradiated unavoidably[2]. Clinically, the gut is regarded
as an early responding organ to ionizing irradiation, and acute enteritis commonly
occurs during treatment[3]. Although acute injuries can be self-limited, more severe
lesions, such as intestinal obstruction, bleeding or perforation, potentially increase
their morbidities in the postirradiation period among some patients,  thus poorly
affecting their quality of life[3].

It has been well accepted that radiation-induced intestinal injury is an independent
disease, which is termed as radiation enteropathy (RE). The pathogenesis of RE is
indeed complicated, and several factors are involved in this process[3]. First, radiation-
induced DNA damage occurs at the initial stage of RE. As is known, the intestinal
epithelium represents one tissue with fast self-renewing capability in humans, thus
enabling the epithelium to be compromised by ionizing irradiation[4]. However, the
cells that form intestinal tissues differ in their radiation sensitivities. For example,
smooth muscle cells are more resistant to ionizing irradiation than lymphocytes or
endothelial cells partially due to their inactive cell cycle[5]. Moreover, the large bowel
is well tolerant to ionizing irradiation compared to the small bowel[6,7]. Apart from the
potential  differences  between  the  small  and  large  bowels  in  their  histological
structures, several other factors also account for radiation sensitivity determination.
Herein, commensal bacteria have emerged as critical candidates because they function
in  shaping  host  immunity  along  with  strengthening  intestinal  epithelial
homeostasis[8,9]. In clinical practice, most colorectal cancer (CRC) patients undergoing
radiation therapy bear tumor burdens. Critically, intestinal bacterial dysbiosis has
been proven in gut carcinogenesis, as has its promotion of tumor progression[10,11].
Moreover, radiation itself is able to potentiate intestinal bacterial dysbiosis as well[8].
In this regard, although radiation therapy induces in-field tumor shrinkage, it should
be argued whether radiation-induced intestinal bacterial dysbiosis further aggravates
the immunological milieu, which potentially increases the risk of local or distant CRC
relapse. If so, radiation-induced intestinal bacterial dysbiosis will enable radiation
therapy to be contraindicated in CRC patients. In fact, it is well known that several
types of cells in the gut can produce antimicrobial substances, such as secretory IgA
(sIgA) by B cells or plasma cells and antimicrobial peptides by epithelial cells. Herein,
Paneth cells are specialized epithelial cells of the small intestine, which provide a
wider range of secretions than other epithelial cells in this process. In this regard, we
hypothesize  that  Paneth  cells  are  critical  in  regulating  microbial  ecology
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postirradiation.

COMMENSAL BACTERIA AND GUT RADIATION
SENSITIVITY
Experts  in  radiation-associated  fields  have  long  understood  the  importance  of
commensal  bacteria  in  the  pathogenesis  of  RE.  To elaborate  on this  issue,  some
landmark studies should be mentioned here. Several decades ago, McLaughlin et al[12]

reported that germfree mice were more resistant to whole-body irradiation (WBI) than
conventional  mice,  thus  confirming  specific  roles  of  commensal  bacteria  in
determining  host  radiation  sensitivity.  Afterwards,  Potten[13]  identified  that  the
numbers of crypt apoptotic cells did not differ within six hours postirradiation when
using doses from 1 Gy to 10 Gy. Likewise, Beck et al[14] found that either 6 Gy or 14 Gy
could induce a significant reduction in the number of goblet cells at the third day
postirradiation, suggesting no discrimination between these doses in damaging goblet
cells.  Nevertheless,  it  is  widely  observed  that  mice  can  recover  from  sublethal
irradiation even though they lack foreign interventions. To support this view, basic
research revealed that intestinal injuries could be repaired automatically if irradiated
using doses from 6 Gy to 12 Gy, whereas greater than 15 Gy led to an irreversible
breakdown of the epithelium[15].  Moreover, although 0.01 Gy is enough to induce
apoptosis in a portion of Lgr5-positive intestinal stem cells (ISCs)[16], doses less than 6
Gy  barely  impair  epithelial  structures [15].  In  this  case,  what  is  the  force  in
discriminating the biological effects between lethal and sublethal irradiation? In fact, a
previous study reported that SCID mice could survive no more than two weeks if
they were irradiated using doses larger than 5 Gy[17], suggesting the participation of
adaptive immunity in controlling the tolerance of hosts to radiation. In general, it has
been determined that ionizing irradiation can affect host immunity. After extensive
exploration, it is gradually deduced that radiation therapy affects host damage and
repair  processes  by  regulating  the  balance  between  effector  T  (Teff)  cells  and
regulatory  T  (Treg)  cells  or  by  altering  the  numbers  of  other  lineage-derived
promoters or suppressors infiltrating into lesioned sites[18]. According to this concept,
several  strategies  should become potential  candidates  for  RE treatment,  such as
regenerative medicine by using mesenchymal stem cells, which exhibit capacities for
activating host repair responses[19].  In contrast to immunomodulatory effects,  the
beneficial implications of stem cell therapy in intestinal bacterial dysbiosis are rarely
reported. To resolve this imbalance, bacteria-supportive care (BSC) can be used for RE
because several lines of evidence from clinical trials have indicated the therapeutic
efficacies of probiotics, prebiotics and symbiotics[8]. Therefore, commensal bacteria
play critical roles in determining intestinal radiation sensitivity[20].

