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Abstract
BACKGROUND 
Mesenchymal stem cells (MSCs) have been widely investigated in rheumatic 
disease due to their immunomodulatory and regenerative properties. Recently, 
mounting studies have implicated the therapeutic potency of MSCs mostly due to 
the bioactive factors they produce. Extracellular vesicles (EVs) derived from MSCs 
have been identified as a promising cell-free therapy due to low immunogenicity. 
Rheumatic disease, primarily including rheumatoid arthritis and osteoarthritis, is 
a group of diseases in which immune dysregulation and chronic progressive 
inflammation lead to irreversible joint damage. Targeting MSCs and MSC-derived 
EVs may be a more effective and promising therapeutic strategy for rheumatic 
diseases.

AIM 
To evaluate the potential therapeutic effectiveness of MSCs and EVs generated 
from MSCs in rheumatic diseases.

METHODS 
PubMed was searched for the relevant literature using corresponding search 
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terms alone or in combination. Papers published in English language from 
January 1999 to February 2020 were considered. Preliminary screening of papers 
concerning analysis of "immunomodulatory function" or "regenerative function" 
by scrutinizing the titles and abstracts of the literature, excluded the papers not 
related to the subject of the article. Some other related studies were obtained by 
manually retrieving the reference lists of papers that comply with the selection 
criteria, and these studies were screened to meet the final selection and exclusion 
criteria.

RESULTS 
Eighty-six papers were ultimately selected for analysis. After analysis of the 
literature, it was found that both MSCs and EVs generated from MSCs have great 
potential in multiple rheumatic diseases, such as rheumatoid arthritis and 
osteoarthritis, in repair and regeneration of tissues, inhibition of inflammatory 
response, and regulation of body immunity via promoting chondrogenesis, 
regulating innate and adaptive immune cells, and regulating the secretion of 
inflammatory factors. But EVs from MSCs exhibit much more advantages over 
MSCs, which may represent another promising cell-free restorative strategy. 
Targeting MSCs and MSC-derived EVs may be a more efficient treatment for 
patients with rheumatic diseases.

CONCLUSION 
The enormous potential of MSCs and EVs from MSCs in immunomodulation and 
tissue regeneration offers a new idea for the treatment of rheumatism. However, 
more in-depth exploration is needed before their clinical application.

Key words: Mesenchymal stem cell; Extracellular vesicle; Autoimmunity; Inflammation; 
Rheumatoid arthritis; Osteoarthritis

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) 
have long been thought to possess considerable immunomodulatory and regenerative 
potential. Rheumatic disease is a group of diseases marked by immune dysregulation and 
chronic progressive inflammation. Targeting MSCs and MSC-derived EVs may be a more 
efficient treatment for rheumatic diseases. However, before their application in the clinical 
treatment, a large number of preclinical studies and clinical studies are required to 
thoroughly assess their safety and efficiency. This work summarizes current advances and 
offers a strong basis for the next study of MSCs and MSC-derived EVs in this field.

Citation: Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells 
and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. 
World J Stem Cells 2020; 12(7): 688-705
URL: https://www.wjgnet.com/1948-0210/full/v12/i7/688.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i7.688

INTRODUCTION
Rheumatic disease is a group of diseases with high morbidity over the world that can 
affect the musculoskeletal system, leading to arthritis, joint damage, and joint 
disability[1,2]. Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most 
prevalent rheumatic diseases with arthritis worldwide[1,2]. RA is a common systemic 
autoimmune disorder characterized by hyperplasia of the synovial membrane, 
infiltration of inflammatory cells, bone and cartilage progressive damage, and multiple 
organ involvement[3]. Uncontrolled and progressive inflammation and joint damage 
make RA patients have irreversible joint deformity and decreased life quality. 
Although disease-modifying anti-rheumatic drugs and nonsteroidal anti-inflammatory 
drugs have been routinely applied in the clinic to prevent or delay the progression of 
the disease, the effective therapy to cure RA patients is still absent. Another prevalent 
joint condition in the elderly is OA, a disease marked by irreversible degeneration of 
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multi-articular cartilage, changes of the underlying bone structure, synovitis, and 
osteophyte formation[4]. Various pro-inflammatory mediators are deemed to 
participate in the pathogenesis of OA, such as matrix metalloproteinases (MMPs), 
tumor necrosis factor-α, and interleukin (IL)-6. The contribution of imbalance between 
anabolism and catabolism in the joint as well as the load of mechanical stress to OA 
has been shown in a previous study[5]. Despite advances in the treatment of rheumatic 
diseases, their pathogenesis remains largely unknown.

