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Abstract
Traditional serrated adenoma was first reported by Longacre and Fenoglio-
Presier in 1990. Their initial study described main features of this lesion, but the
consensus diagnostic criteria were not widely adopted until recently. Traditional
serrated adenoma presents with grossly protuberant configuration and pinecone-
like appearance upon endoscopy. Histologically, it is characterized by ectopic
crypt formation, slit-like serration, eosinophilic cytoplasm and pencillate nuclei.
Although much is now known about the morphology and molecular changes, the
mechanisms underlying the morphological alterations are still not fully
understood. Furthermore, the origin of traditional serrated adenoma is not
completely known. We review recent studies of the traditional serrated adenoma
and provide an overview on current understanding of this rare entity.

Key words: Traditional serrated adenoma; Serrated polyps; KRAS; BRAF; Colon

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This mini-review summarizes recent findings of traditional serrated adenoma.
The origin of traditional serrated adenoma and its molecular pathogenesis are discussed
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INTRODUCTION
Colorectal  carcinoma (CRC) is  a heterogeneous disease in terms of  its  molecular
pathways of carcinogenesis. Most, if not all CRCs, arise from conventional adenomas
or serrated lesions,  the latter  accounting for  5%-35% of  CRC[1,2].  Serrated polyps
include hyperplastic polyps (HPs), sessile serrated lesions (SSLs), traditional serrated
adenomas  (TSAs)  and unclassified  serrated  adenomas  according  to  2019  World
Health Organization classification of colonic epithelial neoplasms[3]. Sessile serrated
lesions and TSAs are regarded as precursors to CRC, while small HPs are considered
to have little risk for neoplastic progression. TSAs comprise 0.56%-1.9% of colorectal
polyps  and  are  the  least  characterized  serrated  lesions  in  the  colorectal
carcinogenesis[4-6]. Endoscopically, TSAs show exophytic protuberant configuration
and  pinecone-like  appearance[7,8].  Histologically,  TSAs  feature  architectures  of
complex filiform or villiform growth pattern, slit-like or flat-top serration and ectopic
crypt formation (ECF) which is defined as small rudimental crypts located on the side
of villous structure and displaced from bottom muscularis mucosa. Cytologically,
TSA is characterized by lining of epithelium with abundant eosinophilic cytoplasm,
pseudostratified pencillate nuclei and dispersed chromatin (Figure 1)[9]. Although it is
debatable which feature is the most sensitive and which one is the most specific, it is
agreed that none of them alone is sufficient or required for diagnosing TSA. Fulfilling
2 out of 3 core features (ECF, eosinophilic cytoplasm and slit-like serration) may be
more reproducible in making the diagnosis of TSA[10].

The molecular pathogenesis of TSA is poorly understood due to its rarity. Less is
known about the mechanism that drives precursor lesions and their subsequent risk
of  progression.  In this  review,  we will  present  the currently available  literature,
focusing on the origin of TSA. We will also attempt to correlate the molecular changes
with morphologic features, which might help us understand how TSAs develop from
precursor lesions or de novo.

ORIGIN OF TSA
TSAs are probably underdiagnosed by pathologists for several reasons. TSAs are the
rarest among the three serrated colonic polyps,  comprising of about 5% serrated
polyps and 0.56%-1.9% of all colorectal polyps[4-6], and widely accepted consensus
criteria  for  diagnosing  TSA were  not  available  until  recently.  Chetty[11]  listed  a
constellation of architectural and cytological features of TSA in a succinct review of
the  entity.  However,  none  of  these  features  are  unique or  specific  for  TSA.  The
minimal  criteria  for  diagnosing  TSA  are  also  not  specified  in  many  studies.
Additionally,  TSAs are often admixed with HP or SSL[8,12,13],  causing difficulty in
recognition. Three variants of TSA were described, the prototypical filiform TSA, the
less common flat TSA[12] and the rare mucin-rich TSA[9].

Genetic heterogeneity of TSAs contributes to the variation in cytomorphology.
Almost  90% of  TSAs  develop  through two mutually  exclusive  pathways:  BRAF
mutation (56.4%) and KRAS mutation (31.9%)[8,12-15] (Table 1). The remaining 10% may
have other pathways involved such as EGFR (Figure 2)[16] that appears to segregate
with KRAS-mutated polyps[12]. BRAF gene encodes an anti-apoptotic serine-threonine
kinase. BRAF V600E activating mutation is an early event that drives serrated lesion
into  CRC[17,18].  TSAs with  BRAF  mutation often show a  flat  growth pattern with
serrated dysplasia,  high CpG island methylator phenotype (CIMP) and are more
likely located in the proximal colon than KRAS-mutated TSA[8,12]. KRAS-mutated TSA
are usually distally located and exophytic with adenomatous dysplasia. In addition to
KRAS mutation, TSAs from distal colon show selective methylation of SMOC1 gene
and loss  of  its  expression,  which are  also frequently associated with high-grade
adenoma and CIMP-low/microsatellite stable CRC[19].