COMMENSAL BACTERIA AND GUT Th17/Treg BALANCE
POSTIRRADIATION
As mentioned above, intestinal commensal bacteria shape the host immunity. Herein,
small intestinal bacterial overgrowth occurs as a result of radiation[21], thus enabling
the immune milieu within irradiated sites to be altered reciprocally. In this process,
Treg cells and their counterparts, Th17 cells, should be highlighted here because the
mutual restriction between Treg and Th17 cells certainly impacts the prognosis in
various diseases, especially in autoimmune diseases[22]. In the gut, Treg and Th17 cells
can be induced from CD4+ naïve T cells by luminal commensal bacteria. In steady
state, the human colon contains higher frequencies of commensal bacteria than the
small  intestine[23].  Herein,  polysaccharide (PSA)–producing Bacteroides  fragilis  (B.
fragilis) are mainly distributed in the colon, and these bacteria primarily exert the
function  of  inducing  Treg  cell  generation  in  colonic  laminar  propria  (LP)[24].  By
contrast,  Th17 cells  show peak numbers  in  the  LP of  the  small  intestine  both in
humans and mice[25].  Then, these cells are redistributed into other sites to defend
against bacterial infection[26]. In mice, the terminal ileum was reported to contain the
highest numbers of segmented filamentous bacteria (SFB) and cytophaga-flavobacterium-
bacteroidetes (CFB), which specifically induced Th17 cell generation[27,28]. In contrast to
mice, although commensal bacteria accounting for Th17 induction in the human gut
are still unclear so far, species including enterotoxigenic B. fragilis and Bifidobacterium
adolescentis are able to induce Th17 cell generation from the gut of germfree mice[25,29],
while colonizing mice with feces from inflammatory bowel disease (IBD) patients also
induces  colonic  accumulation  of  Th17  cells [30 ].  Likewise,  fecal  microbiota
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transplantation from irradiated conventional mice into germfree mice predisposes the
recipients  to  colitis,  demonstrating that  such fecal  bacteria  are  critical  agents  in
increasing intestinal sensitivity to radiation[31]. Nevertheless, an important question
should be raised here, proposing whether intestinal bacterial dysbiosis occurrence
relies on a threshold dose? To this end, it is known that intestinal bacterial dysbiosis
occurs  secondary  to  epithelial  injuries  because  the  intestinal  epithelium  exerts
selection  pressures  on  the  gut  composition  of  commensal  bacteria  by  secreting
antibacterial substances[32].  As previously reported, genetic depletion of the IL-17
receptor (IL-17R) resulted in a dramatic loss of α-defensins, which specifically led to
the overgrowth of SFB[33]. Normally, IL-17R is widely expressed by intestinal epithelial
cells[34]. However, radiation-induced incomplete epithelium enables IL-17R protein
levels to be reduced. On this basis, intestinal tissue will be attacked by excessive SFB,
while the infiltrated Th17 cells will become pathogenic due to high levels of Th17-
polarized cytokines, such as IL-1β, IL-6 and IL-23 in lesioned sites[31,35]. However, such
cytokine milieus antagonize the generation and immunosuppressive function of Treg
cells[35].  Moreover, in vitro  studies showed that irradiation using 6 Gy potentiated
TRAF6 reductions in pancreatic cancer cells[36]. Originally, the expression of TRAF6 by
intestinal dendritic cells (DCs) is critical for gut immune tolerance induction because
intestinal DCs induce Treg cell generation by producing IL-2[37]. Conversely, 10 Gy
was reported to be able to induce a significant accumulation of Treg cells in irradiated
intestine, whereas these cells were impotent in immunosuppression[38]. In that way,
the above results indicate that ionizing irradiation seems to establish a paradigm that
favors Th17 cells rather than Treg cells. However, a previous study showed that high
dose  rate  irradiation  differed  in  its  effect  on  TRAF6  expression  by  tumor  cells
compared to low dose rate irradiation[39]. At least two approaches may have different
impacts on Treg cell generation in the gut. In fact, several issues remain unknown in
this  process.  For example,  which kind of  cell  is  mostly responsible for intestinal
bacterial dysbiosis formation during RE pathogenesis? In this situation, will sublethal
and  lethal  irradiation  give  rise  to  intestinal  bacterial  dysbiosis  with  similar
characteristics or exert similar radioimmune responses alternatively? Last, how does a
lethal dose cause irreversible injuries or even death among irradiated hosts? These
questions should be explored in future work. Nevertheless,  it  is  hopeful that the
epithelium will become a therapeutic target[40].