The immune regulatory and regenerative effects of mesenchymal stem cells (MSCs) 
provide new insight into the treatment of rheumatic diseases. It has been 
demonstrated that MSCs can be used to treat RA and OA by regulating both innate 
and adaptive immune cells[6,7]. MSCs can suppress the multiplication and development 
of T cells and B cells, induce more regulatory T cells (Tregs), promote the polarization 
of M2 macrophages, impair the function of dendritic cells (DCs), as well as decrease 
the maturation and cytotoxicity of natural killer (NK) cells[8] (Figure 1). In addition, it 
has been demonstrated that the predominant mechanism by which MSCs exert their 
effects is producing a large variety of paracrine, rather than contact-dependent, 
mediators[9], although MSCs can work either directly or indirectly. These mediators 
include growth factors, cytokines, chemokines and so forth[10], among which 
extracellular vesicle (EV) is one of the most important kind which can mimic the MSC-
based immunomodulatory and regenerative effects by delivering bioactive factors, 
such as proteins, nucleotides, lipids and so on.

EVs are nanoscale vesicles enwrapped by phospholipid bilayers and can be purified 
from various body fluids such as blood, urine, synovial fluid, and saliva[11]. It has been 
demonstrated that EVs play an essential role in cell-to-cell communication owing to 
their ability to encapsulate and deliver a variety of bioactive molecules, including 
proteins, lipids, mRNAs, microRNAs (miRNAs), and long noncoding RNAs, from 
parent cells to recipient cells[12]. The specific components of their contents vary with 
environmental conditions[13]. Almost all types of cells can generate and release EVs into 
extracellular space, which retain almost similar properties to their parental cells[14,15]. 
MSC-EVs in rheumatic diseases have drawn increasing attention in the last decade.

Currently, as there is no cure for RA and OA, searching for novel and effective 
treatment to attenuate pain and stop further damage has become a goal of the 
treatment of rheumatic diseases. Existing studies have demonstrated the significant 
advantages and great potential of MSCs and their EVs in immunomodulation and 
tissue damage repair. Targeting MSCs and MSC-derived EVs may be a more 
promising treatment for rheumatic diseases. This review summarizes recent advances 
in the functional roles and mechanisms of MSCs and EVs generated from MSCs in 
rheumatic disease, with a special focus on their potential therapeutic effects, providing 
rationalities for further research of MSCs and MSC-derived EVs in this field.

MATERIALS AND METHODS
Search strategy
The keywords of “mesenchymal stem cell, extracellular vesicle, autoimmunity, 
inflammation, rheumatoid arthritis, osteoarthritis, and rheumatic disease” were used 
alone or in combination to retrieve articles related to “immunomodulation” and 
“tissue regeneration and repair” in PubMed. Papers published in English language 
from January 1999 to February 2020 and available in full text were under 
consideration. Preliminary screening of papers concerning analysis of 
“immunomodulatory function” or “regenerative function” by scrutinizing the titles 
and abstracts of the literature, excluded the papers not related to the subject of the 
article. Some other related studies were obtained by manually retrieving the reference 
lists of papers that meet the selection criteria, and these studies were screened to meet 
the final selection and exclusion criteria.

Study eligibility criteria
The selection criteria were: (1) The subjects of research cover MSCs or EVs from MSCs 
with regard to mechanisms of immune regulation or tissue regeneration and repair; (2) 
The literature deals with relevant research and clinical application of MSCs or EVs 
from MSCs in the treatment of RA, OA, or other related diseases; (3) Articles recently 
published or published in authoritative and professional journals in the same field; 
and (4) High-quality articles with reliable arguments.

The following search records were excluded: (1) The content of research is repetitive 
and obsolete; (2) Literature unrelated to the treatment of MSCs or MSC-derived EVs 
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Figure 1  Immunomodulatory effects of mesenchymal stem cells. The inflammatory microenvironment stimulates mesenchymal stem cells (MSCs), 
leading to the acquisition or boost of their immunosuppressive property, then activated MSCs promote the conversion of pro-inflammatory macrophages (M1) into an 
anti-inflammatory phenotype (M2) and activation of Tregs as well as T helper 2 (Th2) cells, while inhibit the functions of Th1 cells, Th17 cells, B cells, dendritic cells, 
and natural killer cells. Actually, MSCs can also inhibit the amplification and differentiation of T cells indirectly via regulatory T cells. NK cell: Natural killer cell; DC: 
Dendritic cell; Th cell: T helper cell; Treg: Regulatory T cell.

for RA or OA; (3) Full text not available or those published in non-English language; 
and (4) Review, meta-analysis, and protocols.

Quality assessment
According to the inclusion criteria, two authors first scrutinized the titles and abstracts 
of the literature selected using the relevant keywords for preliminary screening to 
assess the effectiveness and applicability of the included literature. And to exclude 
articles that are inconsistent with the subjects of the study or that are repetitive, all 
authors read through the full text according to the exclusion criteria. Finally, 86 papers 
were selected for review and analysis.

Statistical analysis
This study is a systematic review of the literature, which did not involve any available 
statistical methods.

RESULTS
A total of 86 articles were included in the analysis after completing all the retrieval and 
review work (Figure 2). And a few articles were obtained by manually retrieving the 
reference lists of papers that comply with the selection criteria, and these studies were 
screened to meet the final selection and exclusion criteria. Figure 2 shows the process 
of literature retrieval. The great potential demonstrated in the literature of MSCs and 
MSC-derived EVs in modulating immune inflammation and promoting tissue 
regeneration supports their use in rheumatic disease.

