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Abstract
BACKGROUND
Folic acid has been shown to improve non-alcoholic steatohepatitis (NASH), but
its roles in hepatic lipid metabolism, hepatic one-carbon metabolism, and gut
microbiota are still unknown.

AIM
To demonstrate the role of folic acid in lipid metabolism and gut microbiota in
NASH.

METHODS
Twenty-four Sprague-Dawley rats were assigned into three groups: Chow diet,
high-fat diet (HFD), and HFD with folic acid administration. At the end of 16 wk,
the liver histology, the expression of hepatic genes related to lipid metabolism,
one-carbon metabolism, and gut microbiota structure analysis of fecal samples
based on 16S rRNA sequencing were measured to evaluate the effect of folic acid.
Palmitic acid-exposed Huh7 cell line was used to evaluate the role of folic acid in
hepatic lipid metabolism.

RESULTS
Folic acid treatment attenuated steatosis, lobular inflammation, and
hepatocellular ballooning in rats with HFD-induced steatohepatitis. Genes
related to lipid de novo lipogenesis, β-oxidation, and lipid uptake were improved
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in HFD-fed folic acid-treated rats. Furthermore, peroxisome proliferator-activated
receptor alpha (PPARα) and silence information regulation factor 1 (SIRT1) were
restored by folic acid in HFD-fed rats and palmitic acid-exposed Huh7 cell line.
The restoration of PPARα by folic acid was blocked after transfection with SIRT1
siRNA in the Huh7 cell line. Additionally, folic acid administration ameliorated
depleted hepatic one-carbon metabolism and restored the diversity of the gut
microbiota in rats with HFD-induced steatohepatitis.

CONCLUSION
Folic acid improves hepatic lipid metabolism by upregulating PPARα levels via a
SIRT1-dependent mechanism and restores hepatic one-carbon metabolism and
diversity of gut microbiota, thereby attenuating HFD-induced NASH in rats.

Key words: Nonalcoholic fatty liver disease; Folic acid; Gut microbiota; PPARα; SIRT1

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The roles of folic acid in hepatic lipid metabolism, hepatic one-carbon
metabolism, and gut microbiota in high-fat diet (HFD)-induced steatohepatitis are still
unknown. This study confirmed that folic acid ameliorated HFD-induced steatohepatitis
by restoring PPARα levels via a SIRT1 dependent mechanism. Moreover, folic acid
restored depleted hepatic one-carbon metabolism and the diversity of gut microbiota. All
these findings further clarified the improvement effect of folic acid on HFD-induced
steatohepatitis and suggested that folic acid may become a therapeutic drug to treat non-
alcoholic fatty liver disease in the future.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) has become one of the main causes of
chronic liver disease worldwide[1]. The prevalence of NAFLD in China has increased
from 18% to 29% in the past ten years[2,3]. Similar trends have been observed in other
parts of world. Non-alcoholic steatohepatitis (NASH), which is a subtype of NAFLD,
increases the risk of cirrhosis, hepatocellular carcinoma, and liver-related death[4].
However,  there are still  no drugs approved for treatment of  NASH[5].  Therefore,
NAFLD has become a serious global health burden and it is critical to find new drug
targets for treatment of NASH.

Folic  acid  is  an  important  substrate  for  the  synthesis  of  methyl  donors  as  an
essential water-soluble vitamin metabolized by the intestinal flora and the human
body[6].  Dietary folic  acid could be absorbed and metabolized through the small
intestine and liver. Finally, 5-methyltetrahydrofolic acid (5-MTHF) is the active form
in blood circulation[7]. Folic acid deficiency could induce hyperhomocysteinemia and
NAFLD. Dietary folic acid is essential for whole body folate homeostasis[8]. Additional
folic acid supplementation could attenuate liver injury under high-fat diet (HFD)-fed
or binge drinking conditions[9,10]. Dietary folic acid has been shown to ameliorate liver
lipid  accumulation[11-13].  All  present  data  indicates  that  folic  acid  may become a
potential  drug  target  for  treatment  of  NASH.  However,  further  molecular
mechanisms of folic acid on hepatic lipid and one-carbon unit metabolism are still
unclear. The effect of folic acid on gut microbiota in NASH is also unknown. Taken
together, it  is necessary to further access the effect of folic acid on NASH and its
possible mechanism.

To address the problems mentioned above, we conducted this research in HFD-
induced NASH rats and palmitic acid (PA)-treated Huh7 cell line. Liver histology,
hepatic  one-carbon  metabolism,  and  gut  microbiota  were  evaluated  in  vivo  to
investigate the effect of folic acid in NASH. Genes related to lipid metabolism were
evaluated both in vivo  and vitro  to illustrate the role of folic acid in hepatic lipid
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metabolism in NASH.

MATERIALS AND METHODS

Animal experiments
The animal experiments were performed in a way that discomfort for animals was
minimized. A total of 24 six-week-old specific-pathogen-free (SPF) male Sprague-
Dawley rats (Sippurbec Laboratory Animal Co., Ltd., Shanghai, China) were fed in a
controlled environment (24 ± 1 °C, 50% ± 5% humidity, 12-h light-dark cycle, free
access to water and standard chow diet). After 1 wk of adaptive feeding, the rats were
fed a chow diet or HFD (88% standard diet, 10% lard, and 2% cholesterol) for 8 wk.
Then, rats fed an HFD were randomly divided into two groups and fed folic acid (15
mg/kg·d) or saline by gavage once daily for 8 wk. All rats were fasted overnight and
then euthanized with pentobarbital sodium at the end of 16 wk.