In steady state, DCs are potent in Th17 induction in gut of mice because the T-cell
receptor (TCR) recognizes the SFB antigen presenting by DCs[28]; Meanwhile, MHC
class II molecule on DCs can provide all essential signals for Th17 polarization[41].
Functionally,  Th17 cells can stimulate synthesis of α-defensins by epithelial  cells
depending on IL-17/IL-17R interaction, thus protecting against SFB overgrowth in
gut  lumen[33].  However,  under  the  irradiated  condition,  epithelial  injuries  will
augment the local concentrations of IL-1β and IL-6[31,35], which functionally upregulate
expression of gene encoding IL-23[35,42]. By binding with IL-23 receptor (IL-23R) on
Th17 cells, IL-23 is able to stimulate Th17 cell expansion[35]. Herein, both IL-23R/IL-22
loop  and  IL-23/IL-17  loop  are  able  to  increase  Th17  cell-mediated  immune
response[26,43],  thus enabling the inflammation in irradiated gut to persist.  In this
regard, the Th17 cells are pathogenic (Figure 1). Besides, due to epithelial loss, low
production of α-defensins will somewhat facilitate SFB overgrowth in gut lumen, thus
facilitating Th17 induction as well. Collectively, Th17 cell induction will be robust in
irradiated gut.

PANETH CELL AND EPITHELIAL HOMEOSTASIS
The gut possesses defensive functions in addition to nutrient absorption. Regarding
the composition of the intestinal barrier,  the epithelium is a critical portion[40].  In
healthy adults, the intestinal epithelium is rapidly renewed, and one turnover takes
about 4 to 5 d[44]. Such a capacity not only strengthens epithelial integrity but also
establishes an optimal paradigm to avoid the accumulation of genetic mutations, thus
protecting  the  gut  against  malformation[45].  Herein,  ISCs  accounts  for  epithelial
homeostasis[44], while in their niches, Paneth cells are specialized feeders due to high
secretions of epithermal growth factor (EGF), Wnt3 and Dll1/4 (Notch ligands) to
neighboring ISCs[46].  Moreover,  Paneth cells  are derived from ISCs,  and they are
distributed in the basement of the crypts of Lieberkühn, tiny invaginations that line
the  mucosal  surface  all  along  the  small  intestine.  The  commitment  of  ISCs  into
functional  Paneth cells  is  regulated by different signaling pathways,  such as the
Wnt/Sox9 and Notch/Krüppel-like factor 4 (Klf4) pathways[47]. Herein, the former
promotes Paneth cell development, which can be enhanced by high-mobility group
A1 (HMGA1) chromatin remodeling proteins[48]. In contrast, the retinoic acid receptor
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Figure 1

Figure 1  Schema of radiation exposure in pathogenic Th17 cell induction in gut. In steady state, dendritic cells (DCs) are potent in Th17 induction in gut of mice
because the T cell receptor recognizes the segmented filamentous bacteria (SFB) antigen presenting by DCs[28]; Meanwhile, MHC class II molecule on DCs can
provide all essential signals for Th17 polarization[41]. Functionally, Th17 cells can stimulate synthesis of α-defensins by epithelial cells depending on interleukin (IL)-
17/IL-17R interaction, thus protecting against SFB overgrowth in gut lumen[33]. However, under the irradiated condition, epithelial injuries will augment the local
concentration of IL-1β and IL-6[31,35], which functionally upregulate expression of gene encoding IL-23[35,42]. By binding with IL-23R on Th17 cells, IL-23 is able to
stimulate Th17 expansion[35]. Herein, both IL-23R/IL-22 loop and IL-23/IL-17 loop are able to increase Th17 cell-mediated immune response[26,43], thus enabling the
inflammation in irradiated gut to persist. In this regard, Th17 cells are pathogenic. Besides, due to epithelial loss, low production of α-defensins will somewhat facilitate
SFB overgrowth in gut lumen, thus facilitating Th17 induction as well. Collectively, Th17 cell induction will be robust in irradiated gut. DCs: Dendritic cells; SFB:
Segmented filamentous bacteria; MHC-II: Major histocompatibility complex class II; TCR: T cell receptor; Th17: T helper cell 17; IL-17: Interleukin-17; IL-17R:
Interleukin-17 receptor; IL-1β: Interleukin-1β; IL-6: Interleukin-6; IL-22: Interleukin-22; IL-23: Interleukin-23; IL-23R: Interleukin-23 receptor.