At present, there is increasingly literature about the potential therapeutic value of 
MSCs in RA or OA. The application of MSCs in RA has primarily concentrated on 
their immunomodulation, and regenerative potential of MSCs has been intensively 
studied in experimental models of OA. A single intraperitoneal administration of 
MSCs could prevent further damage of articular bone and cartilage in a collagen-
induced arthritis (CIA) mouse model representing human rheumatoid arthritis, 
proving that the joint protective effect is caused by the immunomodulation mediated 
by MSCs[16]. The beneficial effect of MSCs on RA is being gradually identified, from 
RA-like inflammatory models to refractory RA patients. Single intravenous injection of 
bone marrow-derived MSCs (BM-MSCs) to nine refractory RA patients without any 
other rheumatic diseases acquired a significant improvement of clinical symptoms[17]. 
The exciting results of MSC regenerative potential have been obtained in preclinical 
models as well as in patients with OA or damage of joint surface. The suppression of 
synovial activation, ligament related enthesophyte formation, and cartilage damage 
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Figure 2  Flowchart for literature retrieval.

can be observed after intra-articular infusion of adipose tissue-derived MSCs (ADSCs) 
to mouse models with OA[18]. In addition, the similar effect of MSCs for cartilage 
regeneration also appeared in larger OA models such as the donkey and goat[19,20].

EVs isolated from MSCs, directly or loaded with therapeutics, such as specific 
miRNA[21], have also become the hotspot of recent research. Although MSC-derived 
EVs are not as commonly used in RA or OA as MSCs, it is clear that this cell-free 
therapy may become an alternative to MSC-based cell therapy. For example, MSC-
derived EVs (exosomes and microparticles) efficiently ameliorated the inflammatory 
symptoms of CIA models via exerting an immunosuppressive effect on T-cell and B-
cell[22]. In another study, MSC-derived exosomes were applied to rat models with 
osteochondral defects by intra-articular administration[23]. The results showed that the 
defects of rats in the experimental group recovered and finally proved the feasibility of 
MSCs in promoting cartilage repair. At present, research on MSC-derived EVs in RA 
and OA is far from enough, but a small part of the current research has aroused 
exciting interest.

DISCUSSION
MSCs and rheumatic diseases
MSCs are pluripotent progenitor cells that possess all the commonalities of stem cells, 
namely, self-renewal and multi-directional differentiation[24]. Over the last decades, 
MSCs are well known not only for their regenerative activity but also for their strong 
immunosuppressive property. MSCs can differentiate into three cell lineages of 
mesodermal organ in vitro, namely, osteoblasts, adipocytes, and chondrocytes[25]. Two 
important prerequisites for the application of MSCs in experimental research and 
clinical application are as follows: MSCs can be easily amplified in vitro; they can be 
present in a plenty of tissues including bone marrow[26], adipose tissue[27], Wharton’s 
jelly[28], umbilical cord (UC-MSC)[29], umbilical cord blood[30,31], synovial membrane 
(SMSC)[32,33] and others, and among them bone marrow and adipose tissue are two 
commonly used tissues for therapeutic utilization[34]. Combing the above factors, MSC 
becomes the preferred seed cell for tissue engineering study.

A growing body of evidence has demonstrated that progressive immune 
inflammation contributes significantly in rheumatic diseases pathogenesis[35,36]. The 
chronic inflammation within the joint contributes to irreversible joint destruction. And 
the balance between joint destruction and tissue reconstruction as well as tissue repair 
determines the outcome of arthritis. It has been well known that MSCs can mediate a 
wide spectrum of immunoregulatory and tissue damage repairing activities, which 
support their use as a novel treatment option for rheumatologic disorders[37,38]. During 
the last few years, accumulating studies have been carried out to confirm the 
therapeutic value of MSCs for different rheumatic diseases, such as RA[39], OA[40], 
systemic lupus erythematosus[41], and ankylosing spondylitis[38]. Clarifying the 
mechanism of MSCs is crucial for identifying novel MSC-based strategies for these 
diseases.

Immunomodulatory effect of MSCs: MSCs have immunoregulatory bioactivity. The 
main immunological characteristics of MSCs are low immunogenicity and high 
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immunosuppressive ability. The precise molecular mechanisms of the 
immunomodulation effects of MSCs have not been fully elucidated. However, 
currently available data have suggested that MSCs play an immunosuppressive role 
mainly through intercellular contact and the secretion of soluble factors encapsulated 
by EVs[42]. Numerous MSC-EVs derived soluble factors can participate in the 
immunomodulatory process, such as nitric oxide (NO), prostaglandin E2 (PGE2), 
indoleamine 2-3-dioxygenase (IDO), IL-10, transforming growth factor (TGF)-β and so 
on[8] (Figure 1). They may come directly from MSC, or be produced by the paracrine of 
immune cells, including T cells, B cells, DCs, and NK cells. Accumulating studies have 
disclosed that MSCs can regulate immune and inflammatory response, including 
inhibition of proliferation and differentiation of T helper (Th)1, Th17 cells and B cells, 
induction of activation of Tregs, suppression of maturation of DCs, promotion of the 
polarization of macrophages to M2, and inhibition of the functions of NK cells[8] 
(Figure 1).