All animal experiments followed the National Research Council’s Guide for the
Care and Use of Laboratory Animals and were approved by the Institutional Animal
Care and Use Committee of SHRM (SHRM-IACUC-015).

Gut microbiota analysis
Fecal samples from rats were collected immediately upon defecation and then stored
at -80 °C after being snap frozen in liquid nitrogen. Total fecal DNA was extracted
using a TIANamp DNA Kit (Tiangen, Beijing, China) according to the manufacturer’s
protocol.  The quality and quantity of DNA were verified with a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, United States) and
agarose gel. Extracted DNA was diluted to a concentration of 1 ng/µl and stored at -
20 °C until further processing. The V4-V5 variable regions of 16S rRNA genes were
amplified with universal  primers  515F and 907R for  bacterial  diversity  analysis.
Amplicons  were  purified  with  the  AxyPrep  DNA  Gel  Extraction  Kit  (Axygen
Biosciences, Union City, CA, United States) and quantified using QuantiFluor™-ST
(Promega, Wisconsin, United States) according to the manufacturer’s instructions.
Equal amounts of purified amplicon were pooled for subsequent sequencing. Raw
sequencing data were given in FASTQ format. Paired-end reads were preprocessed
using Trimmomatic software. Clean reads were subjected to primer sequence removal
and clustering to generate operational taxonomic units using Vsearch software with a
97% similarity cutoff. All representative reads were annotated and blasted against the
Silva database using the Ribosomal Database Project classifier (confidence threshold
was 70%).

Histological analysis
The  body  weight  and  liver  mass  were  recorded  after  the  rats  were  euthanized.
Approximately  1.0  cm  ×  1.0  cm  ×  1.5  cm  liver  tissues  were  fixed  in  4%
paraformaldehyde for  hematoxylin-eosin  (HE),  Masson,  and Sirius  red staining.
Approximately 1.0 cm × 1.0 cm × 1.0 cm liver tissues were snap frozen in liquid
nitrogen and then frozen at -80 °C for oil red O staining. The other liver tissues were
stored at -80 °C for further analyses. Steatosis (S), activity (A), and fibrosis (F) (SAF)
score was used for analyzing hepatic histological alterations[14]. Approximately 0.5 cm-
long sections of the terminal ileum were gently rinsed with phosphate-buffered saline
and then fixed in 4% paraformaldehyde for HE and immunohistochemical staining.

Serum and tissue assays
Serum was obtained by centrifugation of whole blood at 3000 r/min at 4 °C. Serum
folic acid, alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting
blood  glucose  (FBG),  triglycerides  (TG),  total  cholesterol  (TC),  high-density
lipoprotein  (HDL),  low-density  lipoprotein  (LDL),  total  bile  acid  (TBA),  and
homocysteine (Hcy) were measured with an automated analyzer (Sysmex CHEMIX-
180,  Japan).  The  liver  TG and cholesterol  levels  were  measured  with  assay  kits
(Applygen Technologies Inc., Beijing, China). Samples and the standard curve were
measured according to the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction
Total RNA was extracted from liver tissue using TRIzol (D9108B, Takara, Dalian,
China). The concentration and purity of RNA samples were assessed on a NanoDrop
2000  spectrophotometer  (Nanodrop  Technologies).  Total  RNA  (1000  ng)  was
converted to cDNA with RT master mix (RR036A, Takara, Dalian, China). Real-time
quantitative polymerase chain reaction (qRT-PCR) was performed with the Applied
Biosystems Vii7 with SYBR® Green Master Mix (Low Rox Plus) (11202ES08, YEASEN,
Shanghai, China). The primer sequences are shown in Table 1. The specificity of the
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primers was determined by dissociation curves using Vii7 system SDS software.
RPS18 (B661201-0001, Sangon Biotech) was used as the internal control. The 2-ΔΔCT

method was used to analyze relative gene expression.

Western blot analysis
Protein levels of methionine adenosyltransferase 1A (MAT1A), silence information
regulation factor 1 (SIRT1), peroxisome proliferator-activated receptor alpha (PPARα),
carnitine palmitoyltransferase 1A (CPT1α), and fatty acid binding protein 1 (FABP1)
in rat liver and SIRT1 and PPARα in the Huh7 cell line were determined by Western
blot analysis. Briefly, liver proteins (45 µg) and cell proteins (15 µg) were separated by
8%, 10%, or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and then
proteins were transferred from the gel to a polyvinylidene fluoride (PVDF) membrane
under constant current, cold conditions. The membranes were blocked with Quick-
block buffer (P0252, Beyotime, Shanghai, China) for 25 min at room temperature and
were then incubated with primary antibody overnight at 4 °C. Primary antibodies
include anti-MAT1A polyclonal antibody (AB217005, Abscitech, United States), anti-
SIRT1 monoclonal antibody (189494, Abcam, Cambridge, United Kingdom), anti-
PPARα polyclonal antibody (A6697, Abclonal, Wuhan, China), anti-CPT1α polyclonal
antibody (128568, Abcam), anti-FABP1 polyclonal antibody (A5311, Abclonal), and
anti-GAPDH  monoclonal  antibody  (#5147,  CST,  United  States).  Horseradish
peroxidase (HRP)-conjugated anti-rabbit or anti-mouse IgG (Beyotime) were used as
secondary antibodies, and the membranes were incubated at room temperature for 1
h. Protein bands were detected using a Western chemiluminescent HRP substrate
(Millipore Corporation, Billerica, MA, United States).