α (RARα)/Klf4 pathway antagonizes this process, implying that retinoic acids or their
precursor vitamin A serve as inhibitors during Paneth cell development[49]. In fact,
several other genes downstream of Wnt and Notch jointly control the equilibrium
number  of  Paneth cells,  such as  the  agonists  of  Math1 and Gfi1,  along with  the
antagonists of Hes1 and Elf3[47]. Through their actions, the number of Paneth cells in
each crypt  will  be  constantly  maintained,  thus profiting epithelial  integrity  and
disease prevention.

PANETH CELL AND INTESTINAL DEFENSE
Paneth cells feature several characteristics. Unlike absorptive cells or other secretory
lineage cells, Paneth cells are not swiftly replaced through epithelial turnover. In mice,
the life span of Paneth cells is estimated as two months[46]. Such a long-lived potential
ensures the stability of the number of ISCs in each crypt, which relies on Paneth cell
peptides in regulating ISC development as well  as  in defending against  luminal
microbial attack. Several important peptides with anti-infective functions are derived
from Paneth cells, such as α-defensins, β-defensins, regenerating islet-derived protein
IIIγ (RegIIIγ), lysozyme, phospholipase A2 (PLA2) and matrix metalloproteinase 7
(MMP7)[50] (Figure 2). These peptides form a defensive network together with other
lineages of cells, such as M cells in Peyer’s patches (PPs), goblet cells, absorptive cells,
and LP innate or adaptive immune cells. For example, goblet cells enable Paneth-cell-
derived antimicrobial peptides to be well preserved in the mucus layer[51]. Moreover,
α-defensins will acquire antibacterial function if processed by MMP7[52]. In this regard,
Paneth cells serve as gatekeepers in the gut.
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Figure 2

Figure 2  Specific roles of Paneth cells in maintaining epithelial homeostasis and defense. Paneth cells are critical feeders due to their high secretion of
epithermal growth factor, Wnt3a or Notch ligands to neighboring intestinal stem cells (ISCs), thus driving ISC expansion[44]. Moreover, several important peptides of
antimicrobial functions are generated from Paneth cells[50]. In this situation, several inflammatory cytokines, including interferon-γ, tumor necrosis factor-α, interleukin
(IL)-13 and IL-4, will elicit the degranulation of Paneth cells to antagonize luminal bacterial overgrowth. growth factor receptor; Dll1: Delta-like ligand 1; Dll4: Delta-like
ligand 4; IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; IL-13: Interleukin-13; IL-4: Interleukin-4; PLA2: Phospholipase A2; RegIIIγ: Regenerating islet-derived
protein IIIγ.

In  fact,  the  peptides  mentioned  above  enable  Paneth  cells  to  possess  a  wide
antimicrobial spectrum. Herein, the degranulation of Paneth cells is one of the most
critical events in defending against luminal microbiota. In addition, degranulation can
be  stimulated  by  other  factors,  such  as  inflammatory  cytokines  and cholinergic
substances[53]. Afterwards, antimicrobial peptides achieve high concentrations on the
surface of the epithelium. In general, defensins exert lethal effects on bacteria, fungi
and  viruses  because  most  defensins  can  bind  to  microbes  to  perforate  their
membranes, thus leading to microbial death[54] (Figure 2). To this end, Paneth cells
mainly  rely  on  α-defensins[50].  In  steady  state,  α-defensins  potently  restrict  the
overgrowth of commensal bacteria[55].  In addition, pathogenic bacteria,  including
Salmonella typhimurium (S. typhimurium), Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus), are sensitive to α-defensins[56]. Likewise, their antigens, including
lipid A, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), are able to induce the
secretion of α-defensins by Paneth cells reciprocally[56].  Herein, the secretion of α-
defensins is stimulated by LPS in a concentration-dependent manner[56]. Moreover,
lipid A and LTA are the most common components of gram-negative and gram-
positive bacteria, respectively[57], indicating the wide antibacterial spectrum of Paneth
cells by using α-defensins. In fact, among six isoforms, α-defensins 5 and 6 are the
most  important  peptides.  For  example,  human  α-defensin  5  was  tested  to
preferentially and powerfully defend against S. typhimurium infection in mice[55]. In
contrast  to  α-defensin  5,  α-defensin  6  seldom  exerts  bactericidal  function  in  a
straightforward manner. Herein, a previous study found that nanonets of α-defensin
6 bound luminal S. typhimurium to prevent infection[58]. However, unlike α-defensins,
the antibacterial spectra of other peptides are relatively narrow; in particular, RegIIIγ,
lysozyme and PLA2 particularly antagonize gram-positive bacteria[50]. Nevertheless, in
vivo  depletions  of  the  α-defensins  and  RegIIIγ  could  predispose  the  mice  to
spontaneous  enteritis  and  colitis,  respectively[59,60].  In  this  regard,  intestinal
inflammation is largely attributed to intestinal bacterial dysbiosis occurring as a result
of the loss of the bacterial selection pressures by these peptides[55,56,61-65].