T cells: T cells are of critical importance in adaptive immunity, whose dysregulation 
contributes to the pathogenesis of rheumatic diseases. MSCs can prevent pathogenic T 
cell expansion and induce Tregs activation. Inhibiting the proliferation of Th1, Th17, 
and granulocyte-macrophage colony-stimulating factor-expressing CD4+ T cells is the 
most significant effect of MSCs on T cells. Apart from depressing Th1/Th17 subtypes, 
MSCs also induce Th2, an anti-inflammatory subtype[43]. Human adipose tissue-
derived MSCs have been shown to decrease the level of granulocyte-macrophage 
colony-stimulating factor-expressing CD4+ T cells in peripheral blood and the spleen 
while increase the level of Tregs in CIA mice model[44], which suggests the 
immunosuppressive role of MSCs in suppressing CD4+ T cells in RA pathogenesis[45]. 
The study by Ma et al[46] has demonstrated that human umbilical cord MSCs can reduce 
Th17 cell percentage via downregulating RORγt, and upregulate Foxp3 to augment 
Treg percentage in the spleen in RA[46]. Rashedi et al[47] have reported that MSCs can 
either increase the level of Treg cells by directly interacting with Tregs through the 
Notch signaling pathway or indirectly induce CD4+ lymphocytes to differentiate into 
Treg cells[47]. In addition, bone marrow-derived MSCs can also inhibit the production 
of inflammatory cytokines by T cells in RA[48]. The significant anti-inflammatory role of 
MSCs on T cells is mainly dependent on hindering the nuclear factor-κB signaling 
pathway[49], which has been well recognized as the pivotal downstream signaling 
pathway involved in rheumatic disease pathogenesis[50]. Accordingly, the interaction 
between MSCs and T cells is involved in RA pathogenesis, providing novel strategies 
for the immunological treatment of rheumatic diseases.

B cells: MSCs can inhibit the multiplication and differentiation of B lymphocytes, even 
the production of immunoglobulins[51]. Che et al[52] has found that the suppressive effect 
of MSCs on B cell multiplication and differentiation is attributed to the 
downregulation of Blimp-1 and upregulation of PAX-5 in B cells[52]. Besides, it has also 
been well documented that MSCs exert effects on B cells by regulating interactions 
between programmed death 1 (PD-1) and its ligands PD-L1 and PD-L2[53]. MSCs can 
indirectly inhibit the effect of B cells through T cells[54]. Follicular helper T cells are also 
involved in the immunosuppressive process of MSCs by delivering proliferative 
signals to B cells in the secondary lymphoid tissues[55], which strongly supports that 
the suppressive activities of MSCs on B-cell also depend on the interaction between 
MSCs and T cells. Taken together, MSCs are involved in autoimmune disorders by 
influencing B cell proliferation, differentiation, and function.

Macrophages, DCs, and NK cells
MSCs play a role as immune suppressive cells in rheumatic diseases. MSCs can 
reprogram the functions of the macrophage by inducing the switch of activated 
macrophage from pro-inflammatory phenotype (M1) to an anti-inflammatory 
phenotype (M2)[4,56] via inhibiting nuclear factor-κb/p65 and activating signal 
transducer and activator of transcription 3 signaling pathways[57]. DCs, the main 
antigen presenting cells that initiate T cell immune response, have been widely 
recognized in regulating inflammation and autoimmunity. It has been confirmed that 
the inhibitory impacts of MSCs on lipopolysaccharide-elicited DC activation and 
maturation can be mediated by PD-L1 as well as NO, PGE2, and adenosine in canine 
immune-mediated disease models[58]. The blocking effect of MSCs on DC 
differentiation and maturation ultimately leads to inhibition of the T cell response[59]. 
Mediators of IDO and PGE2 generated by MSCs can restrain the extension and 
cytotoxicity of NK cells[60,61]. Nevertheless, little is known about the immuno-
modulatory effect of MSCs in rheumatic disease mediated by intercellular 
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communications with macrophages, DCs, and NK cells. Elucidating this issue is 
essential for identifying the immunological targets for the diagnosis and treatment of 
rheumatoid disease.

