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Abstract
BACKGROUND 
Sodium glucose cotransporter 2 (SGLT2) inhibitors are newly developed oral 
antidiabetic drugs. SGLT2 is primarily expressed in the kidneys and reabsorbs 
approximately 90% of the glucose filtered by the renal glomeruli. SGLT2 
inhibitors lower glucose levels independently of insulin action by facilitating 
urinary glucose excretion. The SGLT2 inhibitor ipragliflozin has reportedly 
improved liver steatosis in animal models and clinical studies. However, the 
mechanisms by which SGLT2 inhibitors improve liver steatosis are not fully 
understood.

AIM 
To investigate the ameliorative effects of ipragliflozin on liver steatosis and the 
mechanisms of these effects in obese mice.

METHODS 
We analyzed 8-wk-old male obese (ob/ob) mice that were randomly divided into a 
group receiving a normal chow diet and a group receiving a normal chow diet 
supplemented with ipragliflozin (3 mg/kg or 10 mg/kg) for 4 wk. We also 
analyzed their lean sex-matched littermates receiving a normal chow diet as 

https://www.f6publishing.com
https://dx.doi.org/10.4254/wjh.v12.i7.350
http://orcid.org/0000-0001-8417-1461
http://orcid.org/0000-0001-8417-1461
http://orcid.org/0000-0002-3202-7983
http://orcid.org/0000-0002-3202-7983
http://orcid.org/0000-0000-1111-1111
http://orcid.org/0000-0000-1111-1111
http://orcid.org/0000-0003-1256-1182
http://orcid.org/0000-0003-1256-1182
http://orcid.org/0000-0001-7648-8864
http://orcid.org/0000-0001-7648-8864
http://orcid.org/0000-0002-1646-2344
http://orcid.org/0000-0002-1646-2344
http://orcid.org/0000-0003-0560-5669
http://orcid.org/0000-0003-0560-5669
http://orcid.org/0000-0002-8633-2983
http://orcid.org/0000-0002-8633-2983
http://orcid.org/0000-0002-8633-2983
http://orcid.org/0000-0003-0224-7093
http://orcid.org/0000-0003-0224-7093
http://orcid.org/0000-0003-0224-7093
http://orcid.org/0000-0003-2443-6645
http://orcid.org/0000-0003-2443-6645
http://orcid.org/0000-0001-7812-7034
http://orcid.org/0000-0001-7812-7034
http://orcid.org/0000-0003-4426-2670
http://orcid.org/0000-0003-4426-2670
http://orcid.org/0000-0001-8809-8740
http://orcid.org/0000-0001-8809-8740
http://orcid.org/0000-0001-8809-8740
http://orcid.org/0000-0002-4425-4331
http://orcid.org/0000-0002-4425-4331
http://orcid.org/0000-0002-4425-4331
mailto:satoken@gunma-u.ac.jp


Suga T et al. SGLT2 inhibitor and sirtuin signaling

WJH https://www.wjgnet.com 351 July 27, 2020 Volume 12 Issue 7

University Animal Care and 
Experimentation Committee and 
the Gunma University Safety 
Committee for Recombinant DNA 
Experiments prior to the 
experiments under approval 
numbers 15-016 and 15-030, 
respectively.

Conflict-of-interest statement: 
Ipragliflozin was provided by 
Astellas Pharma, Inc. (Japan). 
Satoru Kakizaki received lecture 
fees from Astellas Pharma, Inc. 
Masanobu Yamada received 
lecture fees and research funding 
from Astellas Pharma, Inc., outside 
the submitted work. Tadahiro 
Kitamura received research 
funding from Astellas Pharma, 
Inc., outside the submitted work.

Data sharing statement: No 
additional data are available.

ARRIVE guidelines statement: The 
authors have read the ARRIVE 
guidelines, and the manuscript 
was prepared and revised 
according to the ARRIVE 
guidelines.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/licenses
/by-nc/4.0/

Manuscript source: Invited 
manuscript

Received: February 27, 2020 
Peer-review started: February 27, 
2020 
First decision: April 22, 2020 
Revised: May 20, 2020 
Accepted: June 2, 2020 
Article in press: July 27,2020 
Published online: July 27, 2020

another control group. Body weight and liver weight were evaluated, and liver 
histology, immunoblotting, and reverse transcription-polymerase chain reaction 
analyses were performed.

RESULTS 
Hepatic lipid accumulation was significantly ameliorated in ob/ob mice treated 
with 10 mg/kg ipragliflozin compared to untreated ob/ob mice irrespective of 
body weight changes. Ipragliflozin had no appreciable effects on hepatic oxidative 
stress-related gene expression levels or macrophage infiltration, but significantly 
reduced hepatic interleukin-1β (IL-1β) mRNA expression levels. Ipragliflozin 
increased both the mRNA and protein expression levels of sirtuin 1 (SIRT1) in the 
liver. The hepatic mRNA levels of peroxisome proliferator-activated receptor γ 
coactivator 1α (PGC-1α), peroxisome proliferator-activated receptor α (PPARα), 
and fibroblast growth factor-21 (FGF21) were also significantly higher in 
ipragliflozin-treated ob/ob mice than in untreated ob/ob mice.

