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Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of
genes by sequence-specific binding to mRNA to either promote or block its
translation; they can also act as tumor suppressors (e.g., let-7b, miR-29a, miR-99,
mir-100, miR-155, and miR-181) and/or oncogenes (e.g., miR-29a, miR-125b, miR-
143-p3, mir-155, miR-181, miR-183, miR-196b, and miR-223) in childhood acute
leukemia (AL). Differentially expressed miRNAs are important factors associated
with the initiation and progression of AL. As shown in many studies, they can be
used as noninvasive diagnostic and prognostic biomarkers, which are useful in
monitoring early stages of AL development or during therapy (e.g., miR-125b,
miR-146b, miR-181c, and miR-4786), accurate classification of different cellular or
molecular AL subgroups (e.g., let-7b, miR-98, miR-100, miR-128b, and miR-223),
and identification and development of new therapeutic agents (e.g., mir-10, miR-
125b, miR-203, miR-210, miR-335). Specific miRNA patterns have also been
described for commonly used AL therapy drugs (e.g., miR-125b and miR-223 for
doxorubicin, miR-335 and miR-1208 for prednisolone, and miR-203 for imatinib),
uncovering miRNAs that are associated with treatment response. In the current
review, the role of miRNAs in the development, progression, and therapy
monitoring of pediatric ALs will be presented and discussed.

Key words: MiRNome, MicroRNA; Acute leukemia; Acute myeloid leukemia; Acute
lymphoblastic leukemia; Biomarker; Classification; Prognosis; Drug resistance
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Core tip: MicroRNAs (miRNAs) are small endogenous gene expression regulators. By
performing the function of oncogenes and/or tumor suppressors, they have become
interesting candidates for early diagnosis, accurate classification, and predictors of
prognosis in the most common childhood cancers, i.e. acute leukemia. The possibility of
using modulation of miRNA levels in targeted therapy is also important. Because they
are noninvasive and relatively easy to determine in biological samples, miRNAs are
gaining increasing attention from scientists and clinicians.
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INTRODUCTION

Acute leukemias
Childhood  acute  leukemias  (ALs)  are  a  group  of  diseases  with  varied  imm-
unophenotypes and specific genetic abnormalities[1]. Acute lymphoblastic leukemia
(ALL), the most common type of childhood leukemia, develops from early forms of B-
or T-cells at different stages of maturity[2]. Most of the remaining cases account for
acute myeloid leukemia (AML), which develops from myeloid cells that form white
blood cells[3]  (other than lymphocytes),  red blood cells,  or  platelets[1].  The 5-year
survival rate for children with AL has greatly increased over time and is now more
than 90% overall for ALL and in the range of 60% to 70% for AML[4,5]. Survival rates
vary depending on the subtype of AL and other prognostic factors[1]. Relapse risk can
be predicted by clinical and pharmacogenetic features, early treatment response to
tailor chemotherapy intensity, and genetic characteristics of leukemic cells[6-8].

MicroRNA
MicroRNAs (miRNAs, miRs) are a family of small (about 22-nucleotide), endogenous,
noncoding RNAs that negatively regulate gene expression in a sequence-specific
manner[9,10].  It  has been predicted that miRNAs, which account for at  least  1% of
human protein-coding genes, can control more than a third of the protein-coding
genes[11-13]. At the posttranscriptional level, miRNAs exhibit temporally and spatially
regulated expression patterns[9,14]. Discovering miRNA molecules, identifying their
targets, and predicting their functional and regulatory mechanisms are critical for
understanding biological processes (e.g., diverse development, cell growth control
proliferation, differentiation, and apoptosis) and their roles in the etiopathology of
disease[15,16].

Great  interest  has  emerged in  modulating  miRNA expression  for  therapeutic
purposes. Many scientific studies have shown that these molecules play an important
role  as  regulators  of  genes  in  many organisms,  and miRNAs have already been
implicated in a growing number of human diseases, including cancers[12,16,17]. miRNAs
can act as either oncogenes and/or tumor suppressors, contributing to malignant
transformation in solid and hematological tumors[18,19]. miRNAs that typically target a
tumor  suppressor  are  classified  as  oncomiRs  and  are  generally  upregulated  in
different types of cancer. MiRNAs, which downregulate oncogenes, are defined as
tumor suppressor miRs[19]. Promoter methylation, mutation, or deletion or defective
miRNA processing often leads to loss of suppressor miRs in cancer[20]. Some miRNAs
may exert contrasting oncogenic/tumor-suppressive effects on cancer-modifying
extrinsic factors and the leukemic cells themselves (Figure 1).

Deregulation  of  miRNA  expression  patterns  is  a  hallmark  of  hematological
malignancies and can be useful for the classification of AL genetic subtypes, which are
important for differential  diagnosis,  prognosis,  and treatment monitoring. These
molecules control the levels of potentially large numbers of proteins, many of which
might  be  important  drug  targets,  and  are  useful  in  the  development  of  new
therapeutic regimens[21]. Cancer-specific miRNA signatures correlated with diagnosis,
progression, prognosis, and response to treatment were determined for many cancers,
including childhood leukemia. Although the importance of miRNA molecules in the
genetic basis of leukemia is documented in an increasing number of publications, the
role of miRNAs in pediatric AL still needs to be established. Profiling the expression
levels of miRNA molecules at several levels with unprecedented resolution, depth,
and speed is possible thanks to the development of high-throughput technologies,
such  as  next-generation  sequencing,  microarrays,  mass  spectrometry,  and  new
bioinformatics tools[15,22].

In the current review, the role of miRNAs in the development, progression, and
therapy monitoring of pediatric ALs will be presented and discussed.
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Figure 1

Figure 1  Examples of microRNAs that may exert contrasting oncogenic/tumor-suppressive effects on tumor-modifying extrinsic factors and the leukemic
cells themselves (modified from Svoronos et al[19], with the permission of the author). Green arrows, positive regulation; orange arrows, negative regulation;
blue arrows, either positive or negative regulation. A narrow extension directly from a microRNA to the central leukemic cell refers to promotion/inhibition of leukemic
cell progression/survival through the microRNA’s direct regulation of leukemic cell–endogenous mRNAs.

ROLE OF MICRORNA IN DIAGNOSIS AND CLASSIFICATION
It is very important in the treatment of AL to treat patients in the right risk groups,
which  allows  both  maximizing  the  effectiveness  of  therapy  and  minimizing  its
toxicity. At present, the exact stratification of patients into relevant genetic subclasses,
and subsequent risk groups, is still a laborious and expensive diagnostic process,
including comprehensive morphology, immunophenotype, cytogenetics, response to
induction therapy, and genetic testing[23-26].