Soluble cytokines
MSCs exert immunomodulatory function not only relying on cell-cell contact, but by 
means of producing multi soluble factors such as NO, PGE2, IDO, TGF-β1, tumor 
necrosis factor-inducible gene-6, and human leukocyte antigen-G5[62-64]. NO and PGE2 
are essential for the suppression of T-cell expansion[65,66]. Additionally, MSCs derived 
soluble factors PGE2 and TGF-β1 also participate in inducing CD4+CD25+Foxp3+ Tregs, 
which are also involved in inducing the transition of M1 macrophages to an anti-
inflammatory M2 phenotype[43]. The immunoregulatory effect of MSCs can be 
enhanced upon exposure to interferon-γ under the inflammatory micro-
environment[67-69]. Pro-inflammatory or anti-inflammatory mediators in the 
microenvironment can affect the function of MSCs[70]. Pretreatment of ADSCs with 
pro-inflammatory RASF enhances their ability to trigger Tregs and inhibit activated 
macrophages[70]. Some pro-inflammatory factors can sometimes interfere with the 
immunosuppressive effect of MSCs. The immunomodulatory property of MSCs is 
highly plastic in inflammatory microenvironment[71], in which the inflammatory 
cytokines act as a crucial switch, such as iNOS[72,73]. MSCs possess a pro-inflammatory 
phenotype and elicit inflammatory response through activation of TLR4 following 
exposure to inflammatory cytokines[73-75]. As a result, MSCs act as a double-edged 
sword in regulating immune responses. Given such plasticity in the immuno-
modulatory effects of MSCs, in-depth research is needed to determine the application 
of MSCs in treating rheumatic disease.

Regenerative property of MSCs in rheumatic diseases: In recent years, the value of 
MSCs in the application of regenerative medicine has been deeply studied (for review, 
see[76]). In arthritis, the balance between joint destruction and repair determines the 
outcome of arthritis. Failure to tissue repair leads to joint damage and disability. 
Currently, MSCs provide a new prospect for the healing of arthritis in RA and OA. 
The mechanisms supporting the application of MSCs in promoting joint repair may be 
as follows: First, MSCs secret a large number of trophic factors to promote 
angiogenesis, anti-fibrosis, anti-apoptosis and so on; Second, MSCs differentiate into 
chondrocytes or osteoblasts directly. In short, the differentiation potential and 
paracrine effect of MSCs make them suitable for the repair of joint defects[77,78]. MSCs 
can differentiate into osteocytes and osteoblasts in osteoblast regulating medium 
containing inflammatory stimulants[79]. MSCs are capable of inhibiting osteoclast 
formation by enhancing the expression of osteoprotegerin[80], suggesting the critical 
role of MSCs in tissue regeneration.

Available data have revealed that intra-articular administration of MSCs can control 
synovial inflammation, reduce osteophyte formation, inhibit cartilage degeneration, 
and stimulate chondrocyte proliferation[18,81]. The important role of MSCs in OA 
cartilage regeneration has been well established in cartilage cells in vitro[82-84]. Besides, 
the regenerative potency of MSCs has been intensively studied in experimental models 
of OA and RA. Murphy et al[20] have first found that the administration of BM-MSCs 
exerts a regenerative effect in a caprine model with complete medial meniscus 
resection and anterior cruciate ligament resection[20]. The articular cartilage defect can 
be ameliorated by intra-articular infusion of MSC hyaluronic acid suspension in 
miniature pigs with condylar cartilage damage[85]. Similar use of MSCs has been 
investigated in other animal models of OA[19,86]. A clinical trial has recently reported 
that intra-articular administration of autologous ADSCs into the OA knee can improve 
the functional status, relieve pain, and reduce cartilage defects without side effects[87]. 
A two-year follow-up study conducted by Jo et al[88] has also demonstrated the safety 
and efficacy of intra-articular infusion of autologous ADSCs into the OA knee[88]. 
Accordingly, all these findings strongly support the regenerative efficacy of MSCs for 
promoting cartilage regeneration and protecting cartilage from degradation to impede 
the progression of arthritis. MSCs can be identified as a novel therapeutic strategy for 
those rheumatic disease patients particularly with arthritis and bone damages.

Several factors affecting the therapeutic effect of MSCs: The profound value of MSCs 
has aroused increasingly interests in immunomodulation and regenerative medicine, 
let alone in rheumatic disease. However, enormous challenges yet remain ahead of 
clinical application of MSC-based cell therapy due to their vulnerability. The action of 
MSCs, for instance, will differ according to MSC tissue origin, administration route, 
and others.
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One of the most important reasons that MSCs can be extensively studied and 
applied is that MSCs can be purified from various tissues. But the most suitable cell 
source with the best therapeutic effect is still under study, due to the significant 
variation of MSCs from different sources in many aspects, including differentiation 
potential, immunomodulatory ability and so forth. BM-MSCs demonstrate a superior 
osteogenic and chondrogenic capacity, compared with ADSCs[89]. Another study 
reported that SMSCs exhibit a greater capacity for chondrogenesis in vitro over other 
four kinds of MSCs, in which BM-MSCs, ADSCs, and periosteal MSCs were 
included[90]. However, in vivo, the capacity in osteogenesis of SMSCs is inferior to that 
of periosteum-derived MSCs[91]. Furthermore, the influence of MSC tissue origin on 
immunomodulatory ability was demonstrated by Melief et al[92] - better immuno-
suppressive effect of ADSCs on T cells and monocytes than BM-MSCs was discovered 
in their study. No matter the variability between MSCs from different tissue sources, 
the similar immunosuppressive or beneficial effect to arthritis have been described[93-95].