CONCLUSION 
Our study suggests that the liver steatosis-ameliorating effects of ipragliflozin in 
ob/ob mice may be mediated partly by hepatic SIRT1 signaling, possibly through 
the PGC-1α/PPARα-FGF21 pathway.

Key words: Selective sodium glucose cotransporter 2; Nonalcoholic fatty liver disease; 
Sirtuin 1; Peroxisome proliferator-activated receptor γ coactivator 1α; Peroxisome 
proliferator-activated receptor α; Fibroblast growth factor-21

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The selective sodium glucose cotransporter 2 inhibitor ipragliflozin significantly 
ameliorated hepatic lipid accumulation in genetically obese (ob/ob) mice and increased 
both the mRNA and protein expression levels of sirtuin 1 (SIRT1), a NAD+-dependent 
protein deacetylase with numerous substrates, in the liver. Ipragliflozin also significantly 
increased the hepatic mRNA levels of peroxisome proliferator-activated receptor γ 
coactivator 1α (PGC-1α), peroxisome proliferator-activated receptor α (PPARα), and 
fibroblast growth factor-21 (FGF21). The liver steatosis-attenuating effects of ipragliflozin 
in ob/ob mice may have been mediated partly by hepatic SIRT1 signaling, possibly 
through the PGC-1α/PPARα-FGF21 pathway.

Citation: Suga T, Sato K, Ohyama T, Matsui S, Kobayashi T, Tojima H, Horiguchi N, 
Yamazaki Y, Kakizaki S, Nishikido A, Okamura T, Yamada M, Kitamura T, Uraoka T. 
Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin 
signaling. World J Hepatol 2020; 12(7): 350-362
URL: https://www.wjgnet.com/1948-5182/full/v12/i7/350.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i7.350

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD), a hepatic manifestation of metabolic 
syndrome, is a common chronic liver disease. It includes isolated fatty liver and 
nonalcoholic steatohepatitis (NASH), the latter of which can progress to cirrhosis and 
liver cancer in some individuals[1]. This disease is associated with obesity, insulin 
resistance, and type 2 diabetes mellitus (T2DM). As lifestyles have become 
increasingly sedentary and dietary patterns have changed, the worldwide prevalence 
of NAFLD has dramatically increased[2]. The most challenging problem is that no 
pharmacological therapies have been established for NAFLD so far[3].

Sodium glucose cotransporter 2 (SGLT2) inhibitors are newly developed oral 
antidiabetic drugs. SGLT2 is primarily expressed in the kidneys and reabsorbs 
approximately 90% of the glucose filtered by the renal glomeruli. SGLT2 inhibitors, 
which lower glucose levels independently of insulin action by facilitating the excretion 
of glucose in urine, are expected to become candidate therapeutic agents not only for 
T2DM but also for NASH/NAFLD[4,5]. Ipragliflozin is a selective SGLT2 inhibitor that 
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is orally administered. Previous reports have shown that ipragliflozin improves liver 
steatosis in animal models[6-8] and clinical settings[9,10]. However, the mechanisms by 
which SGLT2 inhibitors improve liver steatosis are not fully understood.

Recently, chronic administration of an SGLT2 inhibitor was reported to drive a fuel 
shift, decreasing tissue glucose disposal and increasing lipid use[11]. Therefore, we 
hypothesized that sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase with 
numerous substrates, might be associated with the amelioration of liver steatosis by 
SGLT2 inhibitors. SIRT1 plays important roles in controlling energy homeostasis and 
longevity in mammals[12,13]. For example, SIRT1 improves sensitivity to both leptin and 
insulin, which act on proopiomelanocortin neurons to increase sympathetic activity 
toward adipose tissues and to promote the browning of white fat, and is involved in 
energy and glucose homeostasis[14]. Pharmacological activation of SIRT1 signaling 
reportedly ameliorates fatty liver[15,16]. In contrast, hepatocyte-specific deletion of SIRT1 
impairs peroxisome proliferator-activated receptor α (PPARα) signaling, decreases 
fatty acid β-oxidation, and results in liver steatosis and inflammation[17]. Peroxisome 
proliferator-activated receptor γ coactivator 1α (PGC-1α), a key coactivator for PPARα 
signaling[18], is known to be a direct substrate of SIRT1[19]. PGC-1α interacts with 
multiple transcription factors to enhance mitochondrial metabolic capacity[20]. 
Moreover, hepatic SIRT1 attenuates liver steatosis and controls energy balance by 
inducing the activation of fibroblast growth factor-21 (FGF21)[21]. Hepatic FGF21 is 
regulated by PPARα and is a key mediator of hepatic metabolism[22]. All of the above 
findings suggest that the SIRT1-PGC-1α/PPARα-FGF21 pathway is important in lipid 
homeostasis in the liver.

It has not been fully elucidated whether the amelioration of liver steatosis mediated 
by the SGLT2 inhibitor ipragliflozin is associated with SIRT1 signaling. The objectives 
of our study were thus to evaluate the in vivo effects of the selective SGLT2 inhibitor 
ipragliflozin on liver steatosis and to investigate the mechanisms by which this SGLT2 
inhibitor improves liver steatosis in obese (ob/ob) mice. In particular, the primary 
experimental aim was to clarify the role of SIRT1 signaling in ipragliflozin-mediated 
attenuation of liver steatosis in ob/ob mice.

