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Abstract
Widespread implementation of electronic health records has led to the increased
use of artificial intelligence (AI) and computer modeling in clinical medicine. The
early recognition and treatment of critical illness are central to good outcomes but
are made difficult by, among other things, the complexity of the environment and
the often non-specific nature of the clinical presentation. Increasingly, AI
applications are being proposed as decision supports for busy or distracted
clinicians, to address this challenge. Data driven “associative” AI models are built
from retrospective data registries with missing data and imprecise timing.
Associative AI models lack transparency, often ignore causal mechanisms, and,
while potentially useful in improved prognostication, have thus far had limited
clinical applicability. To be clinically useful, AI tools need to provide bedside
clinicians with actionable knowledge. Explicitly addressing causal mechanisms
not only increases validity and replicability of the model, but also adds
transparency and helps gain trust from the bedside clinicians for real world use
of AI models in teaching and patient care.

Key words: Artificial intelligence; Digital twin; Critical illness; Predictive enrichment;
Causation; Simulation models
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computer power has led to the increased use of artificial intelligence and computer
modeling in clinical medicine. To be clinically useful, artificial intelligence models need
to be built on accurate data, take into consideration causal mechanisms, and provide
actionable information at the point of care.
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INTRODUCTION
The complex nature of critical illness calls for an exploration of alternative approaches
to assist clinicians in their timely diagnosis and management. Artificial intelligence
(AI) applications have transformed various human domains from economics to traffic
and have recently been introduced into health care.

AI IN HEALTH CARE
Widespread  implementation  of  electronic  health  records  (EHRs)  has  led  to  the
increased use of AI and computer modeling in clinical medicine. The hope is that
these  techniques  will  prove superior  to  traditional  epidemiologic  and statistical
approaches and will unlock insights that lead to the development of new treatment
recommendations and prediction models. AI can be defined as the field of computer
science that enables computers to perform the human cognitive tasks[1]. The interest in
AI and systems science methodologies in the research community has grown rapidly
in recent years[2]. Specific AI applications of interest to critical care include machine
and deep learning algorithms, “in silico” simulation models, and “digital twins”.

Machine learning
Machine learning (ML) is an application of AI that develops statistical analysis models
using  computational  technologies  applied  to  big  data[3].  The  following learning
techniques could be used: (1) Supervised learning techniques include but are not
limited to linear regression, decision trees, and Naive Bayes. The models developed
based on these are normally used for anomaly detection with the use of algorithm
approximating a known output with a higher accuracy from a labeled data set, for
example: Electrocardiogram interpretation by the automated machine or detection of
a lung nodule from a chest X ray or a CT scan based on pattern recognition[4,5]. The
aim  of  models  developed  using  this  technique  is  to  decipher  rules  and  latent
relationships within data. “Support Vector Machine” is an example of supervised ML
algorithm which is used for both classification and regression challenges and give a
different dimension to the ensemble models. They are crucial in cases which require
high  predictive  power  but  these  algorithms  are  hard  to  visualize  due  to  the
complexity in formulation; (2) Unsupervised learning: Unsupervised ML models are
developed using clustering techniques which includes segmenting data by some
shared attributes, detecting anomalies that do not fit to any group and simplifying
datasets by aggregating variables with similar attributes. The main goal is to study
and determine the intrinsic and often hidden structure of the data. These models use
algorithms on unlabeled data with no outputs to predict but are exploratory and
intend to find naturally occurring patterns within the data[6]. This technique can be
condensed in two major types of problems that unsupervised ML models try to solve,
clustering and dimensionality reduction; (3) Semi-supervised learning uses a dataset
with  unlabeled  as  well  as  labeled  data  to  increase  the  learning  precision  and
appropriate prediction of label function. Further the model is trained and retrained
with the estimated labels from the previous step[7]. These semi-supervised ML models
are  commonly used in  medicine  such as  in  voice  recognition (medical  dictation
applications),  data  mining,  and  video  surveillance  (used  in  e-ICUs)[8,9];  and  (4)
Reinforcement learning: Reinforcement ML algorithms learn by observing the result
of an action taken by the algorithm and applying a similar algorithm where the data
are limited or missing[10].  The algorithm iteratively learns from previous response
(reward or penalty) and acts with a goal to receive maximum reward in the future.
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Deep learning
Deep learning (DL)  refers  to  the automatic  determination and processing of  the
parameters in a network, on the basis of experience. DL is a ML technique that is
designed with multiple layers of neurons, including input and output layers, and so-
called “hidden layers”[11].  This idea of hidden layers (neural network) is inherited
from a popular engineering and cognitive science topic since the 1980s[12,13]. The input
data is passed through the layers, and the complexity of output function increases
from  layer  to  layer.  In  the  recent  past,  the  use  of  DL  models  in  medicine  has
introduced the idea of data analytic modeling from expert-driven feature to data-
driven feature. Large and complex databases (with longitudinal event sequences and
continuous data points) have made it possible to train complex DL models. These
models developed from large and complex databases with multiple hidden neural
layers provide limited transparency to the users and are aptly described as “black
box” models. The user of “black box” AI knows inputs and understands outcomes of
the model, but how the output value was generated is unknown. These DL models
are  most  commonly utilized in  the  field  of  medicine  for  following categories  of
analytical tasks: (1) Disease detection or classification, where DL models are used to
detect a specific disease(s) with the help of data mining from EHR[14]; (2) Sequential
prediction of clinical events, where DL models predict future clinical events learning
from the previous event sequences[15];  (3) Concept embedding, where DL models
derive  feature  representation  of  clinical  concepts  algorithmically  from the  EHR
data[16]; (4) Data augmentation, where DL models create realistic data elements for the
use in clinical research or otherwise based on real EHR data[17];  and (5) EHR data
privacy, where DL models derive techniques to protect patient EHR privacy by de-
identification[18].