The injection route of MSCs varies according to the pathological characteristics of 
different diseases. Generally speaking, diseases such as RA, which tend to involve 
multiple joints and are characterized by progressive inflammation caused by immune 
dysfunction, can be administered systematically (Figure 3). While diseases with 
limited lesions, such as OA, tend to be given locally. In contrast, part of research failed 
to demonstrate the improvement of arthritis by MSC-based treatment via systemic 
route[96,97].

The contradictory results show that the therapeutic potential of MSCs is disturbed 
by many factors other than tissue origin and administration route, which reveals the 
great challenge of current research, and more efforts are needed before MSCs can be 
put into clinical practice.

MSC-derived EVs in rheumatic diseases
EVs are well known for their great potential as a carrier for bioactive substances or 
biomarkers of diseases. According to their size and mode of biogenesis, EVs can be 
divided into three main categories: Exosomes, microparticles, and apoptotic bodies[98] 
(Table 1). Exosomes (30-120 nm in diameter) originate from intraluminal vesicles 
inside of multivesicular bodies, which fuse with the plasmolemma and release 
exosomes via exocytosis[99,100]. They are packed with tetraspanins (CD9, CD63, and 
CD81) and heat-shock proteins such as Hsp60, Hsp70, and Hsp90[10,101,102]. They also 
frequently express clathrin, alix, and tumor susceptibility gene 101[10,101,102]. The size of 
microparticles, known as microvesicles, ranges between 100 and 1000 nm. They are 
produced via budding directly from the plasma membrane of parent cells, which then 
are shed from the cell surface[10]. There are no specific surface molecular markers for 
microparticles, but they express the surface markers of parent cells like exosomes[103]. 
Apoptotic bodies (1000-5000 nm in diameter) are released by fragmenting apoptotic 
cells[104]. The well-established methods for isolating and purifying EVs include 
precipitation, differential ultracentrifugation, density gradient ultracentrifugation, 
ultrafiltration, size exclusion chromatography, and immunoaffinity[105]. EVs can 
encapsulate and deliver a variety of bioactive molecules, including proteins, lipids, 
and noncoding RNAs (ncRNAs)[12] from parent cells to recipient cells and participate in 
intercellular communications. Notably, miRNAs encapsulated by exosomes are a class 
of 20-22 nt small ncRNAs[106], which regulate targeted mRNAs at the post-
transcriptional level via binding to 3’-untranslated region of the genes[106]. Previously, 
our team has demonstrated the specific miRNA expression profile in RA patients and 
shown that exosomal miR-6089 regulates inflammatory reaction in RA by targeting 
TLR4[107], which suggests the potential role of exosomal miRNAs as diagnostic 
biomarkers and treatment targets for RA. Nonetheless, the role of ncRNAs in MSC-
derived EVs is unclear yet.

Recently, it has been supported that the effects of MSCs mediated by paracrine 
mechanisms are partly achieved through secretion of numerous EVs[108], although 
MSCs can also act directly (Figure 4). Growing evidence has revealed that EVs derived 
from MSCs also have immunomodulatory effects, and capacity of regeneration and 
repair of damaged tissues[80,109]. Vonk et al[109] have reported that EVs from BM-MSC can 
inhibit inflammation, promote regeneration, and repair cartilage damage via 
decreasing COX-2 and other pro-inflammatory factors when co-cultured with OA 
chondrocytes[109]. It has been recognized that EVs have the characteristics of selective 
assembly, targeted delivery, and stable preservation[110]. MSC-derived EVs have a 
significant effect in mediating immunomodulation and tissue repair. MSC-EVs not 
only recapitulate the therapeutic functions of MSCs[111], but also have many advantages 
that MSCs do not have. EVs are more stable in nature and stronger in transmission 
ability, compared with MSCs[112].
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Table 1 Classification and characteristics of extracellular vesicles

Exosomes Microparticles Apoptotic bodies

Size 
(diameter)

30-120 nm 100-1000 nm 1000-5000 nm

Mode of 
biogenesis

Originate from multivesicular bodies and released via 
exocytosis

Formed directly by the cell membrane 
outwards in the form of buds

Released from fragmented 
apoptotic cells

Content Proteins, lipids, mRNAs, and miRNAs Proteins, lipids, mRNAs, and miRNAs DNA fragments

Molecular 
markers

Tetraspanins (CD9, CD63, and CD81), heat-shock proteins 
(Hsp60, Hsp70, Hsp90), alix, clathrin, tumor susceptibility gene 
101

CD40, cholesterol, sphingomyelin, 
phosphatidylserine, ceramide

Annexin V, 
phosphatidylserine

Ref. Keshtkar et al[115], Kanada et al[139] Biancone et al[140], György et al[141] Maumus et al[10], Kalra 
et al[104]

Figure 3  Administration routes of mesenchymal stem cells in rheumatoid arthritis and osteoarthritis. RA: Rheumatoid arthritis; OA: 
Osteoarthritis; MSCs: Mesenchymal stem cells.