PANETH CELL, ANTIMICROBIAL PEPTIDES AND Treg/Th17
BALANCE IN GUT
Although epithelium-derived, Paneth cells serve as critical originators of intestinal
inflammation[66]. TNF-α, a prevalent cytokine regulating innate immune responses,
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exists in the granules of Paneth cells[67]. Herein, the specific roles of TNF-α in intestinal
inflammation have been well documented in several aspects (reviewed in[68]).  For
example, TNF-α is a pathogenic cytokine that facilitates the pathogenesis of Crohn’s
disease[69]. In this process, the endoplasmic reticulum (ER) stress of Paneth cells occurs
as a result of defects in the recognition of the autophagy-related 16-like1 (ATG16L1)
gene,  thus impairing cell  autophagy[70].  Normally,  autophagy in Paneth cells  is  a
central  event  against  S.  typhimurium  infection[71],  which potentially increases the
intestinal number of Paneth cells as well[72]. In addition, ATG16L1 defects enable the
granules of Paneth cells to be abnormal and hamper degranulation, proposing that
ATG16L1 is essential for Paneth cell differentiation[70,71]. In fact, ATG16L1 is required
for  Treg  cell  induction  in  the  gut[24].  Conversely,  in  response  to  S.  typhimurium
infection, the absence of ATG16L1 will increase the levels of IL-1β and IL-6 in the
terminal ileum and cecum[71], the sites of which are inhabited by Th17 cells. In this
regard, Paneth cells regulate Treg/Th17 balance by relying on ATG16L1 (Figure 3).

In addition to immunological participation, the antimicrobial peptides of Paneth
cells  also  predispose  the  host  to  immune tolerance[57].  Herein,  a  previous  study
confirmed  that  enteric  α-defensins  5  and  6  could  be  detected  in  the  medullary
epithelial cells of the human thymus[73]. In this situation, α-defensins 5 and 6 acted as
self-reactive antigens, which could be specifically recognized by autoreactive CD4+ or
CD8+  subpopulations[73].  Normally, through the action of negative selection in the
thymus,  the leakage of  such cells  into the periphery can be radically  prevented.
However, defects in AIRE, a key autoimmune regulator that normally controls the
thymic expression of a set of genes encoding tissue-specific antigens, including α-
defensins 5 and 6[74], will result in Th17 cell generation and spontaneous enteritis due
to autoaggression targeting Paneth cells[73]. In contrast, mice overexpressing genes
encoding human α-defensin 5 significantly reduced their gut frequencies of SFB and
the numbers of Th17 cells[55]. These results further confirm the role of Paneth cells in
restricting Th17 cell induction; moreover, the presence of AIRE is certainly required
for Paneth cell survival. In fact, AIRE also exerts a negative impact on Paneth cell
survival. For example, AIRE is required for the development of invariant natural
killer T (iNKT) cells, which potentiate the degranulation of Paneth cells in an IFN-γ-
dependent manner[75,76]. Herein, Paneth cells will rapidly and completely lose their
granules in response to IFN-γ, which impairs the survival of Paneth cells as well[76]. In
this regard, either the excessive activation or absence of AIRE seems to potentially
reduce the number of Paneth cells.