In simpler words, it would be easier to understand the relationship of AI, ML and
DL by visualizing them as 3 concentric circles with DL being the innermost circle
which is a subset of ML. ML in turn is a part of the greater all-encompassing concept
of AI (thus AI fits inside both ML and DL).

In silico simulation models and digital twins
“In silico” experimentation or simulation involves mathematical and computer based
exemplifications to construct models[19].  Computer based experiments can then be
carried out to conduct investigations of hypotheses in a virtual environment without
actually involving human subjects.  The Archimedes model  illustrates  the use of
mathematical techniques to reproduce the complex nature of disease[20].  The core
model is a set of ordinary differential equations, which represent the physiologic,
clinical,  and  social  pathways  that  are  relevant  to  diabetes  and  diabetes-related
complications. The use of causal pathways (i.e., Disease Acyclic Graphs) distinguishes
Archimedes from conventional, associative AI models[17].  Digital twin is a type of
simulation model that combines current data from the object  with its  simulation
model to enhance insight and assist with decision making[21,22]. The digital twin has
proven to be effective in industry and transportation, such as gas turbine fleet, rail
fleet, and production line. The advantage of this approach is the ability to get the
representative operational updates from the real-world object that allows model to
give an accurate prediction and to give the feedback to the real-world state directly to
make operational changes.

AI IN CRITICAL CARE
Critical  illness  offers  a  number  of  advantages  for  the  developers  of  AI  models
compared to chronic disease, such as the availability of large quantities of qualitative
and quantitative data and relatively short  trajectory of  critical  illness to a stable
outcome.  This  results  in  the  possible  iterative  testing  of  hypotheses  raised  by
simulation modeling in independent patient cohorts. For example, recently, a group
of computer scientists  and clinicians from the Imperial  College,  London,  United
Kingdom used an AI approach to develop a decision support model aptly named AI
Clinician[23]. Using reinforcement learning (RL), AI Clinician is designed to assist with
optimal  treatment  interventions  for  sepsis  in  real-time.  It  was  developed  and
validated in  two clinical  databases:  MIMIC-III  and e-ICU research database[24,25].
Similar methodology has recently been applied to the continuous prediction of acute
kidney injury (AKI)[26]. Tools that are developed based on the current AI models have
low specificity in predicting the intervention points for real life sepsis patients. This is
one of the major obstacles faced by AI models for treating the critically ill patients.
While most of the currently devised models are based on the retrospective data from
the data banks, the accuracy and performance of these algorithms on real-time data
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may  not  achieve  the  same  level.  Patient  privacy  concerns  and  question  of
responsibility may preclude rapid integration of AI models into current ICU practice.
High heterogeneity of patients and their specific needs could be easily illustrated by
managing a patient on mechanical ventilation. “Intelligent” ventilation modes may do
more harm than good without thorough supervision by a specialist.

The  above  examples  highlight  a  new  approach  to  predictive  and  prognostic
analytics in the area of critical care. Although these models yielded clinically plausible
results,  major shortcomings limit inferences and use in the real world of bedside
clinical medicine. First, built exclusively from retrospective EHR data, the models
suffer from missing data and imprecise timing (back charting) particularly during the
initial,  golden  hours  of  critical  illness.  Not  unlike  retrospective  studies  using
traditional  methods  (logistic  regression),  the  output  results  are  only  hypothesis
raising and require prospective confirmation.

PROGNOSTIC (ASSOCIATIVE) VS PREDICTIVE
(ACTIONABLE) AI MODELS
While  offering  marginal  improvements  in  performance  over  traditional
epidemiological or logistic regression approaches, associative AI models generally
underperform in the live clinical  setting and struggle to breach the threshold of
usefulness for most clinicians[27]. Even accurate prognostic enrichment (classifying
patients with high or low likelihood of death or AKI) is of limited value to the bedside
clinician. For example, the prediction model of AKI does not provide any predictive
enrichment with regards to potential intervention[26]. For example, will my patient
benefit from a red cell transfusion, or continuous vs intermittent renal replacement?