Figure 4  Schematic representation of whole action mechanisms of mesenchymal stem cells. MSC: Mesenchymal stem cell; EVs: Extracellular 
vesicles.

MSC-EVs encapsulate diverse lipids, proteins, miRNAs, and mRNAs that originate 
from MSCs and are secreted into the extracellular microenvironment. Accumulating 
studies have implicated that MSC-derived EVs exert effects via transporting molecules 
with biological activity[113]. Those EVs can interact with the recipient cells in a variety of 
ways, including fusing with the plasmolemma of recipient cells, interacting with target 
cell surface receptors, and internalizing by endocytosis, and subsequently deliver their 
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contents to receptor cells, therefore modifying inflammatory and immune 
responses[114,115].

Immunoregulatory property of MSC-EVs: Recently, the role of MSCs in immune 
regulation has been demonstrated by mounting studies[116,117], however, the application 
of MSCs in the clinic remains limited due to their instability. During the past few 
years, EVs derived from MSCs have attracted increasing attention. Accumulating 
studies have implicated that MSC-EVs also possess similar immunomodulatory 
property as MSCs[118,119]. MSC-EVs can also exert immunosuppressive effects on T 
cells[118], B cells[120], macrophages[121], DCs[122], and NK cells[123].

MSC-derived EVs are documented to restrain the multiplication of activated T cells 
and promote the production of tolerant Tregs[124]. Similarly, MSC-EVs can inhibit the 
activation and development of T cells by decreasing interferon-γ generated by CD4+ T 
cells[125,126]. Exosomes from MSCs can also boost the production of CD4+CD25+Foxp3+ 
Tregs[124]. Besides, MSC-derived exosomes have been found to inhibit inflammation by 
promoting the levels of anti-inflammatory cytokines IL-10 and TGF-β1 in PBMCs and 
inducing the activation of Tregs[127]. Reduced production of immunoglobulin and 
inhibited B cell proliferation and differentiation can be induced by MSC-EVs in B 
cells[128]. The immunosuppressive role of MSC-EVs in macrophages is also well 
established. EVs derived from MSCs can be effectively internalized by macrophages, 
which also suppress the pro-inflammatory phenotype (M1) macrophage activation but 
promote the anti-inflammatory phenotype (M2) macrophage activation[129]. However, 
the study by Monguio-Tortajada et al[130] has reported that EVs released by UC-MSCs 
do not affect the polarization of mononuclear macrophages[130]. The immuno-
modulatory effect of MSCs on peripheral blood leukocytes is significant[131,132], whereas 
no significant influence was observed in those leukocytes co-cultured with MSC-
derived exosomes[133]. The difference in immunomodulatory mechanism between EVs 
and the receipt cells may be related to their tissue origins[118]. In summary, these 
findings provide the evidence for the immunoregulatory effect of MSC-EVs. 
Nevertheless, more studies are warranted for a clear understanding of the roles and 
mechanisms of MSC-EVs in immune regulations.

Regenerative effect of MSC-EVs: The regenerative action of MSCs-EVs has been well 
documented in a previous published study[111]. The critical role of MSC-EVs in tissue 
repairing is demonstrated in a femur fracture model of CD9-/- mice[134]. The study by 
Zhang et al[23] has first demonstrated that exosomes from human embryonic MSC 
confer a protecting effect on cartilage repair[23]. Exosomes released by both SMSCs 
(SMSC-Exos) and induced multipotent stem cell-derived MSCs (iMSC-Exos) can 
attenuate OA score in a mouse OA model, but a greater therapeutic effect of iMSC-
Exos on OA than SMSC-Exos has also been demonstrated[126]. Similar to the effects of 
MSCs on inflammatory arthritis, MSC-EVs also can help to relieve the pain and joint 
damage in OA and RA via the protection against cartilage degradation.

Some well-established miRNAs delivered by exosomes have also been 
demonstrated in rheumatic diseases. MiR-320c-overexpressing hBMSC-Exos can 
induce cartilage regeneration in OA by promoting the proliferation of chondrocytes 
and decreasing MMP13 expression[135]. A similar effect of miR-140-5p-overexpressing 
SMSC-Exos has also been documented, which protect against OA[136]. Accordingly, 
MSC exosome-encapsulated miRNAs play a protective role in OA, which implicates a 
potential therapy for OA by targeting miRNAs delivered by MSC exosomes. However, 
more investigations are needed to clarify the underlying mechanisms of EVs in tissue 
damage, repair, and regeneration.