Cell culture and transfection
The Huh7 cell line was obtained from American Type Culture Collection (ATCC;
Manassas, VA, United States) and was cultured in high-glucose Dulbecco’s modified
Eagle’s  medium (DMEM; HyClone)  supplemented with 10% fetal  bovine serum
(Gibco, CA, United States). PA powder (Sigma, St. Louis, United States) was dissolved
in 1% fatty acid-free BSA (Sigma, St. Louis, United States) Milli-Q water at 70 °C and
filtrated with a 0.22 μm filter. The concentration of the stock solution was 5 mmol/L.
The  concentration  of  working  PA  solution  was  0.3  mmol/L.  The  intervention
included 0.3 mmol/L PA and 1 or 10 µg/mL 5-MTHF (Sigma-Aldrich, United States).
Briefly, after 12 h of serum-free treatment, cells with 5-MTHF or the same amount of
phosphate-buffered saline were incubated as pretreatment for 12 h, and then cells
were incubated in PA with or without 5-MTHF for another 12 h. The proteins were
isolated according to the manufacturer’s instructions.

The Huh7 cell line was transfected with 50 nmol/L SIRT1 siRNA (Genomeditech,
Shanghai, China) or its negative control (NC; Genomeditech) with Lipofectamine 3000
(Invitrogen,  Carlsbad,  United States)  in  Opti-MEM medium (Gibco,  CA,  United
States). After 18 h, the medium was replaced by high-glucose DMEM without fetal
bovine serum. Pretreatment and intervention were performed 24 h after transfection.

Statistical analysis
All the data are expressed as the mean ± SE. The results were analyzed using two-
tailed  Student’s  t-test  between  two  groups  and  one-way  ANOVA  followed  by
Dunnett’s  test  among  multiple  groups.  Nonparametric  tests  were  used  for
discontinuous data. P < 0.05 was considered statistically significant. All the statistical
methods  mentioned above were  reviewed by Guang-Yu Chen from the  Clinical
Epidemiology Center, Shanghai Jiao Tong University.

RESULTS

Folic acid ameliorates histological alterations in HFD-induced NASH independent of
affecting body weight
After  a  16-wk experimental  period,  all  rats  in the HFD group developed typical
NASH characteristics.  Body weight (Figure 1A) and liver index (Figure 1B) were
significantly  elevated  in  the  HFD  group  compared  with  the  control  group.
Administration of folic acid had no effect on body weight or epididymis fat of rats
(Figure 1A and C). But it ameliorated HFD-induced NASH hepatic lesions in rats. As
shown in Figure 1B, liver index showed a certain reduction in the folic acid group
compared with the HFD group. Additionally, folic acid improved the liver imaging
results  to  a  certain  extent  and  ameliorated  hepatic  lipid  deposition,  ballooning
degeneration, and inflammatory infiltration (Figure 1D). Moreover, steatosis score
(Figure 1E), lobular inflammation score (Figure 1F), and ballooning score (Figure 1G)
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Table 1  Primer sequences for real-time quantitative polymerase chain reaction