Currently, several types of classification can be specified in AL. The main ones are:
(A) French-American-British (FAB) morphological classification, distinguishing three
ALL  subtypes  (L1-L3)  and  eight  AML  subtypes  (M0-M7);  (B)  Cytochemical
classification; (C) Immunological classification; (D) Cytogenetic classification; and (E)
Molecular classification[27-29]. The World Health Organization system divides ALL into
several groups, the most common of which are B-cell ALL (B-ALL) and T-cell ALL (T-
ALL). B-ALL can be further subclassified according to distinct patterns of genomic
alterations  and  gene  expression  signatures  (most  frequent  abnormalities:
ETV6–RUNX1 fusion, TFPT–PBX1 fusion, BCR–ABL1 fusion; and MLL fusions)[30,31]. In
T-ALL, several subgroups have been recognized, e.g., immature/LYL1, TAL1, HOX11,
HOX11L2, and HOX. The World Health Organization classification includes several
AML subtypes with recurrent genetic abnormalities [e.g., AML with t(8;21)(q22;q22)
RUNX1-RUNX1T1, AML with inv(16)(p13.1;q22) or t(16;16)(p13.1;q22) CBFB-MYH11,
APL with  t(15;17)(q22;q12)  PML-RARA,  and AML with  t(9;11)(p22;q23)  MLLT3-
MLL][32,33]. In addition, molecular changes cannot be detected by classical karyotyping,
such  as  WT1,  NPM1,  CEBPA,  and  DNMT3A  mutations.  Based  on  genetic
classifications for subgroups of AML, it is supposed that two of the major subgroups
of AML patients are most important: Those with disruptions of the CBF complex and
those  with  disruptions  of  the  FLT3  gene[34,35].  Classification  systems  are  still
unsatisfactory because most of the recurrences occur in the intermediate and standard
risk groups[26].

It  is  supposed  that  the  cancer-specific  miRNA  patterns  rather  than  mRNA
signatures are a more accurate method of classifying cancer subtypes[36,37]. Molecular
classification  based  on  expression  alterations  (genes  or  miRNA)  allows  the
determination of the genetic profile of myeloid and lymphoid lineage, distinguishing
B-linear  and T-linear  ALL tumors,  as  well  as  listing subclasses  within leukemia
subtypes. Based on miRNA analyses, a correlation between immunophenotype and
chromosome disorders and various miRNA expression patterns in all subtypes of AL
was demonstrated. A top-ten discriminative miRNA set was proposed for AL types
and their main subgroup, as shown in Figure 2 and 3.

The type and subtype of childhood leukemia plays a major role in both treatment
options and patient prognosis. Determining the type (ALL or AML) and subtype of
the  leukemia  is  performed  by  testing  samples  of  the  blood,  bone  marrow,  and
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Figure 2

Figure 2  A top ten discriminative microRNA set for the main acute lymphoblastic leukemia subgroups. The
subtypes display a unique discriminating microRNA (except where overlap is shown) that distinguishes each
subgroup from each other (modified from Grobbelaar et al[3], with the permission of the author). ALL: Acute
lymphoblastic leukemia.

sometimes lymph nodes or cerebrospinal fluid[23].  In recent years,  there has been
significant progress in the use of comprehensive transcriptomic and genomic methods
(expression,  single  nucleotide  polymorphism,  and  comparative  genomic
hybridization  arrays;  whole  exome,  whole  transcriptome,  and  whole  genome
sequencing)  to  identify  leukemia  subtypes  and  inherited  and  somatic  genomic
changes, but nevertheless, much work is needed to define the intrinsic and extrinsic
determinants  of  leukemia  progression,  prognosis,  and  drug  response[8,38,39].  A
summary of miRNA marker functions, based on the example of pediatric ALL, is
presented in Table 1.

Certain miRNA profiles have been identified to associate specifically with AL
types. Zhang et al[40] showed a general expression pattern and assigned 21 upregulated
and  11  downregulated  miRNAs  for  primary  ALL  and  17  upregulated  and  18
downregulated miRNAs for primary AML, but only 17 miRNAs showed convergent
expression between two types of pediatric AL. By defining sets of characteristic genes
for each leukemia subtype, including miR-34a, miR-128a, miR-128b, and miR-146a in
ALL  and  miR-100,  miR-125b,  miR-335,  miR-146a,  and  miR-99a  in  AML,  they
emphasized that these miRNA sets are significantly different from those selected for
adult  leukemias.  This observation is  consistent with reports  of  another group of
researchers. Zhang et al[40]  selected lineage-specific markers for the most common
cytogenetic and FAB classification subtypes of AML. The overexpression of several
miRs was significantly related to the degree of cell maturity and differentiation. High
expression levels of miR-335 in M1, miR-126 in M2 (and AML1-ETO+), and miR-125b
in M3 (and PML/RARA status) were observed[40]. In that study, the authors indicated
that miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2
patients,  respectively. Mi et al[41]  demonstrated, based on a genome-wide miRNA
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Figure 3

Figure 3  A top ten discriminative microRNA set for the main acute myeloid leukemia subgroups. The
subtypes display a unique discriminating microRNA (except where overlap is shown) that distinguishes each
subgroup from each other (based on data from Trino et al[69]). AML: Acute myeloid leukemia.

expression  analysis  on  AL  samples,  that  the  expression  signatures  of  only  two
miRNAs could accurately discriminate ALL from AML (accuracy rate > 95%). They
proposed the possibility of using such lineage discriminatory miRNAs to develop a
rapid  and  accurate  diagnostic  test  of  ALL  vs  AML  in  the  future;  however,  the
possibility  of  a  more  accurate  diagnosis  of  childhood  AL based  on  the  miRNA
signature remains to be realized. Mi et al[41] used a large-scale genome-wide miRNA
expression assay  to  identify  27  differentially  expressed miRNAs as  markers  for
diagnosis  and  treatment.  Of  these,  miR-128a  and  miR-128b  were  significantly
overexpressed  in  ALL  compared  to  AML,  whereas  let-7b  and  miR-223  were
significantly downregulated[41].

Schotte et al[42]  revealed distinct miRNA expression profiles for seven different
subtypes of pediatric ALL. They showed that the precursor B-ALL has a specific
expression pattern characterized by low expression levels of miR-127 and miR-143.
This feature allowed distinguishing this cell line from control and CD34+ cells. In
turn, T-ALL cells showed differential expression of 28 miRNAs. High expression of
various miRNAs (e.g., miR-223, miR-222/222*, miR-98, and miR-511) was observed in
ALL with hyperdiploidy. Interestingly, the miRNA signature of TEL-AML1-positive
and hyper diploid cases partly overlapped, which may suggest a common underlying
biology. Interestingly, specific classification profiles have been described for each of
the pediatric AL subtypes, except for BCR-ABL1-positive and "B-other" ALL.

Almeida et  al[21]  used massive parallel  sequencing to  describe novel  sets  of  16
miRNAs  correlated  with  childhood  ALL  subtypes.  Among  the  subtype  dis-
criminators, ten (miR-708-5p, miR-497-5p, miR-151a-5p, miR-151b, miR-371b-5p, miR-
455-5p, miR-195-5p, miR-1266-5p, miR-574-5p, and miR-425-5p) were downregulated
and six (miR-450b-5p, miR-450a-5p, miR-542-5p, miR-424-5p, miR-629-5p, and miR-
29c-5p) were upregulated in pediatric T-ALL. Researchers also assigned individual
molecules to six functional categories, of which three were associated with induced
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Table 1  Targets of microRNA associated with acute leukemia (based on data in Human microRNA Disease Database
http://www.cuilab.cn/hmdd)

miRNA name Description Ref.

hsa-let-7b In patients with ALL, the expression of microRNA
let-7b is regulated by methylation of CpG islands
in the region of the genomic promoter. The
microRNA let-7b may act as a tumor suppressor,
whose low expression is involved in ALL
development, indicating the microRNA let-7b may
become a new therapeutic target for ALL

[154]

hsa-mir-17 Differential expression of miR-17~92 identifies
BCL2 as a therapeutic target in BCR-ABL-positive
B-lineage acute lymphoblastic leukemia