Although both MSCs and MSC-EVs have immunomodulatory and regenerative 
functions, the safety and efficiency of MSC-based cellular therapy should be seriously 
considered. Currently available data have demonstrated that the therapeutic activity 
of MSC-EVs may be superior to that of MSCs in terms of safety and versatility[115,137,138]. 
MSC-EVs offer a promising cell-free restorative approach for regenerative medicine 
and immunomodulation, which may be a better option for patients with OA and RA, 
and even other rheumatic diseases. Additionally, EVs can act as drug carriers by 
encapsulating and delivering small molecules and particular nucleic acids to targeted 
cells to acquire the desired therapeutic effect in rheumatic diseases. Chen and 
colleagues have elucidated that miRNA-150-5p delivered by MSC-exosomes plays a 
therapeutic role in RA through modulating MMP14 and VEGF[21]. Taken 
together[139-141], MSC-EVs-based therapeutic approach is promising for the treatment of 
rheumatic diseases because they offer the possibility to develop cell-free therapy.

At present, MSCs play important immunosuppressive and tissue regenerating roles 
through immune regulation, secretion of trophic factors, and multi-directional 
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differentiation, which has attracted much attention in the field of rheumatism. At the 
same time, as a product of MSCs, EVs have a similar function to MSCs, and may have 
more advantages than MSCs in biomanufacturing, storing, and other aspects, which 
makes it get more and more attention. MSC-EVs may represent a more promising 
therapeutic strategy in immune regulation and tissue repair and regeneration. In 
summary, MSCs and MSCs derived EVs can be novel therapeutic strategies in 
rheumatic diseases.

However, the current research is only the tip of the iceberg, from the point of view 
of clearly understanding the complete mechanisms of MSCs and EVs. At present, there 
are still many uncertainties in the precise roles and mechanisms of MSC-derived EVs 
in rheumatic diseases. Some current studies have shown that whether MSCs and EVs 
can play a full role in the treatment of diseases is affected by many factors. Obviously, 
in order to better understand their mechanisms of action, a large number of in vivo and 
in vitro studies need to be carried out in terms of tissue source, administration route, 
window of injection, injection dose and so on. Before application of MSCs and MSC-
derived EVs into the treatment of rheumatic diseases, a large number of preclinical 
studies and clinical studies are required to thoroughly assess their safety and 
efficiency.

ARTICLE HIGHLIGHTS
Research background
Mesenchymal stem cells (MSCs) have been widely investigated in rheumatic disease 
due to their immunomodulatory and regenerative properties. Recently, mounting 
studies have implicated the therapeutic potency of MSCs mostly due to the bioactive 
factors they produce. Extracellular vesicles (EVs) derived from MSCs have been 
identified as a prospective cell-free therapy due to low immunogenicity. Rheumatic 
disease, primarily including rheumatoid arthritis (RA) and osteoarthritis (OA), is a 
group of diseases in which immune dysregulation and chronic progressive 
inflammation lead to irreversible joint damage. Targeting MSCs and MSC-derived EVs 
may be a more effective and promising therapeutic strategy for rheumatic diseases.

Research motivation
MSCs and MSC-derived EVs have attracted increasing attention in rheumatic diseases 
due to their great potency in immunosuppression and tissue repair. Currently, it is of 
great significance to evaluate the therapeutic value by searching and summarizing the 
relevant literature.

Research objectives
To evaluate the potential therapeutic effectiveness of MSCs and EVs generated from 
MSCs in rheumatic diseases.

Research methods
One electronic database (PubMed) was searched for the relative literature using the 
corresponding search terms alone or in combination. Papers published in English 
language from January 1999 to February 2020 were in consideration. Preliminary 
screening of papers concerning analysis of "immunomodulatory function" or 
"regenerative function" by scrutinizing the titles and abstracts of the literature, 
excluded the papers not related to the subject of the article. Some other related studies 
were obtained by manually retrieving the reference lists of papers that comply with 
the selection criteria, and these studies were screened to meet the final selection and 
exclusion criteria.

Research results
Eighty-six papers were ultimately selected for analysis. After analysis of the literature, 
it was proved that both MSCs and EVs generated from MSCs exert great potential in 
multiple rheumatic diseases, such as RA and OA, in repair and regeneration of tissues, 
inhibition of inflammatory response, and regulation of body immunity via promoting 
chondrogenesis, modulating innate and adaptive immune cells, and regulating the 
secretion of inflammatory factors. But EVs from MSCs exhibit much more advantages 
over MSCs, which may represent another promising cell-free restorative strategy. 
Targeting MSCs and MSC-derived EVs may be a more efficient treatment for patients 
with rheumatic diseases.
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Research conclusions
MSCs and MSC-derived EVs have demonstrated powerful regenerative potency, as 
well as their regulatory function for the innate and adaptive immune system. This 
study offers new ideas and possibilities for MSCs and EVs from MSCs to rheumatism 
treatment due to their enormous potential described above. However, more in-depth 
exploration is needed before their clinical application.

Research perspectives
The great potency of MSCs and MSC-derived EVs has been demonstrated, and they 
can be developed as a more effective and promising therapeutic strategy for rheumatic 
diseases. Before application of MSCs and MSC-derived EVs into the treatment of 
rheumatic diseases, a large number of preclinical studies and clinical studies are 
required.
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