Gene name Forward sequence Reverse sequence

TNF-α TGCCTCAGCCTCTTCTCATT GAGCCCATTTGGGAACTTCT

IL-6 AGTTGCCTTCTTGGGACTGA CCTCCGACTTGTGAAGTGGT

IL-1β GAAGTCAAGACCAAAGTGG TGAAGTCAACTATGTCCCG

CCR2 CACCGTATGACTATGATGATG CAGGAGAGCAGGTCAGAGAT

p47phox GCCCAAAGATGGCAAGAATA ATGACCTCAATGGCTTCACC

p67phox AGCAGAAGAGCAGTTAGCATTGG TGCTTTCCATGGCCTTGTC

p22phox GTAGATGCCGCTCGCAATGGCCAG ATGGGGCAGATCGAGTGGGCCATGT

gp91phox CTGAGCGAATTGTACGTG CTTATCACAGCCACAAGC

αSMA TGTGCTATGTCGCTCTGGAC CCAATGAAAGATGGCTG GAA

TGFβ1 ATTCCTGGCGTTACCTTGG AGCCCTGTATTCCGTCTCCT

Col1a1 TGTTCAGCTTTGTGGACCT CAGCTGACTTCAGGGATGT

Col2a1 ACCTCAGGGTGTTCAAGGTG CGGATTCCAATAGGACCAGA

Col3a1 GGTGGCTTTCAGTTCAGCTATG GTCTTGCTCCATTCACCAGTGT

MAT1A CAATGTGCTCGTGGCTCTGGAG TCCTCTGTCTCGTCAGTGGCATAG

ALDH1L1 GCACGGCTCCATCATCTACCATC GTCATCTGGAAGCACCTCACACTC

SREBP1c CCAGCCTTTGAGGATAACCA TGCAGGTCAGACACAGGAAG

SCD AGCTGGTGATGTTCCAGAGG CAAGAAGGTGCTGACGAACA

ACACA GAATATCCAGATGGCCGAGA CCTTCTGCTCTGGCAAGTTC

FASN GCCTAACACCTCTGTGCAGT GGCAATACCCGTTCCCTGAA

PPARγ ACAAGAGCTGACCCAATGGT GGCTCTTCATGTGGCCTGTT

ACADL ACTCCGCCTCCGCTTCCATG TACCACCGTAGATCGGCTGAACTC

FABP1 GTCTGCCTGAGGACCTCATCCAG TCATGGTCTCCAGTTCGCACTCC

CPT1α CCACGAAGCCCTCAAACAGA CACACCCACCACCACGATAA

FATP2 CACGACAGAGTTGGAGACACCTTC CCGATGCGACCTTCATGACCTG

TNF-α: Tumor necrosis factor alpha; IL: Interleukin; CCR2: Chemokine receptor C-C chemokine receptor
type 2; αSMA: α-smooth muscle actin; TGFβ1: Transforming growth factor beta 1; Col1a1: Collagen type I
alpha  1;  Col2a1:  Collagen  type  II  alpha  1;  Col3a1:  Collagen  type  III  alpha  1;  MAT1A:  Methionine
adenosyltransferase 1A; SREBP1c: Sterol regulatory element binding transcription protein 1c; SCD: Stearoyl-
CoA  desaturase;  ACACA:  Acetyl-CoA  carboxylase;  FASN:  Fatty  acid  synthase;  PPARγ:  Peroxisome
proliferator-activated receptor gamma; ACADL: Long-chain specific acyl-CoA dehydrogenase; FABP1: Fatty
acid binding protein 1; CPT1α: Carnitine palmitoyltransferase 1A; FATP2: Fatty acid transport protein 2.

were much lower after folic acid intervention. The rats fed an HFD for 16 wk showed
bridging fibrosis through Masson and Sirius red staining (Figure 2A). Treatment with
folic  acid  resulted  in  less  severe  fibrosis  based  on  the  pathological  sections.
Furthermore, folic acid downregulated the expression levels of α-smooth muscle actin
(Figure 2C), transforming growth factor beta 1 (Figure 2D), collagen type I alpha 1
(Figure 2E), collagen type II alpha 1 (Figure 2F), and collagen type III alpha 1 (Figure
2G). Although folic acid could reduce the fibrosis score, the difference did not reach
statistical significance (P = 0.072, Figure 2B).

Rats in the HFD group showed significant dyslipidemia. Serum ALT (P < 0.01),
AST (P < 0.01), FBG (P < 0. 01), TG (P < 0.01), TC (P < 0.01), and LDL (P < 0.01) levels
were significantly elevated compared with those in the control group, accompanied
by lower HDL (P < 0.01) levels (Table 2). The folic acid group showed a significant
reduction in FBG (P < 0.01), TG (P < 0.01), TC (P < 0.01), and LDL (P < 0.01) levels.
However, there was no significant difference in HDL levels between the HFD and
folic acid groups. Abnormal bile acid metabolism and Hcy metabolism were detected
in the HFD group. HFD rats had higher TBA (P < 0.01) and Hcy (P < 0.01) levels than
the control group. Folic acid significantly reduced serum TBA (P < 0.05) and Hcy (P <
0.01)  levels  compared with those in the HFD group (Table 2).  The results  above
suggested  that  folic  acid  ameliorates  HFD-induced  hepatic  lipid  accumulation,
inflammation, and fibrosis.

Folic acid inhibits hepatic lipogenesis and promotes hepatic fatty acid oxidation in
rats with HFD-induced NASH
Abnormal hepatic lipid uptake, de novo lipogenesis (DNL), and β-oxidation contribute
to the progression of NAFLD[15]. To further characterize the effects of folic acid on
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Figure 1

Figure 1  Folic acid ameliorates histological alterations in high-fat diet-induced steatohepatitis independent of affecting body weight. A: Body weight at 16
wk in each group; B: Liver index in each group; C: Epididymis fat index in each group; D: Hematoxylin-eosin and Oil red staining in each group. Scale bars: 50 μm; E-
G: Steatosis score, lobular inflammation score, and ballooning score in each group. All the data are expressed as the mean ± SE (n = 4-7). aP < 0.05 vs con group; bP
< 0.05 vs HFD group. HFD: High-fat diet; HE: Hematoxylin-eosin.

hepatic lipid metabolism in HFD-induced NASH rats, we analyzed the expression
levels of genes related to DNL, β-oxidation, and lipid uptake. As shown in Figure 3A-
D, folic acid significantly downregulated the expression levels of sterol regulatory
element  binding  transcription  protein  1c,  stearoyl-CoA  desaturase,  acetyl-CoA
carboxylase,  and fatty acid synthase.  Moreover,  genes related to hepatic lipid β-
oxidation and lipid uptake such as PPARγ (Figure 3E), long-chain specific acyl-CoA
dehydrogenase (Figure 3F), FABP1 (Figure 3G), CPT1α (Figure 3H), and fatty acid
transport protein 2 (Figure 3I) were elevated after folic acid administration. To further
confirm the ameliorative effect of folic acid on hepatic lipid β-oxidation. We also
detected the expression levels of related genes at the protein level. As shown in Figure
3J-L, CPT1α, and FABP1 levels were strikingly reduced by HFD and significantly
restored by folic acid intervention. Furthermore, liver cholesterol (Figure 3M) and
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Figure 2