[155]

hsa-mir-99a, hsa-mir-100 miR-100 and miR-99a have critical roles in altering
cellular processes by targeting both the FKBP51
and IGF1R/mTOR signaling pathways in vitro and
might represent a potential novel strategy for ALL
treatment

[43]

hsa-mir-101 Hsp90 co-chaperone – p23, is regulated by hsa-
miR-101, which is downregulated in childhood
ALL cases

[156]

hsa-mir-124 miR-124 contributes to glucocorticoid resistance in
acute lymphoblastic leukemia by promoting
proliferation, inhibiting apoptosis, and targeting
the glucocorticoid receptor

[157]

hsa-mir-126 miR-126 plays a critical but 2-faceted role in
leukemia and thereby uncovers a new layer of
miRNA regulation in cancer. miR-126 depletion
can sensitize AML cells to standard chemotherapy,
which suggests that miR-126 represents a
promising therapeutic target

[158]

hsa-mir-142 Upregulation of miR-142-3p decreased MLL-AF4
expression in the RS4;11 leukemic cell line. Ectopic
expression of miR-142-3p remarkably suppressed
cell proliferation and induced apoptosis, and
exogenous expression of miR-142-3p strongly
reduced the expression of MLL-AF4 target genes
such as homeobox A HOXA9, HOXA7, and
HOXA10

[159]

hsa-mir-181a Ectopic expression of miR-181a resulted in
decreased CD10 hyperexpression in
ETV6/RUNX1+ primary patient samples. miR-
181a could target ETV6/RUNX1 and cause a
reduction in the level of that oncoprotein, cell
growth arrest, an increase in apoptosis, and
induction of cell differentiation in ETV6/RUNX1+
cell line

[48]

hsa-mir-181a miR-181a play role as negative regulator for the
TGF-β1 signaling pathway

[47]

hsa-mir-196b miR-196b becomes nonfunctional in T-cell ALL as
a consequence of mutations in 3'-UTR of the c-myc
gene in T-cell ALL cellular models

[160]

hsa-mir-196b, hsa-mir-1290 miR196b and miR-1290 target the IGFBP3 3'-UTR
and participate in the antitumor effect of
resveratrol via regulation of IGFBP3 expression in
acute lymphoblastic leukemia. miR-196b/miR-
1290 are potential therapeutic targets for ALL

[161]

hsa-mir-221 hsa-mir-222 Overexpression of miR-221 in ALL cells prompted
cell-cycle progression and sensitization of ALL
cells to cytotoxic agents. Niche-influenced miR-
221/222 may define a novel therapeutic target in
ALL

[162]

hsa-mir-520 h POLD1 and MCM2 were found to be regulated by
miR-520H via E2F1. High expression of POLD1,
MCM2, and PLK4 might play positive roles in the
recurrence of ALL

[163]

hsa-mir-595 miR-595 suppresses the cellular uptake and
cytotoxic effects of methotrexate by targeting
SLC19A1 in CEM/C1 cells

[164]
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hsa-mir-664 miR-664 negatively regulates PLP2 and promotes
cell proliferation and invasion in T-cell acute
lymphoblastic leukemia. miR-664 may represent a
potential therapeutic target for T-ALL intervention

[115]

hsa-mir-708 The expression level of miR-708 reflects
differences among the clinical types of common-
ALL, and CNTFR, NNAT, and GNG12 were
identified as targets of miR-708

[165]

hsa-mir-2909 The miR-2909-KLF4 molecular axis is able to
differentiate between the pathogeneses of
pediatric B- and T-cell ALLs, which may represent
a new diagnostic/prognostic marker

[166]

MiRNA: MicroRNA; ALL: Acute lymphoblastic leukemia; AML: Acute myeloid leukemia; Hsp90: Heat shock protein 90; TGF-β1: Transforming growth
factor beta 1; UTR, Untranslated region; POLD1: Polymerase delta 1; MCM2: Minichromosome maintenance complex component 2; PLK-4: Polo-like kinase
4.

miRNAs and three with repressed miRNAs in T-ALL (encompassed 45 genes that
were  shared  by  induced  and  repressed  miRNAs;  210  genes  were  targeted  by
overexpressed miRNAs, and 143 genes were targeted by downregulated miRNAs).
Differentially  expressed  genes  and their  targets  represented  relevant  biological
pathways, including viral carcinogenesis, cell cycle, and B-cell receptor signaling
pathways for induced miRNAs and TGF-β signaling, apoptosis, NF-kappa B signaling,
and cell differentiation and hematopoiesis processes[21]. Almeida et al[21] also identified
miR-29c-5p as the best discriminator of the pediatric leukemia cell line.

Li et al[43]  showed that the downregulation of miR-100 and miR-99a expression
levels was a significant feature of leukemic blasts and was strongly correlated with
the  patient's  5-year  survival.  For  these  two  marker  molecules,  differences  in
expression patterns between ALL and AML were noted, and white blood cell (WBC)
count, ALL type (T-cell or B-cell), the MLL-rearranged gene, and the BCR-ABL fusion
gene were correlated with changes in miR-100 and miR-99a levels. In addition, it has
been shown in  ex  vivo  experiments  that  upregulation  of  the  expression of  these
molecules  inhibited  the  expression  of  IGF1R  and  mTOR  and  their  downstream
oncogene MCL1[43]. de Oliveira et al[44] focused on assessing expression selected based
on previous studies of miRNA markers[45], including miR-92a, miR-100, miR-125a-5p,
miR-128a, miR-181b, miR-196b, and let-7e. As noted in leukemic blasts, miR-100, miR-
196b, and let-7e showed lower expression levels, and miR-128 and miR-181 showed
higher expression levels than normal bone marrow cells. Overexpression of miR-196
was observed for T-ALL. A high expression level was characteristic for patients who
presented a WBC count < 50000/mm3 at diagnosis (P = 0.01) and was also associated
with the presence of  t(12;21)  and the absence of  a  hyperdiploid karyotype.  This
suggests the possibility of a t(12;21)-specific regulation of miR-100. Differentiated
expression of miR-181b and miR-128a was associated with the presence of t(4;11)[44].

Swellam  et  al[46]  investigated  the  expression  signature  of  miRNA-125b-1  and
miRNA-203 among childhood ALL,  and they proposed these  miRNAs as  useful
molecular  markers  for  the  diagnosis  of  childhood  ALL.  They  noticed  that  the
expression level of miRNA-125b-1 was significantly higher in peripheral blood (PB)
isolated from 43 newly diagnosed children with ALL, while the miRNA-203 level was
significantly  lower  in  childhood  ALL  compared  to  control  samples.  Moreover,
miRNA-125-1 was increased in T-ALL compared to other ALL phenotypes, and the
miRNA-203 expression level was high in T-ALL followed by pre-B-ALL[46].

Nabhan et al[47] focused on analyzing the involvement of just one marker molecule
in  the  development  of  leukemia,  i.e.  miR-181a  can  both  function  as  a  tumor
suppressor  or  an  oncogene.  The  function  of  miR-181a  is  associated  with  cell
metabolism and expression levels of target mRNAs. A decrease in the expression level
of  miR-181a  was  observed  in  the  serum  of  children  diagnosed  with  ALL.
Investigators, as the first team, linked the miR-181a expression signature with Smad7
and TGF-β1 protein levels in the serum of childhood ALL. They found that miR-181a
expression achieved a highly significant positive and a significant negative correlation
with TGF-β1 and Smad7, respectively[47]. Furthermore, miR-181a was identified by
Yang  et  al[48]  as  the  most  differentially  downregulated  miRNA  (among  the  17
identified  miRNAs)  in  the  PB  of  childhood  ALL  patients  with  the  t(12;21)
translocation. Nabhan et al[47] suggested that the diagnostic accuracy of pediatric ALL
can be improved by using a small set of miRNA markers. Based on the data, they
calculated that the combined use of miR-181a and Smad7 increased the sensitivity of
diagnosis  to  90%, whereas the combined use of  miR-181a and TGF-β1 increased
sensitivity to 100%.