MATERIALS AND METHODS
Animals and animal treatment protocol
We purchased 6-wk-old male ob/ob mice and their lean sex-matched littermates from 
Charles River Co., Ltd. (Yokohama, Japan). All mice were kept under a 12:12 h light-
dark cycle with free access to food and water. After the mice had acclimated to the 
rearing environment for 2 wk, they were fed a normal chow diet (CLEA Rodent Diet 
CE-2) from CLEA Japan, Inc. (Tokyo, Japan). The diet was changed to a normal chow 
diet (D12450B) from Research Diets (Tokyo, Japan) or an ipragliflozin-supplemented 
D12450B chow diet when the mice were 8 wk old. The treatment groups were 
composed of ob/ob mice that were fed a normal chow diet only or a normal chow diet 
supplemented with one of two different doses of ipragliflozin (3 mg/kg or 10 mg/kg, 
Astellas Pharma Inc., Tokyo, Japan), and the control group was composed of lean 
littermates fed a normal chow diet. The ob/ob mice were randomly assigned to the 3 
treatment groups, each of which comprised 8 mice. After 4 weeks of feeding, all mice 
were sacrificed, total liver resection was performed, and the specimens were analyzed. 
For verification of SGLT2 mRNA expression, liver and kidney specimens were 
obtained from C57BL/6 mice purchased from Charles River Laboratories Japan, Inc.

Histological analysis
We used Oil Red O staining to evaluate liver fat deposition in paraffin-embedded liver 
tissue specimens. The ImageJ software (NIH) image software program was used to 
quantify the Oil Red O-stained areas in 8 microscopic fields at 400-fold magnification.

Immunoblot analyses
Proteins extracted from liver tissue were resolved via polyacrylamide gel 
electrophoresis, and the separated proteins in the gels were transferred to 
nitrocellulose membranes. The membranes were then probed with primary antibodies 
against SIRT1 (Merck, Tokyo, Japan), α-tubulin (Santa Cruz Biotechnology, Inc., TX, 
United States), phospho-AMP-activated protein kinase (AMPK), and total AMPK (Cell 
Signaling Technology Japan, K. K., Tokyo, Japan). The membranes were then 
incubated with corresponding horseradish peroxidase-conjugated secondary 
antibodies. The immunoreactive proteins were assessed with an LAS-4000 Image 



Suga T et al. SGLT2 inhibitor and sirtuin signaling

WJH https://www.wjgnet.com 353 July 27, 2020 Volume 12 Issue 7

analyzer (FUJIFILM Holdings Corporation, Tokyo, Japan), and densitometry was 
performed using NIH.

Quantitative reverse transcription-polymerase chain reaction analysis
An RNAiso Plus kit (Takara Bio Inc., Shiga, Japan) was used for total RNA isolation. 
An Improm-II Reverse Transcription System (Promega Japan, Tokyo, Japan) was used 
for reverse transcription of isolated RNA into cDNA. cDNA samples (1 μg) were 
subjected to reverse transcription-polymerase chain reaction (RT-PCR) with a PCR Kit 
(TaKaRa) or to quantitative PCR with an Applied Biosystems ViiATM 7 Real-Time PCR 
System (Life Technologies Japan, Ltd., Tokyo, Japan) and PowerUpTM SYBRTM Green 
Master Mix (Fisher Scientific International, Inc., Pittsburgh, PA, United States). The 
specific primer sequences are listed in Table 1. The target mRNA expression levels 
were assessed relative to mouse β-actin mRNA (control gene) levels.

Statistical analysis
All data are presented as the mean ± SD. Multiple comparisons were performed with 
analysis of variance followed by post hoc tests, as appropriate. P values of less than 
0.05 were considered to indicate statistical significance.

RESULTS
Ipragliflozin reduced hepatic lipid accumulation regardless of body weight changes 
in ob/ob mice
All mice showed sensitive reactions, normal movement, normal appetite, normal stool, 
and stable breathing at the start of the experiment. The mice did not show any adverse 
events during the experiment, and no modifications of the experimental protocols 
were necessary.

We first tested whether ipragliflozin improved liver steatosis in ob/ob mice. There 
were no significant changes in body weight in either the 3 mg/kg or the 10 mg/kg 
ipragliflozin-treated ob/ob mice compared with the untreated ob/ob mice after 4 wk of 
treatment (Figure 1A). In addition, ipragliflozin did not significantly change the ratio 
of liver weight to body weight at the end of the experimental period (Figure 1B). On 
the other hand, we found that the livers of the 10 mg/kg ipragliflozin-treated ob/ob 
mice had significantly lower Oil Red O-stained areas than those of the untreated ob/ob 
mice (Figure 2). These results indicated that ipragliflozin improved liver steatosis 
irrespective of body weight changes.

Ipragliflozin increased hepatic SIRT1 protein expression levels in ob/ob mice
To elucidate the mechanism by which ipragliflozin improved liver steatosis in ob/ob 
mice, we examined the protein expression levels of hepatic SIRT1. Interestingly, 
compared with no treatment, ipragliflozin treatment significantly increased hepatic 
SIRT1 protein expression levels by approximately 2-fold in ob/ob mice (Figure 3). These 
results suggested that ipragliflozin upregulated the protein expression of SIRT1 in the 
livers of ob/ob mice.