Here, it is essential to mention Paneth cell degranulation in response to cytokines
(Table 1).  In line with IFN-γ, TNF-α, IL-13 and IL-4 cytokines induce Paneth cell
degranulation as well[77,78]. In contrast to agonists of toll-like receptor (TLR) 3 & 9, oral
administrations of TLR4 & 5 ligands were tested to induce Paneth cell degranulation
in a TNF-α-dependent manner, thus confirming the specific role of TNF-α in this
process[78].  Additionally, IL-13 receptor α1 (IL-13Rα1) is profoundly expressed by
Paneth cells. The IL-13/IL-13Rα1 interaction is able to activate STAT6 and PI3K/Akt,
thus upregulating the expression of lysozymes and MMP7[77].  Moreover, IL-4 is a
member of the iNKT-secreted cytokines[79], further enhancing the effect of iNKT cells
on inducing Paneth cell degranulation. As is known, iNKT cells are positive for CD1d,
an MHC class-I-like molecule responsible for foreign antigen presentation. In addition
to this function, Paneth cell degranulation is CD1d-dependent. Herein, a previous
study confirmed that both cholinergic stimulation by using pilocarpine and E. coli
infection were not able to reduce the crypt lysozyme intensities under the CD1d-
absent condition[80]. Likewise, CD1d depletion also rendered the granules of Paneth
cells  abnormal  in  several  aspects,  mainly  alterations  in  size,  morphology  and
oligosaccharide  content[80].  Furthermore,  SFB  overgrowth occurred if  CD1d was
depleted[80].  This  result  indicates  that  CD1d  is  required  for  the  biosynthesis  of
functional α-defensins by Paneth cells because commensal SFB are sensitive to these
peptides[33]. Similarly, when being colonized with E. coli or S. aureus, CD1d-deficient
mice  exhibited  increased  gut  frequencies  of  these  bacteria  along  with  their
translocation into the periphery compared to wild-type mice[80], further confirming the
role of CD1d in mediating the protection against bacterial infections. In this process,
CD1d is not a unique factor, and some other immune cells are able to assist Paneth
cell  degranulation  or  antimicrobial  peptide  secretion  in  addition  to  iNKT cells.
Commonly, Th1 and group 1 innate lymphoid cells (ILC1s) are potent in producing
IFN-γ,  while  IL-4  and IL-13  are  typical  cytokines  produced by Th2 or  ILC2[81,82].
Moreover, IL-4 and IL-13 potentiate the secretion of retinoic acids by intestinal DCs[83],
thus potentially resulting in Paneth cell reduction by antagonizing the development
process[47].  In  addition  to  this  function,  retinoic  acids  preferentially  induce  the
commitment of naïve T cells into Treg cells rather than Th17 cells[83]. Hereby, retinoic
acids will  synergize with α-defensin 5 in preventing the excessive generation of
intestinal  Th17  cells.  Alternatively,  in  response  to  IL-23,  intestinal  TCRVγ7+γδ
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Figure 3

Figure 3  Autophagy-related protein 16 like protein 1 regulates the intestinal balance between Treg and Th17 cells. The autophagy-related protein 16 like
protein 1 (ATG16L1)-FOXP3 axis plays a vital role in Treg cell induction[24]. Conversely, a deficiency of ATG16L1 enables Paneth cell differentiation to be hampered,
while this situation will increase interleukin (IL)-1β and IL-6 in the gut[71], thus promoting Th17 commitment. Treg: Regulatory T cell; Th17: T helper cell 17; IL-1β:
Interleukin-1β; IL-6: Interleukin-6; ATG16L1: Autophagy-related protein 16 like protein 1.

intraepithelial  lymphocytes  (IELs)  can  produce  IL-22,  which  is  able  to  induce
angiogenin 4 secretion by Paneth cells to clear S. typhimurium infection[84]. Herein, IL-
23 and IL-22 are also classified as Th17-type cytokines[85]. In this regard, Th17 cells
potentially improve the anti-infective function of Paneth cells.

BACTERIAL DYSBIOSIS AND GUT CARCINOGENESIS
Although Paneth cells ensure the security of ISCs in steady state, the antimicrobial
dysfunction  of  Paneth  cells  potentially  enables  ISCs  to  be  attacked  by  luminal
invaders.  To  address  the  importance  of  the  gut  microbiota  in  this  process,  it  is
documented that germfree mice with double depletions of genes encoding Rag2 and
TGF-β exhibit no sporadic intestinal tumors, in contrast to conventional mice with the
same  phenotype[86].  This  finding  suggests  that  intestinal  commensal  bacteria
independently induce gut carcinogenesis even though they lack adaptive immunity.
Recently, several studies revealed that carcinogenesis in the human gut occurred as a
result of intestinal bacterial dysbiosis[10,11]. In this situation, the feces could be used for
human CRC screening[87,88].  Actually,  it  is  well  accepted that  infection-associated
chronic inflammation will drive the genomic instability of cells[61,89]. Herein, ISCs serve
as  major  sources  orchestrating  gut  malformation.  In  the  process  of  phenotype
conversion from ISCs to CRC stem cells,  mutations or epigenetic alterations will
accumulate in the genome[90]. In the gut, several commensal bacteria are capable of
eliciting carcinogenesis. For example, the genotoxic island of polyketide synthase
(pks) from the pathogenic strains of E. coli is required for CRC induction[91]. Instead of
exerting  genomic  toxicity,  the  nonpathogenic  E.  coli  K-12  strain  potentiates  the
oncogenicity of colon epithelial cells by improving the activities of NF-κB and β-
catenin[92]. Moreover, albeit indirectly, Enterococcus faecalis (E. faecalis) confers colon
epithelial cells with oncogenicity by using their polarized macrophages, which induce
cellular transformation along with gene mutation[93]. In addition to tumor induction,
some other bacteria promote CRC progression. Herein, Fusobacterium nucleatum (F.
nucleatum)  improves  the  proliferative  and  invasive  capacities  of  CRC  cells  by
upregulating their miRNA-21 expression[94]. In addition, the Fab2 protein released by
F. nucleatum will bind to TIGIT (T cell immunoglobulin and ITIM domain) on human
T or NK cells, thus reducing their anticancer effects[95]. Similarly, enterotoxins from B.
fragilis will increase the expression of c-Myc, an important oncogene driving CRC
progression[96]. Moreover, enterotoxigenic B. fragilis induces Th17 cell generation[29].
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Table 1  Summary of the factors regulating Paneth cell degranulation