It is supposed that differentiated miRNA expression profiles contribute to AML
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heterogeneity and have diagnostic and clinical significance. In numerous studies,
comparisons of miRNA profiles between AML blasts and normal cells and among
AML  with  recurrent  genetic  abnormalities  were  made[49-56].  In  AML,  miRNA
signatures can also distinguish between cytogenetic  subtypes[51-53,57]  or  molecular
subtypes (e.g., NPM1, CEBPA, or FLT3 mutations)[52]. Most of the reported miRNAs in
pediatric  AML are presented in Figure 3.  The prognostic  significance of  miRNA
expression patterns in AML was confirmed[58-66].

Zhu  et  al[67]  indicated  that  the  3-miRNA  signature  contributed  to  pediatric
cytogenetically normal AML and can be a reliable prognostic biomarker. They found
that high expression of miR-146b predicts poor prognosis and that miR-181c and miR-
4786 are significantly related to favorable prognosis factors. The results indicate that
the 3-miRNA-based signature is a reliable prognostic biomarker for pediatric AML.
The upregulation of miR-10a, miR-10b, and miR-196b[52,68] and the downregulation of
miR-192[51,68]  can  be  biomarkers  for  NPM1  mutations.  Patients  with  t(8;21)  had
overexpression of miR-126[53,56] and miR-146a[49,57]. High expression level of miR-155
was strongly associated with FLT3-ITD alteration[50-52,69].

ROLE OF MICRORNA IN DIAGNOSIS AND CLASSIFICATION
The results of scientific research have led to the selection of biomarkers for diagnostic
classification and prognostic evaluation, and have thus brought closer personalized
medicine. Nevertheless, there is a constant need to search for sensitive and specific
determinants for childhood AL progression[3,70].

One of the most commonly identified biomarkers associated with the development
of  AL  is  miR-125b,  which  is  an  important  molecular  regulator  in  normal  cell
homeostasis, cell metastasis, and disease pathogenesis and progression[71,72]. Playing
either an oncogenic or a tumor-suppressive role through numerous target genes is
crucial in abnormal proliferation, metastasis, and invasion of cells in hematological
malignancies[71]. So et al[73] reported that miR-125b overexpression (through repressing
IRF4) promotes myeloid and B-cell leukemia by inducing tumorigenesis, immortality,
and self-renewal of progenitor cells. By targeting ARID3a in B-ALL cases with the
t(11;14)(q24;q32) translocation, upregulation of miR-125b blocked differentiation and
helped  avoid  apoptosis  by  blockade  of  caspase  activation  by  a  mechanism
independent of p53 and BAK1. Moreover, high levels of miR-125b were linked to an
increase in the expression of pluripotency-associated factors (OCT4, SOX2, KLF4, and
NANOG)[74].  By  suppressing  TNFAIP3,  the  NF-κB-mediated  increase  in  B-cell
proliferation  and  dysregulation  of  glucose  metabolism  result  in  a  reduction  in
apoptosis in T-ALL[75]. MiR-125b also blocks differentiation in myeloid progenitor cells
with the t(2;11)(p21;q23) translocation[76]. In AML, the induction of leukemogenesis
can be mediated by: (1) Pathways including CDX2, miR-125b, and CBFβ (high levels
of CDX2 activate miR-125b transcription, which in turn inhibits CBFβ translation)[77];
(2)  Targeting  STAT3  transcription  factors  (also  JUND  and  BAK1)[78];  and  (3)
Suppressing ABTB antiproliferative factors and deregulating genes involved in the
p53 pathway, including BAK1 and TP53INP1[79].

One of the potential miRs related to important regulators in myeloid development
is miR-223, a known regulator of myelopoiesis. Experimental works have shown that
its expression increases with the degree of cell differentiation[80]. The high relative
expression  of  miR-223  in  AML1  samples  was  found  by  Ramsingh  et  al[81],  but
overexpression of miR-223 was not a common feature of leukemic cells. Danen-van
Oorschot et al[82]  observed levels of miR-29a, miR-155, miR-196a, and miR-196b in
clinically relevant cytogenetic and molecular subgroups of 82 pediatric AML samples
and observed higher expression of miR-196a/b in leukemic cells  with MLL  gene
rearrangements, NPM1  mutations, and FLT3-ITD  in cytogenetically normal AML.
Downregulation of miR-196a/b expression was observed in CEBPA mutated cases.
Differentiated expression of these miRs was linked to HOXA and HOXB cluster genes
involved in myeloid transformation. In FLT3-ITD and NPM1-mutated cases, miR-155
was overexpressed, and lower expression of miR-29a in MLL-rearranged pediatric
AML was found[82]. A broad miRNA profiling experiment of cytogenetically distinct
childhood AML cases was conducted by Daschkey et al[49], where they selected miR-
126,  miR-146a,  miR-181a/b,  miR-100,  and  miR-125b  as  markers  of  the  MLL-
rearranged AML subtype. Emmrich et al[83] pointed out that miR-9 is an important
regulator of t(8;21)-mediated leukemogenesis. Low levels of miR-9 were observed in
AML patients with t(8;21), but high expression levels were noted in cases with MLL
rearrangements. As a potential mechanism of regulation of leukemic cell proliferation
and differentiation,  repression of the oncogenic LIN28B/HMGA2  axis  (including
target genes CDH1, NFKB1, BACE1, and RES) was identified.
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ROLE OF MICRORNA IN OUTCOME PREDICTION
Children with AL are often put into risk groups (low, intermediate, or high risk), with
more intensive treatment given to higher risk patients. Generally, children at low risk
have a better outcome than those at very high risk. However, it is important to know
that even children in higher risk groups can often still be cured. AL is a heterogeneous
disease;  hence,  different  treatment  results  are  observed in  patients  with  similar
histopathological diagnoses, stages of development, and similar treatment protocols.
The correct stratification of patients into high-risk groups with recurrence (more
intensive treatment) and low-risk patients (avoidance of therapy toxicity) is of great
importance[84,85].  The  previous  stratification  does  not  meet  the  abovementioned
expectations, which is why high hopes have been placed on the possibilities resulting
from research using genomics and transcriptomics methods[84].

More and more often in pediatric AL, the expression signature of the set of miRNA
molecules has been correlated with well-known prognostic factors, which include:
WBC count, age at diagnosis, cytogenetic and molecular genetic analyses of blast cells,
prednisolone response on day 8,  and immunophenotype.  The possible  model  of
diagnostic  and  prognostic  management  in  pediatric  ALL  based  on  the  miRNA
signature is presented in Figure 4.