Figure 2  Folic acid ameliorates liver fibrosis in the rat model. A: Masson and Sirius red staining in each group. Scale bars: 100 μm; B: Fibrosis score in each
group; C-G: Hepatic αSMA, TGFβ1, Col1a1, Col2a1, and Col3a1 in each group. All the data are expressed as the mean ± SE (n = 4-7). aP < 0.05 vs con group; bP <
0.01 vs con group; cP < 0.01 vs HFD group. HFD: High-fat diet; αSMA: α-smooth muscle actin; TGFβ1: Transforming growth factor beta 1; Col1a1: Collagen type I
alpha 1; Col2a1: Collagen type II alpha 1; Col3a1: Collagen type III alpha 1.

triglyceride (Figure 3N) levels were reduced in the folic acid group compared with the
HFD group. This part of results suggested that folic acid improves abnormal hepatic
lipid metabolism and then reduces hepatic lipid accumulation.

Folic acid restores the expression levels of PPARα via SIRT1 in rats with HFD-
induced NASH and Huh7 cell line
Both PPARs and SIRT1 are key regulators in hepatic lipid β-oxidation. To further
determine the effect of folic acid on the remission of hepatic β-oxidation in rats with
HFD-induced NASH, we first evaluated the expression levels of SIRT1 and PPARα in
animal models. As shown in Figure 4A-C, rats in the HFD group displayed lower
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Table 2  Serological lipid metabolism indexes in each group

Control HFD Folic acid

ALT (U/L) 38.50 ± 1.58 134.0 ± 8.02b 82.13 ± 7.19d

AST (U/L) 88.00 ± 4.39 225.4 ± 10.57b 176.3 ± 15.3d

FBG (mmol/L) 10.45 ± 0.66 13.33 ± 0.40b 7.83 ± 0.30d

TG (mmol/L) 0.57 ± 0.04 0.76 ± 0.04b 0.44 ± 0.02d

TC (mmol/L) 1.13 ± 0.04 2.26 ± 0.12b 1.48 ± 0.04d

HDL (mmol/L) 0.94 ± 0.03 0.75 ± 0.05b 0.74 ± 0.04

LDL (mmol/L) 0.24 ± 0.02 1.37 ± 0.10b 0.89 ± 0.03d

TBA (µmol/L) 37.5 ± 5.57 68 ± 7.49b 44.17 ± 3.92c

Hcy (µmol/L) 7.35 ± 0.29 13.05 ± 0.52b 11.17 ± 0.42d

The data are expressed as the mean ± SE (n = 5-8).
bP < 0.01 vs Control group.
cP < 0.05 vs HFD group.
dP  <  0.01  vs  HFD  group.  HFD:  High-fat  diet;  ALT:  Alanine  aminotransferase;  AST:  Aspartate
aminotransferase;  FBG: Fast blood glucose;  TG: Triglycerides;  TC: Total serum cholesterol;  HDL: High
density lipoprotein; LDL: Low density lipoprotein; TBA: Total bile acids; Hcy: Homocysteine.

levels  of  SIRT1  and  PPARα than  controls.  Folic  acid  could  strongly  restore  the
expression levels of SIRT1 and increase the expression of PPARα to a certain extent.

Next, we constructed a PA-induced steatosis cell model using the Huh7 cell line. 5-
MTHF, a predominant form of folic acid, was used as an intervention drug. After 12 h
of treatment with PA solution, the expression levels of SIRT1 (P < 0.05) and PPARα (P
< 0.05) were significantly downregulated. 5-MTHF strongly elevated the expression
levels of SIRT1 (1.45-fold in the 1 μg/mL and 1.26-fold in 10 μg/mL 5-MTHF group
compared with the levels in the PA treatment group, Figure 4D and F) and PPARα
(1.29-fold in the 1 μg/mL and 1.44-fold in 10 μg/mL 5-MTHF group compared with
the levels in the PA treatment group, Figure 4D and G). The upregulating effect of
PPARα by 5-MTHF was dramatically  blocked after  knockdown of  SIRT1 with  a
siRNA (Figure 4E, H, and I). Overall, folic acid restores hepatic PPARα levels via a
SIRT1-dependent mechanism and then improves hepatic lipid metabolism under
HFD-feeding conditions.

Folic acid improves hepatic one-carbon metabolism in rats with HFD-induced NASH
We measured the serum folic acid level in each group to further characterize the effect
of  the  folic  acid  intervention.  As  shown  in  Figure  5A,  folic  acid  intragastric
administration significantly increased serum folic acid levels, although there was no
difference in serum folic acid levels between the control and HFD groups. To further
evaluate the effect of folic acid on one-carbon metabolism under HFD conditions, we
detected the expression levels of key enzymes involved in one-carbon metabolism.
qRT-PCR showed decreased ALDH1L1 (0.15-fold, P < 0.01, Figure 4C) and MAT1A
(0.10-fold, P < 0.01, Figure 4D) levels in the HFD group than controls. Western blot
confirmed  the  lower  MAT1A  level  as  well  (Figure  4B  and  4B).  Folic  acid
supplementation could increase the expression of those genes at the transcription
(Figure 4C and D) or translation levels (Figure 4B and E). The results above implied
that folic acid could partially restore depleted one-carbon metabolism in HFD rats and
suggested that folic acid has a direct effect on the liver.