Sort Object Pathway Effect

Cytokines IFN-γ IFN-γ-dependent manner[75] Impairment of the survival of Paneth
cells[76]

TNF-α TNF-α-dependent manner Paneth cell degranulation[78]

IL-13 STAT6 and PI3K/Akt Upregulation of the expressions of
lysozyme and MMP7[77]

IL-4 Antagonizing the development
process[47]

Enhancing the effect of iNKT cells[79]

TLR TLR3 / 9 TLR9 and TLR3 dependent manner Paneth cell degranulation[78]

TLR4 / 5 TNF-α-dependent manner Paneth cell degranulation[78]

CD1d iNKT cells CD1d-dependent Reducing the crypt lysozyme[80]

Mediating the protection against
bacterial infections[80]

Cholinergic Pilocarpine and E. coli CD1d-dependent Crypt lysozyme intensities[80]

IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; IL-13: Interleukin-13; STAT6: Signal transducers and activators of transcription 6; PI3K/Akt:
Phosphatidylinositol 3 kinase/protein kinase B; MMP7: Matrix metalloproteinase 7; IL-4: Interleukin-4; iNKT: Invariant nature killer T cell; TLR: Toll-like
receptor; E. coli: Escherichia coli.

However, the infiltration of massive Th17 cells in tumors predicts a poor prognosis in
CRC patients[97]. To a certain extent, Th17 cells direct CRC progression by producing
IL-22, which potently activates STAT3 to increase the “stemness” of tumor cells[98].
Moreover, IL-22 elicits transient ER stress in intestinal epithelial cells[99]. In concert
with ATG16L1 defects, IL-22-induced epithelial necrosis will be aggravated due to
robust  activation  of  STING-dependent  type  I  interferon  (IFN-I)  signaling,  thus
inducing excessive TNF-α production[99]. As a result, intestinal bacterial dysbiosis will
be further enhanced due to the augmented defects in the epithelial barrier.

THE MISSION OF PANETH CELLS IN RADIATION
ENTEROPATHY
In  steady state,  Paneth cells  are  critical  in  protecting against  intestinal  bacterial
dysbiosis.  Here,  the mission of  Paneth cells  postirradiation should be discussed.
Foremost, autophagy will occur in Paneth cells in response to 9.25 Gy γ-irradiation[100].
Meanwhile, α-defensin 4 increases its production by Paneth cells[101]. Concerning the
radiation  sensitivity  of  Paneth  cells,  two  previous  studies  confirmed  that  the
phenotype conversion from the reserve pool of ISCs (Bmi1-positive) to the active pool
of ISCs (Lgr5-positive) was a manifestation upon automatic recovery of the intestinal
epithelium from radiation-induced damage, probably due to the interchange of their
niche signals[102-104]. In this regard, it is reasonable to conceive that Paneth cells mediate
this process, not only because they act as niche cells of ISCs but also because the
numbers of Paneth cells are not significantly reduced in murine guts when doses are
no more than 12 Gy[102,103]. Conversely, if doses are larger than 15 Gy, Paneth cells will
dramatically lose their numbers[15].  Herein, it  has been documented that ISCs are
normally found in small intestine of mice albeit complete elimination of Paneth cells
by genetic depletion of Math1[105]. However, Math1-mutant miniguts halt their growth
in vitro[105]. This case can be translated into Wnt3-mutant miniguts as well, suggesting
the essential role of Paneth cells in support of ISC expansion[105]. Moreover, conditional
depletion of the gene encoding Frizzled-5, the receptor of Wnt3, will inactivate the
MMP7/defensin maturation programme in Paneth cells of adult mice, suggesting the
role of Wnt3 in eliciting antimicrobial function of Paneth cell[106]. Therefore, radiation-
induced lethal effect on Paneth cells potentially impairs ISC regeneration due to loss
of Paneth cell-derived niche signals and antimicrobials. In fact, Paneth cells are more
resistant to ionizing irradiation than ISCs. The long-lived potential of Paneth cells is
certainly attributed to their high genetic stability, while the survival of Paneth cells
after irradiation can be controlled by their capacity to repair DNA lesions through
nonhomologous end-joining[107]. A recent study found that mutation in Tyr4046 of
DNA-dependent protein kinase, catalytic subunit with synchronous Trp53 depletion,
significantly increased the sensitivity of mice to 8 Gy of WBI because such a genetic
background hampered the survival of Paneth cells postirradiation[107]. To this end, it is
proposed that Paneth cells press the button of controlling RE pathogenesis. In this
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process,  intestinal bacterial  dysbiosis occurs postirradiation, thus eliciting a pro-
inflammatory milieu in lesioned gut[21]. In this context, the production of antimicrobial
peptides by Paneth cells can be increased to overcome intestinal bacterial dysbiosis[101].
Hence, maintaining Paneth cell  survival postirradiation appears to be critical for
epithelial regeneration.