In  recent  years,  several  studies  have  been  conducted  to  identify  miRNAs  as
predictors of the risk of leukemia recurrence. One of the first verified biomarkers was
miR-16, which is implicated in apoptosis induction by targeting BCL-2 and cell cycle
arrest[86-88]. Kaddar et al[89] obtained statistically significant relationships between low
miR-16 levels and low WBC counts and good molecular markers. They found that, in
the  entire  ALL group,  miR-16  was  significantly  downregulated  in  the  group of
patients with leukocytes below 50 G/L and with hyperploidy or t(12;21). In T-ALL,
overexpression of miR-16 expression was also related to corticosteroid resistance.
After all, they could not assign a specific miR-16 expression profile to B-cell and T-
ALL subgroups[89]. In the next study, Organista-Nava et al[90] conducted a multivariate
analysis (including age at diagnosis, gender, and WBC of miR-24 expression, a well-
known promotor of the survival of hematopoietic cells). Targets of miR-24 are pro-
apoptotic (FAF-1, caspase 9, Bim, and Apaf-1) and cell cycle progression (enhanced
MYC,  E2F2,  CCNB1,  and CDC2  or  inhibited  p27Kip1  and VH)  proteins[91-93].  In  a
previous study, it was reported that miR-214 expression is associated with cytogenetic
and molecular  subtypes  of  adult  AML (e.g.,  AMLs with t(8;21),  t(15;17),  inv(16),
NPM1,  and CEBPA  mutations)[52].  Organista-Nava et  al[90]  indicate  miR-214 as  an
independent  marker  for  predicting  the  clinical  outcome in  both  AML and ALL
patients. Upregulation of miR-24 was significantly associated with poor prognosis,
shorter overall survival (OS), and a high risk of leukemia relapse.

One of the most interesting research results in this field were presented by the team
of Nemes et al[94]. Researchers collected PB and bone marrow samples from 24 ALL
patients from all phases of treatment [collected at diagnosis, at conventional response
checkpoints  (on  days  15,  33),  and  before  beginning  protocol  M].  Differentiated
expression of set miRNAs (miRNA-16, miRNA-21, miRNA-24, miRNA-29b, miRNA-
128b,  miRNA-142-3p,  miRNA-155,  and  miRNA-223)  with  potential  roles  in
hematologic  malignancies  was  analyzed.  Based  on  the  results  obtained,  it  was
concluded that  miR-223 (involved in the regulation of  the cell  cycle  or  different
signaling mechanisms, such as E2F1, CEBPα, and E2A) and miR-128b (play roles in
the regulation of the PI3K-AKT-mTOR signaling pathway through downregulation of
PTEN) expression signatures could be possible predictors of ALL relapse. Nemes et
al[94] determined in general that high levels of miR-128b and low levels of miR-223
show a significant correlation with good prednisolone response and better prognosis
in childhood ALL. In particular, they found an extreme high expression level of miR-
128b at diagnosis, which significantly decreased as patients entered remission where
normal  levels  of  miR-128b  expression  for  mononuclear  cells  were  detected.
Conversely,  miR-223  expression  can  be  undetectable  at  diagnosis,  but  during
treatment and in remission, the level of miRNA is standard and then decreases again
at relapse[94].

Among the newly typed prognostic and therapeutic markers for pediatric AL is
miR-335, which acts as a tumor suppressor and targets genes that participate in most
of the important biological processes associated with human cancer and is involved in
pathways such as p53,  mitogen activated protein kinase,  TGF-β,  Wnt,  epidermal
growth  factor,  mammalian  target  of  rapamycin,  Toll-like  receptor,  and  focal
adhesion[95]. Using genome-wide miRNA microarray analysis, Yan et al[96] found that
low expression level of miR-335 was associated with unfavorable prognosis, poorer 5-
year event-free survival, and glucocorticoid resistance in ALL. Moreover, the study
highlighted  the  potential  mechanism  of  silencing  the  expression  of  miR-335.
According to previous observations of recurrent leukemia[97-99], epigenetic silencing
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Figure 4

Figure 4  Possible roles of microRNAs in the diagnosis and prognosis of childhood acute lymphoblastic leukemia (modified from Grobbelaar et al[3], with
the permission of the author). ALL: Acute lymphoblastic leukemia; AML: Acute myeloid leukemia.

through DNA methylation was suggested. Yan et al[96]  used the results of in vitro
experiments to show that exogenous expression of miR-335 in leukemic cells increases
sensitization  to  prednisolone-mediated  apoptosis,  and  they  concluded  that
reintroducing miR-335 expression or overriding MAPK1  activity could become a
promising therapeutic target for ALL treatment. The role of miR-335 in AML was
analyzed  by  Zhou  et  al[100].  They  found  that:  (1)  Overexpression  of  miR-335
(independent  of  its  methylation)  was  negatively  correlated  with  decreased  ID4
expression; (2) Aberrant miR-335 and ID4 (direct target) expression independently
affected chemotherapy response and leukemia-free/OS in patients with AML; and (3)
miR-335/ID4 dysregulation facilitated leukemogenesis through the activation of the
PI3K/Akt signaling pathway. These results are similar to the Yan et al[96] study, which
used ex vivo experiments to show that it was possible to reduce pro-proliferative and
antiapoptotic effects and restore the physiological role of mir-335 (through restoration
of ID4 expression)[100].

MiR-155 is another candidate predictive and prognostic marker of AL outcome.
MiR-155 is evolutionarily conserved, and as an inhibitor of lineage differentiation, it is
one  of  the  most  critical  regulators  of  posttranscriptional  gene  expression  in  B
cells [101 ,102].  It  has  also  been  confirmed  to  be  associated  with  pathogenesis,
aggressiveness and progression in CLL[103,104];  poor survival in adult and pediatric
AML[105];  and poor clinical prognosis in Hodgkin's lymphomas[106]  and B-cell-type
Diffuse  large  B-cell  lymphoma[107,108].  El-Khazragy  et  al[109]  tried  to  connect  the
upregulation of miRNA-155a and miRNA-181a expression to ALL outcome. They
found a significant correlation of high levels of minimal residual disease (MRD) and
poor prognosis, but only overexpression of miRNA-155a was significantly related to
high blast numbers (> 25%), unfavorable cytogenetic abnormality, total WBC, higher
relapse rate, a higher MRD after 15 d, and poor prognosis[109]. Moreover, expression of
both miR-155a and miR-181a was downregulated after chemotherapy, suggesting
their potential use as biomarkers of therapeutic response in pediatric ALL.

A consistent and strong association of miR-155 overexpression with poor prognosis
in pediatric AML was also confirmed[110-112]. An interesting relationship between the
level of expression of miR-155, its biological function and prognosis in AML was
noted by Narayan et al[105,111]. Researchers conducted experiments on cells obtained
from patients diagnosed with AML and on a murine model, where they found that
between 10- and 50-fold overexpression of miR-155 (plays the role of oncogene) is
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associated with poorer OS and increased tumor burden. However, when the miR-155
expression level is lower than 10-fold, outcomes may be favorable. When the level is
higher than 50-fold (observed only in the murine model), miR-155 shows suppressor
activity. Overexpression of miR-155 is associated with activation of B cells with an
inflammatory  stimulus  of  lipopolysaccharide  and  IL-4.  The  consequence  of
differentiated miR-155 expression is downregulation of the expression of target genes
regulated by intermediate (CEBPB, SPI1, and TLE2) or high (MYB and KIT) miR-155
expression levels. Narayan et al[105,111] first described a novel dose-dependent function
of miR-155 in the progression of AML and pointed out that it can have important
therapeutic implications.

miRNAs can also act as independent prognostic factors to predict clinical outcomes
for T-ALL patients. Miao et al[113] identified highly expressed miR-590 as a candidate
oncogenic marker for both adult and pediatric T-ALL. Through regulation of the RB1
gene,  miR-590 increased the proliferation and invasion of  T-cells[113].  A common
oncogenic marker in adult and pediatric T-ALL is miR-149. Overexpression of miR-
149 inhibits apoptosis and enhances proliferation via the target gene JUNB[114]. Another
example is miR-664, whose overexpression inhibits the PLP2 gene in pediatric T-ALL.
Deregulation of  PLP2  results  in  changes  in  adhesion and migration of  leukemic
cells[115].