TSAs may arise from precursor lesions of microvesicular HP or SSL or may occur de
novo. BRAF mutated TSAs are also more likely admixed or associated with HP or SSL-
like lesions, which are identified in TSA in 38%-52.3% of cases[8,12,20]. One early study
suggested that serrated precursor lesions adjacent to distal TSA are distinguished
from  SSL  by  lack  of  Annexin  A10  despite  shared  morphologic  and  molecular
features[21]. Annexin A10 is normally expressed in upper gastrointestinal tract[22]. It is
identified as a marker of  SSL[23]  and is  expressed in colorectal  cancer of  serrated
pathway undergoing gastric  programming[24].  Thus,  it  is  not  surprising that  the
serrated precursor lesions of TSA in this study, arising predominantly from distal
colon, are distinctive from proximal colonic SSL[21]. It is more likely that small flat
TSAs identified in proximal colon would be expressing Annexin A10. More recently,
Bettington and colleagues compared small polyps (< 1 cm) (71% from the distal colon)
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Figure 1

Figure 1  Low and high power view of the traditional serrated adenoma. A: A low power view (40×) of the
traditional serrated adenoma shows viliform growth of the polyp with slit-like serration; B: A high power view (100×)
demonstrates ectopic crypt formation, eosinophilic cytoplasm and pencillate nuclei.

and shoulder lesion in large TSAs, demonstrating similar immunophenotypic and
molecular profiles[20]. These findings support that small TSAs do exist and may arise at
least partially from some HP/SSL-like precursors.

WNT signaling is the main driver of colon cancer and physiological proliferation of
colonic crypts[25]. Alterations in components of WNT pathway including mutations of
RNF43,  APC  and CTNNB1,  and overexpression  of  RSPO  (due  to  fusion  gene  or
amplification), can all lead to stabilization and nuclear localization of β-catenin and
activation of WNT signaling[26]. Nuclear β-catenin staining, as well as p53 positivity,
loss of p16 and MLH1 promoter methylation is seen in the late development of polyps
with  dysplastic  features[12,13].  However  some  molecular  studies  showed  that
components of WNT signaling are frequently altered in TSAs (30%-70%) regardless of
the degree of  dysplasia[15,27].  A recent  study using microdissection to interrogate
genetic  changes  revealed  a  stepwise  molecular  change  in  TSAs  and  associated
precursors[28].  Clonally,  the HP/SSL-like precursors  share the identical  mitogen-
activated protein kinase (MAPK) pathway gene mutations (BRAF  or KRAS)  with
TSAs.  However,  these precursors exhibit  fewer mutated WNT  pathway genes or
heterozygotic mutations (i.e.,  RNF43,  APC,  and CTNNB1)  than TSA with biallelic
inactivation. This study supports the sequence of MAPK to WNT alterations in TSA
developing from HP and SSL-like lesions (Figure 2). One drawback of this study is
that only one out of 15 polyps had KRAS mutation. Hence TSAs with KRAS mutation,
which are predominantly found in the distal colon and typically are large in size,
remain  of  uncertain  in  terms of  origin  and critical  molecular  alterations  during
development.

HISTOLOGIC-MOLECULAR CORRELATIONS
The presence of histologic features in TSAs is highly variable depending on their size
and location. ECF is considered relatively more specific whereas slit-like serration and
typical cytology are more sensitive features (Table 1). Serration is the common feature
of HP, SSL and TSA. However, the cytomorphology of these three entities differs,
reflecting distinct mechanisms underlying their development. BRAF or KRAS are two
initiating mutations commonly seen in serrated polyps, activating MAPK pathway.
HPs are characterized by saw-toothed serration in the upper half to third of the crypts
and  absence  of  basal  crypt  dilation[29,30].  Epithelial  proliferation  with  defective
apoptosis[5], delayed crypt cellular migration and maturation toward the surface leads
to  infolding  of  epithelial  lining  and formation  of  HPs.  The  majority  of  HPs  are
innocuous, largely because KRAS mutation in HP does not expand the stem cell pool
but  instead  increases  transit-amplifying  cells  in  the  mid  and  upper  regions  of
crypts[31].

By contrast, SSLs have irregular proliferative zones and bidirectional maturation
toward  both  surface  and  base  of  the  crypt,  causing  pathognomonic  basal  crypt
dilation and lateral spread of crypt base[32]. This architectural change was suggested to
be similar to gastric foveolar growth pattern characterized by a mid-level proliferative
compartment and bidirectional differentiation[11]. Another salient feature of SSLs is
prominent inhibition of apoptosis in contrast to HPs and TSAs[33].

Compared to HP and SSL, TSAs have slit-like, flat-top serration rather than saw-
toothed  serration.  Eosinophilic  cells  in  TSA  with  luminal  brush  border  and  a
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Table 1  Histologic and molecular changes in traditional serrated adenoma

Country/Territory Polyp Distal BRAF KRAS Wild type ECF Slit-like serration Typical cytology Ref.