Folic  acid restores the diversity  of  the gut  microbiota and the gut  barrier  and
improves endotoxemia and liver inflammation in the NASH rat model
Fecal samples were collected and subjected to 16S rRNA sequencing to detect the
effect of folic acid on the gut microbiota. As shown in Figure 6A, folic acid restored
the alpha diversity based on PD_whole_tree measurement, which demonstrated that
folic acid could restore the HFD-induced depletion of the gut microbiota abundance.
Principal coordinates analysis showed that folic acid could alter the composition of
the gut microbiota in HFD-fed rats (Figure 6B). The unweighted pair-group method
with arithmetic mean analysis showed that folic acid partially restored the alteration
in the overall structure of the gut microbiota induced by the HFD (Figure 6C and D).
Besides,  compared to  the  control  group,  lower  abundance  of  Bacteroidetes  was
detected in the HFD group, and folic acid administration could partially increase
levels of Bacteroidetes. Compared with the HFD group, an increase in several genera
such as Pseudomonadaceae and Leptotrichiaceae was observed (data not shown).
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Figure 3
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Figure 3  Folic acid inhibits hepatic lipogenesis and promotes hepatic fatty acid oxidation in high-fat diet-induced steatohepatitis rats. A-I: mRNA
expression levels of SREBP1c, SCD, ACACA, FASN, PPARγ, ACADL, FABP1, CPT1α, and FATP2 in each group; J-L: Protein expression levels of CPT1α and
FABP1 in each group; M and N: Liver cholesterol and triglyceride levels. All the data are expressed as the mean ± SE (n = 3-6). aP < 0.05 vs con group; bP < 0.01 vs
con group; cP < 0.05 vs HFD group; dP < 0.01 vs HFD group. HFD: High-fat diet; SREBP1c: Sterol regulatory element binding transcription protein 1c; SCD: Stearoyl-
CoA desaturase; ACACA: Acetyl-CoA carboxylase; FASN: Fatty acid synthase; PPARγ: Peroxisome proliferator-activated receptor gamma; ACADL: Long-chain
specific acyl-CoA dehydrogenase; FABP1: Fatty acid binding protein 1; CPT1α: Carnitine palmitoyltransferase 1A; FATP2: Fatty acid transport protein 2.

Moreover, HE and Occludin immunohistochemical staining of the ileum showed that
folic acid could restore the villus structure and the abundance of the expression of
tight junctions (Figure 6E).  Moreover,  serum endotoxin levels  were significantly
reduced  in  the  folic  acid  group  (Figure  6F).  Then,  the  expression  levels  of
proinflammatory factors such as tumor necrosis factor alpha (Figure 6G), interleukin-
6 (Figure 6H), and interleukin-1 beta (Figure 6I); chemokine receptor C-C chemokine
receptor type 2 (Figure 6J); and oxidative stress-related factors such as neutrophil
cytosol factor 1 (Figure 6K), neutrophil cytosolic factor 2 (Figure 6L), cytochrome b-
245 alpha chain (Figure 6M),  and cytochrome b-245 beta chain (Figure 6N) were
greatly decreased by folic acid treatment. Overall, folic acid could restore the depleted
diversity and the intestinal barrier, ameliorate endotoxemia, and decrease hepatic
inflammatory reactions under HFD conditions.

DISCUSSION
We demonstrated that folic acid attenuated hepatic lipid metabolism in rats with
HFD-induced steatohepatitis, increased PPARα levels through a SIRT1-dependent
mechanism in vivo and vitro, ameliorated HFD-induced depleted hepatic one-carbon
metabolism, and restored the diversity of the gut microbiota, thus contributing to the
improvements of HFD-induced NASH in rats.

One of important findings in our present study is that folic acid plays an important
role in regulating hepatic lipid metabolism in the HFD-induced NASH model. Lipid
metabolism disorder is one of the most important pathophysiological changes in
individuals with NAFLD. Either the “two-hit” or “multiple parallel hits” hypothesis
confirms that abnormal lipid metabolism is one of the core causes of steatosis[16,17].
Both  increased  DNL[18]  and  impaired  fatty  acid  oxidation[19]  contribute  to  the
pathogenesis of NAFLD. Previous studies confirmed that folic acid could reduce lipid
accumulation in primary chicken hepatocytes[12] and alter lipid metabolism genes in
male rat offspring[20]. Studies also indicated that folic acid may alleviate abnormal
lipid metabolism and cholesterol deposition in the liver through the LKB1-AMPK
pathway[11]. However, the further mechanism for the effect of folic acid in regulating
hepatic  fatty  acid  oxidation  is  still  rarely  known.  PPARs  belong  to  the  nuclear
hormone receptor superfamily, and of the PPARs, PPARα regulates hepatic lipid
metabolism, glucose metabolism, and liver inflammation[21,22]. Numerous rate-limited
enzymes associated with fatty acid uptake[23] and mitochondrial β-oxidation[24,25] are
regulated  by  PPARα.  Hepatocyte-specific  PPARα  deletion  impaired  fatty  acid
homeostasis  and  promoted  the  progression  of  NAFLD[26].  SIRT1  is  an  NAD+-
dependent  deacetylase  in  mammalian  cells  that  plays  a  key  role  in  metabolic
diseases[27]  and regulates the transcription network in free fatty acid oxidation[28].
Microarray analysis  confirmed that SIRT1,  PPARα, and peroxisome proliferator-
activated receptorγcoactivator-1 (PGC1α) played a core role in the regulation of genes
responsible  for  β-oxidation[29].  Hepatic  deletion  of  SIRT1  could  impair  PPARα
signaling, and overexpression of SIRT1 could restore the expression levels of PPARα
and its target genes[30].  We confirmed that folic acid restores hepatic PPARα via  a
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Figure 4  Folic acid restores the expression levels of PPARα via SIRT1 in rats with high-fat diet-induced steatohepatitis and Huh7 cell line. A-C: The
expression levels of SIRT1 and PPARα in each group of rats; D, F, and G: The expression levels of SIRT1 and PPARα in Huh7 cell line exposed to 0.3 mmol/L PA; E,
H, and I: The expression levels of SIRT1 and PPARα in Huh7 cell line transfected with SIRT1 siRNA and then exposed to 0.3 mmol/L PA. All the data are expressed
as the mean ± SE (n = 3). aP < 0.05 vs con group; bP< 0.01 vs con group; dP < 0.01 vs HFD group; eP < 0.05 vs control; fP < 0.05 vs 0.3 PA group; gP < 0.01 vs 0.3
PA group; hP < 0.01 vs SIRT1-NC group; iP < 0.05 vs 0.3 PA group; jP < 0.01 vs 0.3PA group; kP <0.01 vs 5-MTHF and 0.3 PA group. HFD: High-fat diet; PPARα:
Peroxisome proliferator-activated receptor alpha; SIRT1: Silence information regulation factor 1; PA: Palmitic acid; 5-MTHF: 5-methyltetrahydrofolic acid.