MiR-181  is  often  mentioned  among  AML  prognostic  markers.  In  adults,  its
relationship with prognosis in AML is quite well described[60,116]; however, only one
published paper describes the correlation between miR-181 expression level and
prognosis in the pediatric population. Liu et al[117] analyzed the physiological function
and mechanism of miR-181 and found that these molecules are responsible for the
G1/S transition and cell proliferation via the tumor suppressor ATM.

Zhang et  al[65]  found that  high expression of  oncogenic  miR-99 is  significantly
related to the promotion of proliferation and apoptosis inhibition. Overexpression of
miR-99a was observed in pediatric AML (FAB subtypes M1-M5). Interestingly, during
complete remission, silencing expression of miR-99 was noted. Regulation of cell
growth and differentiation was associated with modulation of the expression of such
miR target tumor suppressor genes as CTDSPL and TRIB2.

Evolutionarily conserved miR-125b, as an important regulator of hematopoietic
stem/progenitor cell apoptosis, confers a proliferative advantage to leukemic cells in
both ALL and AML[118]. In AML, the level of miR-125b could be up to 90-fold higher in
comparison to normal cells[76]. In patients with B-ALL carrying the t(11;14)(q24;q32)
translocation, expression of miR-125b is also 30- to 600-fold higher in comparison to
cases without the translocation[72,119]. In AML, as shown by Ufkin et al[120], miR-125a
expression  was  downregulated  in  favorable  and  intermediate  prognoses  and
associated with decreased survival. In addition, in vitro experiments have identified a
potential  mechanism  for  regulating  miR-125a  expression,  which  is  excessive
methylation.  They  undertook  effective  attempts  at  global  demethylation  using
decitabine,  which  resulted  in  an  increase  in  miR-125a  levels  as  well  as,  in
consequence, inhibition of cell cycle proliferation and progression with increased
apoptosis. In their study, they revealed that the ErbB pathway is directly regulated by
miR-125a. The authors suggested that further research into ErbB inhibitors and miR-
125a molecules may contribute to the development of targeted AML therapy[120].

Lin et al[61] indicated miR-370 as a potential noninvasive diagnostic and prognostic
miRNA marker for childhood AML cases because its expression in bone marrow and
serum samples at diagnosis was significantly decreased. The level of miR-370 was
correlated  with  the  FAB  classification  subtype  M7  (P  =  0.02)  and  unfavorable
karyotype and with poor prognosis, unfavorable relapse-free survival (RFS), and
shorter OS. Lin et al[61] also noticed that serum miR-370 levels were more obvious in
the subgroup of patients with intermediate-risk cytogenetics.  Second, Lin et  al[62]

described miR-335 as an independent prognostic marker of RFS and OS in pediatric
AML. His high expression was related to the M7 subtype, unfavorable karyotype
presence  and  shorter  RFS  and  OS.  The  function  of  the  biomarker  unfavorable
prognosis was confirmed for oncogene miR-183 by Wang et al[63]. High expression of
miR-183 (especially in M7 AML) was associated with promotion of cell proliferation
and G1/S transition and inhibition of  apoptosis.  Short  RFS and OS were  linked
markedly with silencing of PDCD6 expression, a direct and functional target of miR-
183.  Wang et  al[64]  also  proposed miR-375  as  a  prognostic  factor  for  unfavorable
cytogenetic risks in M7 ALL. Zhu et al[66] analyzed the clinical significance of miR-29a
expression,  a  well-known  gene  that  can  act  as  either  an  oncogene  or  tumor
suppressor.  Low expression of this gene was characteristic  of  the M7 subtype of
childhood AML and had shorter RFS and OS, while high expression was associated
with good prognosis.

In summary, the most frequently identified prognostic miRNA markers of pediatric
AL include the following: (1) miR-7, miR-16, miR-33, miR-100, miR-130b, miR-181,
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miR-215,  miR-216,  miR-369-5p,  miR-496,  miR-518d,  miR-599,  and  miR-708  are
unfavorable factors[40,42,89,121,122]; and (2) miR-10a, miR-23a, miR-27a, miR-128b, miR-134,
miR-150, miR-191, miR-214, miR-223, miR-342, miR-484, miR-486, miR-487, miR-572
miR-580, miR-627, miR-624, let-7g, and let-7i are favorable factors[40,42,121,122].

Table 1 summarizes miRNAs involved in ALL prognosis, their impact in predicting
relapse or progression, and their relationship with OS and treatment outcome.

ROLE OF MICRORNA IN THERAPY OUTCOME AND DRUG
RESISTANCE
The correct assignment of patients to risk groups presents another challenge, which
therapy is the most appropriate to use. Anticipating the response to the administered
drug is a challenge in current oncology[123-126]. AL is curable in children in 60%-90% of
cases[127,128].  Several research groups have attempted to search for sets of miRNAs
involved in therapy failure. Assuming that the phenomenon of drug resistance is a
primary feature of leukemia blasts,  it  is  possible to predict the ineffectiveness of
treatment[128].  MiRNA profiling is  increasingly used in research on multifactorial
phenomena, such as drug resistance, due to its ability to simultaneously analyze the
most important genes for this process[129]. The mechanism of drug resistance consists
of many complex processes that overlap one another, including: (1) A change in the
function of receptors; (2) Heterogeneity of cancer cells; (3) Tissue microenvironment;
(4) Intercellular interactions; (5) Disorders in transport and signal transduction; and
(6)  A  change  in  the  expression  of  key  genes[130].  However,  the  genetic  basis  of
chemotherapy resistance is still not well understood. Based on the genetic profile, it is
possible to predict the response to the treatment used by establishing a correlation
between the expression of specific sets of miRNAs and the sensitivity/resistance to a
given anticancer agent or the effectiveness of the treatment (Table 2)[25,84].

Multidrug resistance followed by relapse is regarded as one of the most important
clinical problems for effective treatment in patients diagnosed with AL and is still the
main  cause  of  cancer  death  in  children[131].  MiRNAs  are  considered  a  relevant
regulator response to drug administration. Ghodousi et al[132] conducted an analysis of
the expression of ABCA2 and ABCA3 transporters and their potential regulators, miR-
326 and miR-200c. First, they confirmed that the expression levels of both miR-326
and miR-200c were significantly lower in patients with ALL diagnosis. They showed a
significant downregulation of miR-326 in MRD+ and relapsed patients compared to
the MRD- group, supporting the notion that decreased expression of miR-326 has an
adverse impact on treatment response. A significant decrease in miR-200c expression
level was observed between the MRD- patients and relapsed ALL patients. Ghodousi
et al[132] pointed out that only the miR-326 level can be a negative prognostic biomarker
that may discriminate between MRD+ and MRD- patients.  The presented results
(higher miR-128b expression correlated with good prednisolone response and better
prognosis) suggest a correlation between miR-128b expression changes and steroid
sensitivity of leukemic cells[94].