THE STRATEGY AGAINST RADIATION ENTEROPATHY
In terms of RE treatment, current clinical strategies are mainly selected according to
the standard classification of intestinal toxicity reported by the Radiation Therapy
Oncology Group (RTOG). Herein, the principle of treatment for Grade 1 or 2 toxicity
occurring during radiation therapy mainly includes anti-inflammation; symptomatic
care for nausea, vomiting or diarrhea; and nutritional support[3]. Concerning Grade
3/4 toxicities or more severe complications, multidisciplinary diagnosis and treatment
are  highly  recommended [3],  yet  the  relevant  strategies  seldom  support  the
regeneration of lesioned intestine. In fact, it has been presented that the histological
features of RE overlap with those of IBD[3,8]. Herein, MSCs have been demonstrated to
be effective in patients with Crohn’s disease[108]. However, at the time of this writing,
clinical trials with the purpose of managing RE using MSCs have still not been carried
out.  Nevertheless,  clinical  cases of  prostate cancer with complications related to
radiation-induced rectal injury could be well managed by using MSCs[109].  In this
management, the efficacies of MSCs mainly include relieving pain, stanching bleeding
or  repairing  fistula,  indicating  the  perspective  of  such  a  stem  cell  therapy[109].
Additionally, TNF-α monoclonal antibody (infliximab) achieves good therapeutic
effects  in  IBD  patients.  Therefore,  this  drug  should  be  effective  in  RE,  but  this
deserves further investigation. In parallel, some other issues should be addressed,
particularly prior to RE treatment in clinical settings. For example, antibiotics are
recommended for RE treatment only if infection occurs. As is known, long-lasting use
of antibiotics will induce intestinal bacterial dysbiosis, but it is still unclear whether
short-term use of antibiotics improves radiation-induced intestinal bacterial dysbiosis.
Nevertheless,  antibiotics  exhibited potential  in  delaying CRC progression in  an
animal model[110]. This finding means that antibiotics serving as candidates for BSC
therapy may be available  in the defense against  CRC-related intestinal  bacterial
dysbiosis.  As mentioned above, BSC using prebiotics or probiotics is  effective in
relieving diarrhea[9].  In fact,  BSC has become the hotspot for various diseases. To
overcome  bacterial  dysbiosis,  the  administration  of  defensins  or  omega-3
polyunsaturated fatty acids is also promising in clinical settings[111,112]. Instead of BSC,
the reduction in and/or the dysfunction of pathogenic cells will be available choices
for RE treatment as well. Herein, RORγt antagonists against Th17 cell commitment
were tested to be useful in the IBD model[113]. In this process, RORγt inhibition will
potentially improve Treg cell generation because RORγt functionally antagonizes the
transcriptional activity of Foxp3[114]. In particular, Th17 cells are pathogenic cells of RE
and CRC as  well,  thus predicting the perspective of  RORγt  antagonists  in  these
diseases. Collectively, targeting any critical event during RE pathogenesis should
become a candidate option for RE treatment. For the development of novel treatment
targets of RE, related mechanisms deserve further exploration in the future.

CONCLUSION
Pathogenesis of radiation enteropathy is highly associated with intestinal bacterial
dysbiosis. Herein, Paneth cells probably control the process of bacterial dysbiosis by
using their antimicrobial peptides.
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