SIRT1 dependent pathway, which further reveals the effect of folic acid on hepatic
lipid metabolism.

Significantly lower FBG levels in the folic acid group indicated that folic acid may
play a role in glucose metabolism in metabolic diseases including NAFLD. Studies
showed that chronic folic acid deficiency induced glucose metabolism disorder[31].
Folic  acid  treatment  decreased  serum  glucose  levels  in  a  diabetic  rat  model[32].
Administration  of  folic  acid  improved  insulin  resistance  by  altering  the  DNA
methylation profile in HFD-fed mice[33]. This indicated that folic acid could improve
glucose  metabolism in  NASH conditions,  but  specific  mechanisms need further
research.

Another finding in our present study is that folic acid could restore one-carbon
metabolism in rats with HFD-induced NASH. Several studies have reported that folic
acid and other methyl donors have an alleviating effect on chronic liver diseases, such
as  liver  fibrosis[34],  cholestasis[34],  drug-induced  liver  injury[6,35],  alcoholic  liver
disease[13],  obesity[36],  and NAFLD[37,38].  However, serum folic acid level in NAFLD
patients is still controversial in recent studies. Some researchers[39] believed that there
was no significant difference in serum folic acid and vitamin B12 levels between
NAFLD and healthy control groups and that neither folic acid nor vitamin B12 levels
were associated with pathological severity. Other studies have found varying degrees
of positive results. Hirsch et al[40]  found a lower serum folic acid concentration in
female obese patients with NAFLD than in healthy controls; Mahamid et al[41] posited
that lower folate or vitamin B12 levels were associated with the histological severity of
NASH.  An association between serum folic  acid  levels  and the  severity  of  liver
steatosis was also found by research on Chinese adult NAFLD patients[42]. The serum
folic acid levels in the NAFLD patients from the abovementioned literature varied
from 9.3 to 12.6 ng/mL on average, all of which were normal levels. Therefore, we
believed that HFD had little effect on folate absorption or serum folate levels. This
result was consistent with the lack of a significant difference in serum folic acid levels
between the control  and HFD groups in our study.  However,  as  a  co-enzymatic
substrate,  folic acid serves a core role in on-carbon transfer reactions.  Folic acid-
dependent one-carbon metabolism is important for methylation reactions in mammal
cells[43]. It has been well demonstrated that differential DNA methylation occurs in
individuals with NAFLD[44-46].  Genes involved in one-carbon metabolism showed
abnormal DNA methylation, and of these genes, MAT1A and ALDH1L1 showed
hypermethylated levels and downregulation[46]. MAT1A participates in the synthesis
of S-adenosylmethionine[47] and ALDH1L1 is involved in metabolism in the carbon
pathway[48].  Both  of  them  are  required  for  lipid  homeostasis.  We  found  strong
downregulation of MAT1A and ALDH1L1 in HFD-fed rats in our present study, and
additional  folic  acid supplementation was effective in restoring their  expression
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Figure 5

Figure 5  Folic acid improves hepatic one-carbon metabolism in rats with high-fat diet-induced steatohepatitis. A: Serum folic acid levels in each group; C and
D: mRNA levels of MAT1A and ALDH1L1 in each group; B and E: Protein levels of MAT1A in each group. All the data are expressed as the mean ± SE (n = 3-8). aP <
0.05 vs con group bP < 0.01 vs con group; cP < 0.05 vs HFD group; dP < 0.01 vs HFD group. HFD: High-fat diet; MAT1A: Methionine adenosyltransferase 1A.

levels. These findings indicated that folic acid supplementation is required for NASH
individuals  to  improve  hepatic  lipid  metabolism  through  restoring  one-carbon
metabolism.