Ipragliflozin-mediated attenuation of liver steatosis in ob/ob mice was associated 
with SIRT1 signaling
Based on the abovementioned effect of ipragliflozin on the hepatic expression of SIRT1 
protein, we analyzed the role of the SIRT1-PGC-1α/PPARα-FGF21 pathway in our 
mouse model. Specifically, we examined the mRNA expression levels of SIRT1, PGC-
1α, PPARα, and FGF21 in the liver. Consistent with the findings regarding hepatic 
SIRT1 protein expression, we found that hepatic SIRT1 mRNA expression was 
significantly higher in 10 mg/kg ipragliflozin-treated ob/ob mice than in untreated 
ob/ob control mice (Figure 4A). Moreover, we found that liver PGC-1α, PPARα, and 
FGF21 mRNA expression was significantly higher in ipragliflozin-treated ob/ob mice 
than in untreated ob/ob control mice (Figure 4B-D). On the other hand, the hepatic 
mRNA levels of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), key 
regulators of de novo hepatic lipogenesis, did not significantly differ between the 
ipragliflozin-treated ob/ob mice and the untreated ob/ob control mice (Figure 4E and F). 
These results indicated that the ameliorative effects of ipragliflozin on liver steatosis 
were possibly mediated by the SIRT1-PGC-1α/PPARα-FGF21 pathway.
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Table 1 Sequences of the primers used for reverse transcription-polymerase chain reaction

Forward primer sequence Reverse primer sequence

SIRT1 5’-GTA AGC GGC TTG AGG G-3’ 5’-TTC GGG CCT CTC CGT A-3’

PGC-1α 5’-TTG ACT GGC GTC ATT CGG GAG-3’ 5’-ATC TGG GCA AAG AGG CTG GTC-3’

PPARα 5’-AGG AAG CCG TTC TGT GAC AT-3’ 5’-TTG AAG GAG CTT TGG GAA GA-3’

FGF21 5’-AGA TCA GGG AGG ATG GAA CA-3’ 5’-TCA AAG TGA GGC GAT CCA TA-3’

FAS 5’-ACC ACT GCA TTG ACG GCC GG-3’ 5’-GGG TCA GGC GGG AGA CCG AT-3’

ACC 5’-GGG CAC AGA CCG TGG TAG TT-3’ 5’-CAG GAT CAG CTG GGA TAC TGA-3’

ACOX1 5’-TGG TAT GGT GTC GTA CTT GAA TGA C-3’ 5’-AAT TTC TAC CAA TCT GGC TGC AC-3’

ACS 5’-AAA GAT GGC TGG TTA CAC ACG-3’ 5’-CGA TAA TCT TCA AGG TGC CAT T-3’

CPT1 5’-CCC TGG GCA TGA TTG CAA-3’ 5’-AAG AGG ACG CCA CTC ACG AT-3’

CPT2 5′-CAG ACA GTG GCT ACC TAT GAA TCC T-3′ 5′-TGG TCA GCT GGC CAT GGT ATT TGG A-3′

Nox2 5′-GAA AAC TCC TTG GGT CAG CAC T-3′ 5′-ATT TCG ACA CAC TGG CAG CA-3′

GPx-1 5′-TTA CAT TGT TTG AGA AGT GCG A-3′ 5′-CAA AGT TCC AGG CAA TGT C-3′

SOD-1 5′-CAT TCC ATC ATT GGC CGT-3′ 5′-TCA GAC CAC ACA GGG AAT GTT TA-3′

SOD-2 5′-TGT ATA TCT CTG GAG AAC TGG AC-3′ 5′-GGC CCT CTT GTG ACT GTA A-3′

IL-1β 5′-AAA CGG TTT GTC TTC AAC-3′ 5′-ATG GTG AAG TCA ATT ATG TC-3′

F4/80 5′-CAT CTT GCT GGA GAC TGT-3′ 5′-CTG CCA AGT TAA TGG ACT CA-3′

β-actin 5’-AGC CTT CCT TCT TGG GTA-3’ 5’-GAG CAA TGA TCT TGA TCT TC-3’

ACC: Acetyl-CoA carboxylase; ACOX1: Acyl-CoA oxidase 1; ACS: Acyl-CoA synthetase; CPT1: Carnitine palmitoyltransferase 1; CPT2: Carnitine 
palmitoyltransferase 2; FAS: Fatty acid synthase; FGF21: Fibroblast growth factor-21; GPx-1: Glutathione peroxidase 1; IL-1β: Interleukin-1β; Nox2: 
NADPH oxidase 2; PGC-1α: Peroxisome proliferator-activated receptor γ coactivator 1α; PPARα: Peroxisome proliferator-activated receptor α; SIRT1: 
Sirtuin 1; SOD-1: Superoxide dismutase 1; SOD-2: Superoxide dismutase 2.