In several subsequent studies, miR-125b was selected as a potential biomarker for
leukemia recurrence and was correlated with a high risk of therapy failure and poor
survival prognosis[72,133-135]. Piatopoulou et al[135] evaluated the clinical significance of
miR-125b for  ALL prognosis  and prediction  of  patients’  response  to  the  Berlin-
Frankfurt-Muenster (BFM) chemotherapy protocol. In their study, a low level of miR-
125b was related to unfavorable prognosis, but after treatment with the BFM protocol,
overexpression of this miR was detected. Higher expression on day 33/diagnosis was
related to a higher risk for disease short-term relapse and worse survival, strongly
suggesting  that  miR-125b  could  also  be  used  as  a  clinically  useful  predictor  of
resistance to BFM chemotherapy[135]. Gefen et al[134] established upregulation of the
miR-125b-2  cluster  (miR-125b,  miR-99a,  and  let-7c)  in  ETV6/RUNX1-positive
childhood ALL. Overexpression of the cluster was an independent leukemia event.
Increased miR-125b-2 levels protected cells from death. The antiapoptotic activity can
be associated with a marked inhibition of caspase 3 activation and the cleavage of its
substrate PARP. Differentiated expression of miR-125b-2 was also related to resistance
to antileukemic agents staurosporine and doxorubicin.

In a study by Schotte et al[42], changes in the expression of miR-454 were only related
to L-asparaginase resistance, but the strong overexpression of three miRs (miR-125b,
miR-99a,  and miR-100)  was correlated with vincristine (VCR) and daunorubicin
resistance. The strong association of miR-125b upregulation was especially evident in
ETV6-RUNX1+ patients, who were VCR-resistant[42]. The overexpression of miR-125b
was linked to inhibition of VCR-induced apoptosis and induction of the proliferation
of CD34+ cells. Schotte et al[42] noticed that the interference of miR-125b function might
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Table 2  MicroRNAs associated with resistance to commonly used drugs in childhood acute leukemia treatment

Drug name Most discriminating microRNAs

Prednisolone miR-99a, miR-125a, mir-128b, miR-210, miR-221, miR-550, miR-595, miR-633, miR-638, miR-652

L-asparaginase miR-210, miR-454

Vincristine miR-9, miR-99a, miR-100, miR-124, miR-125b, miR-126, miR-128b, miR-141, miR-200c, miR-218, miR-625, miR-633, miR-629, miR-1206

Prednisone miR-15a, miR-18a, miR-16-1, miR-128b, miR-193a, miR-218, miR-223, miR-532, miR-550, miR-625, miR-633, miR-638

Daunorubicin miR-99a, miR-100, miR-125b, miR-126, miR-199b, miR-203, miR-210, miR-335, miR-383, let-7c

Doxorubicin miR-125b

Methotrexate miR-595, miR-1206, miR-6083

Cytarabin miR-562

Dexamethasone miR-210

Imatinib miR-203

Staurosporine miR-125b

provide a way to sensitize patients to VCR. Moreover, researchers identified 14 miR
signatures (independent of ALL subtype) useful for prognosis and prediction in ALL.
Among others,  miR-10a,  miR-134,  and miR-214 were correlated with a favorable
outcome, which confirmed earlier reports linking these miRs with caspase-dependent
proapoptotic activity of miR-10a[136], inhibition of USF2-mediated cell proliferation by
miR-10a and miR-214[137,138],  and oncogene SOX2  downregulation by miR-134[139].
Differentiated expression of six miRNAs (miR-33, miR-215, miR-369-5p, miR-496,
miR-518d, and miR-599) was related to an unfavorable long-term clinical outcome in
ALL. Schotte et al[42] colleagues selected two miRs as potential targets for targeted
therapy. They noted that it may be of clinical interest. The use of a demethylating
agent  increased  the  level  of  miR-10a  in  MLL-rearranged  patients[42,99],  and  the
application of  antagomirs  decreased the  level  of  overexpressed miRNA in  poor
prognosis samples (e.g., miR-33)[42].

Akbari Moqadam et al[140] analyzed miR-125b, miR-99a, and miR-100 expression
levels  in  correlation  with  VCR resistance  in  ETV6-RUNX1+ Reh  cells.  Only  the
combination set of miRs influenced cell sensitivity to drug administration. MiRNA
overexpression resulted in lower expression of their directly regulated target genes
(DNTT, NUCKS1, MALAT1, SNRPE, PNO1, SET, KIF5B, PRPS2, RPS11, RPL38, and
RPL23A) in VCR-resistant ALL cells[140]. In vitro, the restoration of miR-100 and miR-
99a in ALL cells suppressed cell proliferation and increased dexamethasone-induced
cell apoptosis[43]. It has also been shown that the sensitivity of BCR-ABL1(Ph+) cells to
treatment with tyrosine-kinase inhibitors (such as imatinib) can be increased in vitro
by restoring miR-203[141]. Increasing the miR-203 expression level negatively regulates
the expression level of target oncogenes (ABL1 and BCR-ABL1) and thus inhibits cell
proliferation[142].

One of the major problems in childhood AL is the risk of relapse, and the molecular
mechanism is still poorly understood. Intensive scientific work is being conducted on
cognition factors related to therapy response and the biology of recurrence. Han et
al[121]  carried  out  a  genome-wide  miRNA  array  analysis  to  identify  the  miRNA
expression patterns correlated with relapse or complete remission in childhood ALL.
They identified a set of 70 differentially expressed miRNAs in samples at relapse or
complete remission (CR) compared with the initial diagnosis of the same patients. The
expression levels of miR-223, miR-23a, let-7g, miR-181, miR-708, and miR-130b were
compared in samples at relapse vs diagnosis and miR-27a, miR-223, miR-23a, miR-181,
and miR-128b levels were compared in CR samples and diagnostic samples. In the
relapse  samples,  strong  downregulation  of  miR-223,  miR-23a,  and  let-7g  and
upregulation of the miR-181 family, miR-708, and miR-130b were confirmed. Han et
al[121]  found that miR-223 and miR-27a were overexpressed in patients during CR.
Moreover, low levels of both miR-223 and miR-27a at the time of diagnosis were
confirmed in patients who subsequently relapsed. Furthermore, Han et al[121] identified
a high expression level of miR-708 in both standard risk and middle risk ALL and a
low expression level in high-risk patients. The lowest level of miR-708 expression at
initial diagnosis was confirmed among the four immunophenotypes, pro-B-ALL, pre-
B-ALL, common ALL, and T-ALL[121]. These results suggest that miR-708, miR-27a,
and miR-223 expression levels at initial diagnosis could be independent and reliable
prediction factors of the OS rate in childhood ALL and could also be used to predict
the risk of relapse before patients undergo therapy. These miRNAs and their targets
(e.g., IKZF1, IL-15, and CASP8AP2) might be helpful in the optimization of therapeutic
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protocols and novel targets for the development of new antileukemic agents[121].
A multifaceted study of miRNome was conducted by Zhang et al[40], who described

specific expression patterns for both pediatric ALL and AML, selected prognostic
markers, and determined the relationship of miRs with the risk of recurrence in the
central nervous system and a lack of sensitivity to prednisone. Authors developed the
signature of the overexpressed miR-7, miR-198, and miR-633 and downregulated
miR-126, miR-345, miR-222, and miR-551a, in which changes in expression level were
related to central nervous system relapse in ALL. Zhang et al[40] identified a set of eight
differentiated genes, including miR-18a, miR-532, miR-218, miR-625, miR-193a, miR-
638, miR-550, and miR-633, that differentiated patients according to a good or poor
prednisone response. Interestingly, researchers were unable to confirm the association
with ALs for mir-15 and mir-16, frequently mentioned regulators of apoptosis in
hematopoietic cells and prednisolone resistance modulators[86,87,89,110,112].  Xu et al[143]

performed a study to determine an early marker of relapse in pediatric ALL and
found miR-7, miR-216, and let-7i (high expression) and miR-486, miR-191, miR-150,
miR-487, and miR-342 (low expression).