An increasing number of studies have demonstrated that NAFLD has a disease-
specific gut microbiome signature[49], of which the depleted diversity of the microbiota
and microbial gene richness and differential bacterial clusters were most commonly
reported[50,51]. Additionally, HFD consumption disturbed gut permeability by reducing
tight-junction proteins such as Occludin and ZO-1, which leads to endotoxemia and
chronic systemic inflammation[52] and promotes the progression of NASH. We notably
found that folic acid could stabilize the intestinal barrier and the diversity of the gut
microbiota,  which partially explained the calming effect  on the whole body and
hepatic inflammation.

There are  still  some limitations that  deserve further  study.  First,  we have not
demonstrated the effect of folic acid on the SIRT1-PPARα pathway in vivo.  SIRT1
conditional knock-out mice should be used in future study to further evaluate the
molecular mechanism of folic acid in the improvement of NAFLD. Second, studies
have confirmed that several genes related to lipid metabolism, such as PGC1α[53],
ZNF274, and SREBP2[44], had enriched DNA methylation in individuals with NAFLD.
Therefore,  whether  folic  acid  could  influence  the  balance  of  acetylation  and
methylation in genes related to free fatty acid oxidation, especially PPARα and PGC1α,
remains  an  interesting  question.  Finally,  a  drug-dose  gradient  in  vivo  could  be
considered to evaluate the optimal intervention dose for clinical guidance.

In conclusion, we have confirmed the improvement effect of folic acid on HFD-
induced NASH in  rats.  We demonstrated  that  folic  acid  improves  hepatic  lipid
metabolism by upregulating PPARα via a SIRT1-dependent mechanism. Meanwhile,
folic acid administration restores depleted hepatic one-carbon metabolism and the
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Figure 6  Folic acid restores the diversity of the gut microbiota and the gut barrier and improves endotoxemia and liver inflammation in a non-alcoholic
steatohepatitis rat model. A: Alpha diversity of the gut microbiota; B: Principal coordinates analysis; C and D: Unweighted pair-group method with arithmetic mean
analysis; E: Hematoxylin-eosin and Occludin immunochemical staining of the ileum. Scale bars: 100 μm; F: Serum endotoxin levels in each group; G-N: Hepatic TNF-
α, Il-6, IL-2β, CCR2, p47phox, p67phox, p22phox, and gp91phox levels in each group. All the data are expressed as the mean ± SE (n = 4-6). aP < 0.05 vs con group
bP < 0.01 vs con group; cP < 0.05 vs HFD group; dP < 0.01 vs HFD group. HFD: High-fat diet; HE: Hematoxylin-eosin; TNF-α: Tumor necrosis factor alpha; IL:
Interleukin; CCR2: Chemokine receptor C-C chemokine receptor type 2.

diversity  of  gut  microbiota  in  HFD-fed  rats.  These  results  further  clarify  the
therapeutic role of folic acid in NAFLD and its possible mechanism, suggesting that
folic acid may become a therapeutic drug to treat NAFLD in the future.

ARTICLE HIGHLIGHTS
Research background
Non-alcoholic fatty liver disease has become a global burden, but there is still a lack of convinced
drug therapy strategies for non-alcoholic steatohepatitis (NASH). As one of essential water-
soluble  vitamins  for  the  human  body,  folic  acid  may  become  one  of  the  drug  targets  for
treatment of NASH, but the specific mechanism is not fully understood.

Research motivation
As one of essential vitamins absorbed by the intestine mainly, food-sourced folic acid improved
high-fat diet (HFD)-induced steatohepatitis in previous studies, but further mechanism of folic
acid on host hepatic lipid metabolism and the effect of folic acid on lipid one-carbon metabolism
and gut microbiota remains rarely understood.

Research objectives
We aimed to evaluated the effect of folic acid on HFD-fed rat models and further clarify the
mechanism of folic acid on hepatic lipid metabolism and gut microbiota.

Research methods
An HFD-induced rat model of NASH was used in the present study. Treatment of folic acid by
oral  administration lasted for  8  wk.  Hepatic  lipid metabolism was evaluated by real-time
quantitative polymerase chain reaction (qRT-PCR). Expression levels of silence information
regulation factor 1 (SIRT1) and peroxisome proliferator-activated receptor alpha (PPARα) were
measured by Western blot analysis in HFD-induced rat models and palmitic acid-induced Huh7
cells. SIRT1 siRNA was transfected in Huh7 cells to examine whether folic acid restored PPARα
levels through a SIRT1-dependent mechanism. Genes and proteins related to hepatic one-carbon
metabolism were detected by qRT-PCR and Western blot. 16S rDNA sequencing was used to
evaluate the effect of folic acid on gut microbiota profile.

Research results
Administration of  folic  acid ameliorated HFD-induced steatohepatitis.  Folic  acid repaired
impaired hepatic lipid β-oxidation and hepatic one-carbon metabolism. SIRT1 and PPARα levels
were restored by folic acid treatment. The restoration effect of PPARα by folic acid was blocked
after SIRT1 knockdown in vitro. Furthermore, folic acid restored the diversity and altered the
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overall structure of gut microbiota profile.

Research conclusions
Folic acid restores PPARα levels via a SIRT1-dependent mechanism, ameliorates HFD-induced
impaired hepatic  lipid metabolism and hepatic  one-carbon metabolism,  and improves  the
diversity of gut microbiota, thus acting a protective role in HFD-induced NASH in rats.

Research perspectives
Folic acid may become one of drug targets for treatment of NASH. Research about folic acid in
epigenetic regulation may further clarify the mechanism of folic acid on NASH.
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