Figure 1  Body weights and liver-to-body weight ratios of obese mice treated with or without ipragliflozin and their lean littermates. A: 
Body weights of mice in the lean, obese (ob/ob), ob/ob + ipragliflozin 3 mg/kg, and ob/ob + ipragliflozin 10 mg/kg groups at the end of therapy; B: Liver-to-body 
weight ratios of mice in the lean, ob/ob, ob/ob + ipragliflozin 3 mg/kg, and ob/ob + ipragliflozin 10 mg/kg groups at the end of therapy. NS: Not significant; ob/ob: 
Obese; Ipra: Ipragliflozin. n = 8.

Ipragliflozin increased the mRNA expression levels of β-oxidation-related enzymes 
in ob/ob mice
Furthermore, we analyzed the mRNA expression levels of β-oxidation-related 
enzymes in our mouse model. We found that the hepatic mRNA expression levels of 
acyl-CoA oxidase 1  (ACOX1),  acyl-CoA synthetase (ACS),  carnit ine 
palmitoyltransferase (CPT) 1, and CPT2 were significantly higher in 10 mg/kg 
ipragliflozin-treated ob/ob mice than in untreated ob/ob control mice (Figure 5A-D). 
These results suggested that ipragliflozin increased both peroxisomal and 
mitochondrial β-oxidation in ob/ob mice.
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Figure 2  Evaluation of liver histology in obese mice treated with or without ipragliflozin and their lean littermates. A: Representative hepatic 
histology of mice in the lean, obese (ob/ob), ob/ob + ipragliflozin 3 mg/kg, and ob/ob + ipragliflozin 10 mg/kg groups at the end of therapy. The liver sections were 
stained with Oil Red O; B: Results of quantitative histomorphometric analysis of the total hepatic lipid content for each experimental group. The Oil Red O-stained 
areas were quantified in 8 microscopic fields at 400-fold magnification. bP < 0.01 vs the ob/ob group. ob/ob: Obese; Ipra: Ipragliflozin.

Figure 3  Hepatic sirtuin 1 protein expression in obese mice treated with or without ipragliflozin and their lean littermates. A: Representative 
western blot showing the expression of hepatic sirtuin 1 (SIRT1) protein at the end of the treatment period; B: The bar graph below shows the expression of SIRT1 
normalized to α-tubulin. bP < 0.01 vs the ob/ob group. Ipra: Ipragliflozin; ob/ob: Obese; SIRT1: Sirtuin 1; α-TUB: α-tubulin. n = 8.

Ipragliflozin decreased the mRNA expression levels of interleukin-1β but had no 
appreciable effects on those of oxidative stress-related genes or macrophage 
marker in ob/ob mice
We also analyzed oxidative stress, inflammatory cytokine levels, and macrophage 
infiltration in our mouse model. Treatment with 3 mg/kg ipragliflozin significantly 
increased the hepatic mRNA levels of NADPH oxidase 2 (Nox2), but treatment with 10 
mg/kg ipragliflozin did not (Figure 5E). The hepatic mRNA levels of glutathione 
peroxidase 1, superoxide dismutase (SOD)-1, or SOD-2, key regulators of oxidative 
stress, did not significantly differ between ipragliflozin-treated ob/ob mice and 
untreated ob/ob control mice (Figure 5F-H). Ipragliflozin decreased the mRNA 
expression levels of interleukin-1β (IL-1β) in ob/ob mice (Figure 5I). However, the 
hepatic mRNA expression levels of F4/80 were unchanged by ipragliflozin treatment 
(Figure 5J).
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Figure 4  Hepatic mRNA expression of genes related to sirtuin 1 signaling in obese mice treated with or without ipragliflozin and their 
lean littermates. A: Hepatic mRNA expression of sirtuin 1 in obese (ob/ob) mice treated with or without ipragliflozin and their lean littermates; B: Hepatic mRNA 
expression of peroxisome proliferator-activated receptor γ coactivator 1α in ob/ob mice treated with or without ipragliflozin and their lean littermates; C: Hepatic 
mRNA expression of peroxisome proliferator-activated receptor α in ob/ob mice treated with or without ipragliflozin and their lean littermates; D: Hepatic mRNA 
expression of fibroblast growth factor-21 in ob/ob mice treated with or without ipragliflozin and their lean littermates; E: Hepatic mRNA expression of fatty acid 
synthase in ob/ob mice treated with or without ipragliflozin and their lean littermates; F: Hepatic mRNA expression of acetyl-CoA carboxylase in ob/ob mice treated 
with or without ipragliflozin and their lean littermates. aP < 0.05, bP < 0.01 vs the ob/ob group. ACC: Acetyl-CoA carboxylase; FAS: Fatty acid synthase; FGF21: 
Fibroblast growth factor-21; Ipra: Ipragliflozin; NS: Not significant; PPARα: Peroxisome proliferator-activated receptor α; PGC-1α: Peroxisome proliferator-activated 
receptor γ coactivator 1α; ob/ob: Obese; SIRT1: Sirtuin 1. n = 8.

SGLT2 was expressed in the kidneys but not in the liver
We next investigated why hepatic SIRT1 signaling was increased in ipragliflozin-
treated mice. We hypothesized that ipragliflozin increased hepatic SIRT1 signaling by 
directly inhibiting SGLT2 in the mouse liver. Therefore, we tested whether SGLT2 was 
expressed in the livers of mice. RT-PCR revealed that SGLT2 was expressed in mouse 
kidneys but not in mouse livers (Figure 6A).