ROLE OF MICRORNA IN NEW THERAPY DEVELOPMENT
Pharmacogenomics of tumors (a field dealing with the assessment of innate genetic
determinants of different drug effects) enables the discovery of new anticancer drugs
and their genetic targets on the basis of a well-defined mechanism of oncogenesis[126].
The search for candidate molecules among miRNAs can also be used in the typing of
a molecular target, drug design, determination of the in vitro and in vivo effects of the
drug on the global level of gene expression, identification of mechanisms of action,
detection of potential toxicity, and determination of the pharmacodynamic effect[144-146].

miRNAs are one of  the most  promising molecules in the development of  new
antileukemic agents and therapeutic protocols. miRNAs, as differentially expressed
molecules,  can be  regulated by two anti-ancient  mechanisms.  The first  involves
inhibition of miRNA activity by: (1) The use of miRNA inhibitors and oligomers,
including  RNA,  DNA,  and  DNA  analogues  (miRNA  antisense  therapy),  small
molecule  inhibitors,  and  miRNA  sponges;  or  (2)  miRNA  masking.  The  second
mechanism includes enhancement of miRNA function (miRNA replacement therapy)
by: (1) The use of modified miRNA mimetics,  such as plasmids; or (2) Lentiviral
vectors carrying miRNA sequences[147] (Figure 5).

Currently available therapeutic strategies based on the level of miRNA and its
function in a cancer cell include transfection of mimic miRNAs or miRNA inhibitors
in vitro, which have the effect of increasing or decreasing the expression level of the
candidate miRNA, respectively. Therapy based on modulation of miRNA levels is at a
promising  early  ex  vivo  stage.  An effective  method of  delivering  inhibitors  and
activators of miRNA expression to leukemia cells has not yet been developed. The
safety and efficacy of such a therapy have not been studied, and it  is  difficult  to
predict the long-term effects of such a treatment.

CONCLUSION
Research using miRNA profiling in disease is currently in an intensive phase, and this
technique shows important and promising directions for future research. As our
knowledge of  the mechanisms and course of  childhood AL increases along with
advances  in  genetics  and  molecular  biology  and  the  development  of  sensitive
analytical  methods,  the  accurate  assessment  of  their  real  relationship with  long
oncological results in the near future may be possible.

Research on miRNA patterns at individual stages of leukemogenesis can lead to a
better understanding of the disease process itself, as well as to the development of
modern  classification  and  more  effective  therapy.  As  shown,  miRNAs  are
differentially expressed in distinct stages of lymphopoiesis and myelopoiesis and
provide a new look at the molecular pathways leading to AL development and the
molecular pathogenesis of pediatric ALs. The aberrant miRNA signatures observed in
AL can be used to define biomarkers for diagnosis,  classification, prognosis,  and
therapy monitoring of this disease. MiRNA expression level monitoring carried out in
the last two decades has shown that hematological cancers can be precisely classified
based  on  a  genetic  signature  that  is  associated  with  morphological,  immu-
nophenotypic, cytogenetic, molecular, and other cellular traits. Circulating miRNAs
can be detected with the use of noninvasive and easily applicable methods with high
accuracy and sensitivity.

WJCO https://www.wjgnet.com June 24, 2020 Volume 11 Issue 6

Szczepanek J. miRNA as a biomarker in pediatric AL

361



Figure 5

Figure 5  Schematic strategy for the development of new therapeutic protocols to modulate the biological
activity of microRNAs. This approach involves several mechanisms of the downregulation of oncomiRNAs or the
upregulation/mimicking of oncosuppressor microRNAs (modified from Gokani et al[153], with the permission of the
author). miRNAs: microRNAs.

MiRNAs  are  becoming  increasingly  popular  among  scientists  and  onco-
hematologists due to their important role in the etiology of AL. However, the prospect
of their routine use in diagnostics requires further research to identify a small group
of  sensitive  and  specific  biomarkers  of  diagnostic  and  prognostic  significance.
Undoubtedly, the results of numerous studies indicate a few promising candidates,
but nevertheless, there is still no one single miRNA or small set that has an accuracy
close  to  100%  to  diagnose  AL  or  differentiate  its  subtypes,  regardless  of  other
diagnostic factors. A much more promising direction for further research on miRNAs
is to utilize their potential for effective and personalized medicine. In the case of
miRNA, the therapeutic challenge is also to improve targeting (one miRNA usually
regulates the expression of many genes) as well as to increase the circulation time of
the molecule. The therapeutic use of miRNA therefore requires a combination with a
suitable nanoparticle that directs miR as well as protects against inactivation and
degradation[148].

One of the trends in modern diagnostics and antileukemia therapy is the exact use
of nanotechnology, which primarily offers the opportunity to improve sensitivity,
selectivity,  and  bioavailability  and  thus  effectiveness [149].  The  advantage  of
nanoparticles  is  their  size,  which  allows  them to  cross  biological  barriers  more
effectively. Anticancer drug components include new classes of therapeutic agents
such as  small  interfering  RNA,  miRs,  and single  strand DNA[148].  An additional
improvement is the possibility of functionalizing the surface of the nanoconstruct
with  specific  ligands[150].  Nevertheless,  nanomedicine  is  the  domain  of  solid
tumors[149,151].  In  the  case  of  leukemia,  however,  nanoconstructions  are  used  as
noninvasive  methods  of  diagnosis  and  treatment.  An  example  would  be  the
construction of a modern nanoparticle containing antagomiR-126 [nanoconjugate:
LNP@antagomiR126@Anti-CD45.2 (lipopolyplex NPs)] for adult AML therapy[152].

Nevertheless, the introduction of miRNA assays into diagnostics and therapy is a
challenge and requires further refinement, above all, of analysis standards. In this
field,  convergent  results  of  analyses  of  various  research  teams  obtained  in
independent groups of patients with AL diagnosis are a great achievement. This is
possible despite conducting the experiment in different conditions and with different
parameters in independent diagnostic laboratories. Therefore, the possibility of using
miRNA in the classification and assessment of risk groups in the case of childhood AL
does exist. Significant technical progress does not go hand in hand with clinical trials.
There  is  a  long  way  to  go  in  understanding  miRNA  regulatory  mechanisms  in
childhood AL. We still need to acquire and integrate data in the field of miRNA-
mRNA–protein interaction, phenotypic observation, posttranscriptional regulatory
interactions,  and  functional  analysis[15].  Much  effort  should  also  be  made  to
standardize and validate laboratory procedures for determining miRNA levels.

Finally, although the survival rates for pediatric ALs has improved, there is still a
need for identifying novel reliable, sensitive, and specific molecular markers, such as
miRNAs, that can be used in a personalized approach to early diagnosis (perhaps

WJCO https://www.wjgnet.com June 24, 2020 Volume 11 Issue 6

Szczepanek J. miRNA as a biomarker in pediatric AL

362



even prevention), risk group stratification, and prediction of treatment response.
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