Predicting the risk vs the benefit of a particular treatment (i.e., actionable AI) is
more difficult.  Differences between associative and inquisitive/actionable AI are
highlighted in Table 1. In contrast to “black box“ associative AI, actionable AI models
should explicitly address causal relationships[28].  Directed acyclic graphs – (DAG)
approach has been increasingly used to address causal  relationships in different
research domains[29]. DAGs facilitate integration of expert knowledge into data driven
AI models and are well suited for building advanced AI algorithms and simulation
models.

Bayesian networks are DAGs whose nodes represent variables in the Bayesian
sense: They may be observable quantities, latent variables, unknown parameters or
hypotheses. Edges represent conditional dependencies; nodes that are not connected
(no path connects one node to another) represent variables that are conditionally
independent of each other. Each node is associated with a probability function that
takes, as input, a particular set of values for the node's parent variables, and gives (as
output)  the probability (or probability distribution,  if  applicable)  of  the variable
represented by the node. Directed acyclic graphical model is a probabilistic graphical
model  (a  type  of  statistical  model)  that  represents  a  set  of  variables  and  their
conditional dependencies – also known as the Bayesian network Model.

Unidirectional  arrows of  DAGs are  based on known causal  effects  (and prior
knowledge) (Figure 1). DAGs enable clear representation and better understanding of
the key concepts of exposure, outcome, causation, confounding, and bias. DAGs are
built as simple integers of physiology as a basis to building complex patterns for
seamless  functionality  of  a  simulation  model  and  AI  application.  One  of  the
advantages of using multiple basic DAGs to build a complex model is that, the model
can be easily disassembled as individual  components  (DAGs) to ensure that  the
complex model can be better understood and refined as necessary.

CONCLUSION
In  a  complex  critical  care  environment  clinicians  are  challenged  with  making
decisions with a high degree of  uncertainty under time constraints.  Data driven
associative AI models hold promise for better prognostication and to augment the
diagnostic process but thus far have not been proven useful for bedside clinicians.
Transparency of the model in terms of analytics and algorithms is  important for
patient safety and to earn the trust of the treating clinician[30]. Actionable AI models
are  more  challenging  to  build  and  require  explicit  consideration  of  causal
mechanisms. Accurate prediction of the response to treatment or intervention without
exposing the patients to potential risks is an ultimate AI challenge for the benefit of
patient and clinicians alike.
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Table 1  Differences between associative artificial intelligence and actionable artificial intelligence models

Models based on associative artificial intelligence Models based on actionable artificial intelligence

These applications are built using available historical public or institutional
data repositories[26,31,32].

These applications are built more often on the prospectively collected data
points, predicting risk vs benefit of a particular treatment or
intervention[17,30,33,34].

Almost always based on retrospective data[35,36]. Developed using the data points that are collected prospectively in real-
time[30,34].

Purely data driven associative models often without explicit consideration
of causal pathways[37-39].

These models are developed with an understanding based on the underlying
causal pathways, therefore providing greater clinical utility and
accuracy[40-42].

Representative examples: Development and validation of a data driven tool to
predict sepsis based on vital signs by Mao et al[43]. Provides no actionable
benefit to the bedside clinician. Similarly, a model developed to predict
AKI in a patient based on retrospectively collected dataset from electronic
health records by Tomasev et al[26]. The model was associated with high
false positive alerts (2 false positive alerts for each true alert).

Representative examples: Improving the safety of ventilator care by avoiding
ventilator-induced lung injury. Electronic algorithm based on near real-time
data and notification of bedside providers giving actionable information,
developed by Herasevich et al[33]. Artificial neural network based model
developed for forecasting ICP for medical decision support, by Zhang et
al[42]. This model provided actionable treatment planning for patients based
on the predicted future trends of ICP.

AKI: Acute kidney injury; ICP: Intracranial pressure.

Figure 1

Figure 1  Directed acyclic graph of acute brain failure. Orange boxes: Concepts; Orange solid border: Actionable clinical points; Orange interrupted border: Semi-
actionable clinical points. GCS: Glasgow coma scale; MAP: Mean arterial pressure; Glu: Serum glucose; Mg: Serum magnesium; Ca: Serum calcium; Meds:
Medications; HR: Heart rate; BP: Blood pressure; Focal Def: Focal neurological deficits; ICP: Intracranial pressure; NH3: Ammonia; Na: Serum sodium; Hb: Serum
hemoglobin; BUN: Blood urea nitrogen; Osmo: Serum osmolality; TSH: Thyroid stimulating hormone; CO2: Serum carbon dioxide; CPP: Cerebral perfusion pressure;
ABI: Acute brain injury; CAM: Confusion assessment method for intensive care unit.
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