United States 24 96% (23) 29% (7) 46% (11) 25% (6) NA NA 79% (19)
[14]

South Korea 107 74.8% (80) 55.1% (59) 33.6% (36) 11.2% (12) 79.4% (85) 100% (107) 100% (107)
[8]

Taiwan 60 61.7% (37) 35% (21) 52% ( 31) 13.3% (8) NA NA NA
[13]

Australia 200 71% (142) 67% (134) 22% (43) 11% (23) 89% (178) 98% (196) 100% (200)
[12]

Japan 129 82.2% (106) 61.2% (79) 34.8% (45) 3.9% (5) NA NA NA
[15]

Australia 70 71% (50) 47% (33) 31% (22) 21% (15) 67% (47) 81% (57) NA
[20]

Total 590 74.2% (438) 56.4% (333) 31.9%(188) 11.7% (69) 82% (310/377) 95% (360/377) 98.5% (326/331)

Numbers in parenthesis are case numbers. ECF: Ectopic crypt formation; NA: Not applicable.

prominent villiform growth pattern are the features reminiscent of small intestine
morphology[9].  It  was believed that eosinophilic cytoplasm seen in TSA is due to
cellular senescence[32]. Senescence and apoptosis are two protecting approaches of cells
and tissue in response to oncogenic stresses[34].  They are the barriers that must be
overcome in precursor lesions to promote and progress into fully developed TSAs. In
TSAs, depending on locations, BRAF or KRAS are the initiating mutations activating
MAPK pathway. Both, however, may cause cellular senescence and cell cycle arrest
through p53/p21 axis or p16INK4 activation[29,34]. SSL is also well known to have high
rate  of  BRAF  mutation[18].  Therefore,  it  is  not  uncommon  to  observe  occasional
eosinophilic atypical cells in SSLs[32].  Animal models supported that BRAF  V600E
mutation causes cellular senescence after first wave of proliferation[35] and a shift of
balance  from proliferation  to  differentiation,  which  can  be  rescued by  a  loss  of
additional differentiation-promoting factors (CDX2, SMAD4 and p16) or activation of
WNT signaling[36]. In SSLs and TSAs located in proximal colon, hypermethylation of
P16INK4 promoter and loss of p16 expression are the late events[12] that may cause
evasion of senescence program implemented by BRAF mutation, whereas activation
of WNT is likely the pathway employed for the progression of distally located TSAs.

ECF is a key feature of TSAs, especially in large protuberant ones in the distal
colon.  The presence of  ECF in TSAs ranges from 67% to 89%,  depending on the
location and size of the polyps[8,12,20]. ECF is defined as small crypts displaced from
muscularis  mucosa,  likely  representing  a  progression  step  by  disrupting  the
signalings  of  colonic  crypt  homeostasis.  Bone  morphogenetic  protein  (BMP4)
signaling is probably a good candidate. BMP signaling plays an important role in
villus morphogenesis and is known to promote cell differentiation and repress crypt
formation[37,38]. Studies using human pluripotent stem cells demonstrated that BMP
signaling is only transiently required for colonic differentiation, while small intestinal
differentiation is the default program in the absence of BMP signaling[10]. Loss of BMP
signaling in animal model[37] leads to ectopic crypt foci that resembles the phenotype
of juvenile polyposis syndrome, which is known to harbor BMPR1A  and SMAD4
mutations in human[39,40]. Therefore, it is possible that ECF and villiform growth of
TSA represent dysplastic transformation of colonic crypts into small intestinal villous
morphology. This morphology may arise owing to aberrant molecular pathways such
as BMP signaling, which controls villus-crypt homeostasis of gastrointestinal tract.
Along with early events of BRAF or KRAS mutation, additional molecular changes
drive proliferation of intestinal epithelium and shape them into TSA with distinct
cytomorphology. Further accumulations of aberration in p53 and WNT signaling lead
to progression of TSA into prominent dysplasia and CRC.

CONCLUSION
TSAs are rare serrated polyps located predominantly in the distal colon. At least two
pathways have been identified, converging on activation of MAPK by BRAF or KRAS
mutations. Small HP/SSL-like lesions with BRAF mutations might initiate as TSA
precursors. Whether it is the same case occurring in the small serrated lesion with
KRAS mutation awaits further investigation. Because TSA-derived colorectal cancer is
considered very aggressive[30], study of the TSA-carcinoma sequence, its progression
from lack of dysplasia to high-grade atypia and malignancy, is also warranted in the
future.
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Figure 2

Figure 2  Histologic changes of traditional serrated adenoma parallel molecular alterations. During traditional serrated adenoma (TSA) development, mutations
in BRAF (BRAFmut), KRAS and EGFR cause typical cytomorphology and serration in precursor lesions. Accumulation of molecular alterations such as aberrant WNT
signaling leads to fully developed TSA. Other pathways (Bone morphogenetic protein?) in addition to WNT signaling might also be involved in this step. Finally,
mutations such as TP53 will cause the progression of TSA into high-grade dysplasia and malignant transformation.
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