Ipragliflozin increased AMPK activation in the whole liver
We further assessed the effects of ipragliflozin treatment on the activation of AMPK, a 
major metabolic energy sensor and master regulator of metabolic homeostatic 
processes, including SIRT1 signaling[23]. Interestingly, ipragliflozin significantly 
increased the activation of AMPK in whole livers obtained from mice in the treated 
groups (Figure 6B and C).

DISCUSSION
In our study, the SGLT2 inhibitor ipragliflozin ameliorated hepatic lipid accumulation 
in a manner associated with hepatic SIRT1 signaling in an experimental obese mouse 
model. It was unlikely that the inhibitory effect of ipragliflozin on liver steatosis was 
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Figure 5  Hepatic mRNA expression of genes related to β-oxidation, oxidative stress, inflammatory cytokine, and macrophage marker in 
obese mice treated with or without ipragliflozin and their lean littermates. A: Hepatic mRNA expression of acyl-CoA oxidase 1 in obese (ob/ob) mice 
treated with or without ipragliflozin and their lean littermates; B: Hepatic mRNA expression of acyl-CoA synthetase in ob/ob mice treated with or without ipragliflozin 
and their lean littermates; C: Hepatic mRNA expression of carnitine palmitoyltransferase 1 in ob/ob mice treated with or without ipragliflozin and their lean littermates; 
D: Hepatic mRNA expression of carnitine palmitoyltransferase 2 in ob/ob mice treated with or without ipragliflozin and their lean littermates; E: Hepatic mRNA 
expression of NADPH oxidase 2 in ob/ob mice treated with or without ipragliflozin and their lean littermates; F: Hepatic mRNA expression of glutathione peroxidase 1 
in ob/ob mice treated with or without ipragliflozin and their lean littermates; G: Hepatic mRNA expression of superoxide dismutase 1 in ob/ob mice treated with or 
without ipragliflozin and their lean littermates; H: Hepatic mRNA expression of superoxide dismutase 2 in ob/ob mice treated with or without ipragliflozin and their lean 
littermates; I: Hepatic mRNA expression of interleukin-1β in ob/ob mice treated with or without ipragliflozin and their lean littermates; J: Hepatic mRNA expression of 
F4/80 in ob/ob mice treated with or without ipragliflozin and their lean littermates. aP < 0.05, bP < 0.01 vs the ob/ob group. NS: Not significant; ob/ob: Obese; Ipra: 
Ipragliflozin; ACOX1: Acyl-CoA oxidase 1; ACS: Acyl-CoA synthetase; CPT-1: Carnitine palmitoyltransferase 1; CPT-2: Carnitine palmitoyltransferase 2; GPx-1: 
Glutathione peroxidase 1; IL-1β: Interleukin-1β; Ipra: Ipragliflozin; Nox2: NADPH oxidase 2; SOD-1: Superoxide dismutase 1; SOD-2: Superoxide dismutase 2. n = 8.

mediated by a decrease in body weight because ipragliflozin did not significantly 
affect body weight in the mouse model. Some SGLT2 inhibitors (empagliflozin, 
dapagliflozin, and canagliflozin) are generally reported to cause weight loss in obese 
mice and rats[24-26]. However, consistent with previous reports[7,8], our results showed 
that ipragliflozin did not significantly alter body weight in obese mice (Figure 1A). It is 
possible that there are pharmacologic differences among SGLT2 inhibitors that cause 
them to have different effects on body weight. Further studies are required to confirm 
this hypothesis.

The ameliorative effect of ipragliflozin on fatty liver in our experimental obese 
mouse model may have involved upregulation of the SIRT1 protein and subsequent 
enhancement of hepatic SIRT1 signaling. This hypothetical mechanism is supported by 
the following evidence: 1) hepatic SIRT1 protein expression levels in ob/ob mice were 
significantly increased by ipragliflozin treatment, and 2) activation of the SIRT1-PGC-
1α/PPARα-FGF21 pathway was observed by mRNA expression analysis after 
ipragliflozin treatment. Ipragliflozin-mediated activation of the SIRT1-PGC-
1α/PPARα-FGF21 pathway might result in promotion of mitochondrial fatty acid β-
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Figure 6  Hepatic and renal mRNA expression of sodium glucose cotransporter 2 and phosphorylation of AMP-activated protein kinase in 
whole livers of obese mice treated with or without ipragliflozin and their lean littermates. A: Reverse transcription-polymerase chain reaction 
analysis of SGLT2 expression in mouse livers and kidneys; B: Representative western blot showing the levels of phosphorylated phospho-AMP-activated protein 
kinase (p-AMPK) at the end of the 4-wk period of ipragliflozin treatment; C: The expression of p-AMPK protein was normalized to that of t-AMPK protein. aP < 0.05 vs 
the ob/ob group. Ipra: Ipragliflozin; p-AMPK: Phospho AMP-activated protein kinase; SGLT2: Sodium glucose cotransporter 2; t-AMPK: Total AMP-activated protein 
kinase. n = 8.

oxidation and could account for the attenuation of liver steatosis in ob/ob mice. This 
mechanism is supported by a prior study demonstrating that ipragliflozin increases 
the hepatic mRNA expression levels of PPARα, a marker of lipid outflow, in Amylin 
liver NASH model mice[7]. Moreover, the SGLT2 inhibitor empagliflozin has been 
reported to increase the hepatic mRNA levels of PGC-1α and FGF21 in mice with high-
fat-diet-induced obesity[24]. However, a recent clinical study on NAFLD patients with 
T2DM reported that treatment with the SGLT2 inhibitor dapagliflozin decreased 
plasma FGF21 levels, while treatment with a combination of dapagliflozin and omega-
3 carboxylic acids did not[27]. FGF21 contributes to the regulation of mitochondrial 
activity and lipolysis in white adipose tissue[23,28] and increases fatty acid oxidation in 
the liver[22]. Therefore, an increase in FGF21 in the liver following therapy with 
ipragliflozin may promote fat utilization. On the other hand, ipragliflozin did not 
change the hepatic mRNA expression levels of FAS and ACC, markers of lipid inflow, 
probably because it promoted hepatic fatty acid oxidation without suppressing de novo 
hepatic lipogenesis in ob/ob mice. However, a previous report showed that the 
expression levels of FAS and ACC, which are upregulated in C57BL/6J wild-type mice 
fed a high-fat diet, are significantly suppressed by ipragliflozin[8]. The exact reason for 
the inconsistency among these findings is unknown but might be related to the 
differences between genetically engineered and wild-type mice or the differences 
between the ipragliflozin administration methods used (dietary supplementation vs 
drinking water supplementation).

Ipragliflozin did not significantly change the expression levels of oxidative stress-
related genes, with the exception of Nox2, the mRNA expression levels of which were 
altered in 3 mg/d ipragliflozin-treated livers; these findings are contradictory to the 
findings of a previous study[29]. In addition, ipragliflozin did not significantly change 
macrophage infiltration based on the F4/80 mRNA expression data. In contrast, 
ipragliflozin significantly decreased IL-1β mRNA expression levels in the liver, 
consistent with the findings of a previous study[29]. However, the inhibitory effect of 
ipragliflozin on IL-1β mRNA expression was relatively small; thus, ipragliflozin might 
have no appreciable effects on oxidative stress. The exact causes of the discrepancy 
between our results and previous results regarding hepatic oxidative stress are 
unknown; however, differences in the mice and/or experimental protocols used might 
have affected the results.

To our knowledge, this is the first report to show that the therapeutic effects of the 
SGLT2 inhibitor ipragliflozin are associated with the hepatic expression of the SIRT1 
protein. Our findings are supported by a recent report to show that a decrease in renal 
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SIRT1 protein expression was rescued by treatment with the SGLT2 inhibitor 
canagliflozin in db/db mice[30]. However, because SGLT2 is expressed in the kidneys but 
has not been reported to be expressed in the liver, further studies are needed to 
elucidate whether the effects of ipragliflozin on the liver are direct or indirect. Because 
SIRT1 is an energy-sensing molecule responsible for the promotion of healthy 
longevity mediated by caloric restriction[14], it is possible that temporary calorie loss 
due to the urinary glucose excretion caused by ipragliflozin may stimulate hepatic 
SIRT1. Similar conclusions were reached by Kim et al[31]. In addition, AMPK enhances 
SIRT1 activity by increasing cellular NAD+ levels[32], and the interplay between SIRT1 
and AMPK is suggested to be reciprocal[33]. Several SGLT2 inhibitors, including 
canagliflozin, dapagliflozin, and empagliflozin, activate AMPK in HEK-293 cells, and 
canagliflozin activates AMPK in mouse livers in vivo[34]. Such findings are consistent 
with our finding that ipragliflozin significantly enhanced AMPK activation in our 
mouse model. The activation of hepatic SIRT1 might have been partly due to the 
activation of AMPK in our mouse model. Further investigation is needed to elucidate 
the mechanism by which hepatic SIRT1 signaling is activated after treatment with the 
SGLT2 inhibitor ipragliflozin.

In a previous study, the hepatic mRNA and protein expression levels of not only 
SIRT1 but also SIRT3, SIRT5, and SIRT6 were found to be lower in a human NAFLD 
group than in a control group[35]. Our findings from the comparison between the lean 
mouse group and the untreated ob/ob control mouse group regarding SIRT1 mRNA 
and protein expression are consistent with these results[35]. The previous finding that 
SIRT1 activators inhibit the expression of lipogenic genes such as FAS and ACC[36,37] 
and similar findings that FAS and ACC expressions are increased while hepatic SIRT1 
expression is repressed in the human NAFLD group[35] are also consistent with our 
data. Interestingly, the expression of SIRT4 has been found to be upregulated in 
humans with NAFLD compared with controls[35]. SIRT4 mediates fatty acid oxidation 
in liver cells[38] and inhibits the interaction of SIRT1 and PPARα to decrease fatty acid 
oxidation[38]. In our study, the mRNA expression levels of genes related to fatty acid 
oxidation, ACOX1, CPT1, ACS, and CPT2, were lower in untreated ob/ob control mice 
than in lean mice. These results suggest that the expression of SIRT4 might have been 
higher in untreated ob/ob control mice than in lean mice in our study.

The limitations of our study are that only one mouse model and only one SGLT2 
inhibitor were used. The mechanisms of the effects of SGLT2 inhibitors on NAFLD 
should be verified in the future using several animal models of NAFLD and additional 
SGLT2 inhibitors.

In conclusion, this study suggests that the liver steatosis-attenuating effects of 
ipragliflozin in ob/ob mice may be mediated partly by hepatic SIRT1 signaling, possibly 
through the PGC-1α/PPARα-FGF21 pathway. Because SGLT2 inhibitors are widely 
used in clinical practice and are characterized by good safety and tolerability profiles, 
treatment with these inhibitors may be an effective therapeutic strategy for patients 
with liver steatosis induced by T2DM.

ARTICLE HIGHLIGHTS
Research background
The sodium glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin has been reported 
to improve liver steatosis in animal models and clinical studies. However, the 
mechanisms by which SGLT2 inhibitors improve liver steatosis are not fully 
understood. To our knowledge, this is the first report to show that the therapeutic 
effects of the SGLT2 inhibitor ipragliflozin are associated with activation of sirtuin 1 
(SIRT1) signaling in the liver.

Research motivation
SGLT2 inhibitors are reportedly effective in fatty liver model mice as well as human 
nonalcoholic fatty liver disease patients. The mechanisms still need to be elucidated. 
Evaluating the mechanisms further may help identify molecules related to 
ameliorating fatty liver, allowing us to develop novel therapeutic strategies for fatty 
liver in the future.

Research objectives
The main objectives were to investigate the ameliorative effects of ipragliflozin on liver 
steatosis and the mechanisms of these effects in obese mice. Another objective was to 
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evaluate the effect of ipragliflozin on β-oxidation, oxidative stress, inflammatory 
cytokine, and macrophage infiltration in the liver. Our study confirms the ameliorative 
effects of SGLT2 inhibitors on liver steatosis and the previously proposed mechanisms, 
and proposes a new mechanism, which can promote further research.

Research methods
Obese (ob/ob) mice and their littermates received a normal chow diet or a normal chow 
diet plus 2 doses of ipragliflozin for 4 weeks. We examined lipid accumulation, β-
oxidation, oxidative stress, inflammatory cytokine, and macrophage infiltration in the 
liver. Ob/ob mice were suitable for this experiment as they developed fatty liver even 
when they received normal chow. In addition, we used two control mouse groups, 
ob/ob control mice that received ipragliflozin and ob/ob littermates. In particular, SIRT1 
signaling in the liver as a new candidate mechanism by which SGLT2 inhibitors 
improve liver steatosis was also assessed.

Research results
Amelioration of hepatic lipid accumulation by SGLT2 inhibitors was confirmed in our 
obese mouse model with ipragliflozin. Ipragliflozin-induced SIRT1 upregulation and 
SIRT1 signaling, which we propose might be involved in the mechanism by which 
ipragliflozin induces improvement of liver steatosis. The hypothesis should be further 
verified with different SGLT2 inhibitors in additional models and human samples. The 
observed effects of ipragliflozin on oxidative stress and macrophage infiltration, which 
were inconsistent with previous studies in the liver, need to be further evaluated.

Research conclusions
The new findings in our study are that SIRT1 signaling may be involved in

the mechanism of ipragliflozin-induced improvement of liver steatosis in ob/ob mice. 
Thus, our study offers a new mechanism of ipragliflozin-induced improvement of 
liver steatosis. To be more specific, our proposed theory (hypothesis) is that activation 
of SIRT1 signaling due to ipragliflozin may ameliorate liver steatosis in ob/ob mice. 
This hypothesis and new phenomena were confirmed in our obese mouse model. In 
summary, the liver steatosis-attenuating effects of ipragliflozin in ob/ob mice may be 
mediated partly by hepatic SIRT1 signaling, possibly through the PGC-1α/PPARα-
FGF21 pathway. The original insights into our results are that temporary calorie loss 
due to urinary glucose excretion caused by ipragliflozin may stimulate hepatic SIRT1, 
which might also be partly due to the activation of phospho-AMP-activated protein 
kinase in our mouse model. Our study provides additional evidence of SGLT2 
inhibitor-induced improvement of liver steatosis; thus, we think that SGLT2 inhibitors 
are likely to be beneficial in diabetes mellitus patients with fatty liver in clinical 
practice.

Research perspectives
We take particular note of the role of SIRT1 as it plays important roles in controlling 
energy homeostasis and longevity in mammals and because the regulation of SIRT1 
expression affects fatty liver. Thus, new target molecules that may be involved in 
amelioration of liver steatosis by SGLT2 inhibitors may be associated with energy 
homeostasis and longevity. We propose that future research should confirm our 
hypothesis using different animal models and human samples with different SGLT2 
inhibitors or by confirming that upregulation or downregulation of SIRT1 signaling by 
the different methods used in our model or previous studies alters hepatic lipid 
accumulation. Genetically engineered mice, such as SIRT1 knockout mice, may be one 
of the best ways to confirm our results, and could be used to evaluate ipragliflozin-
induced improvement of liver steatosis.
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