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Abstract
Every day, investigators find a new link between a form of cancer and a particular 
alteration in the sequence or/and expression level of a key gene, awarding this 
gene the title of “biomarker”. The clinician may choose from numerous available 
panels to assess the type of cancer based on the mutation or expression regulation 
(“transcriptomic signature”) of “driver” genes. However, cancer is not a “one-
gene show” and, together with the alleged biomarker, hundreds other genes are 
found as mutated or/and regulated in cancer samples. Regardless of the platform, 
a well-designed transcriptomic study produces three independent features for 
each gene: Average expression level, expression variability and coordination with 
expression of each other gene. While the average expression level is used in all 
studies to identify what genes were up-/down-regulated or turn on/off, the other 
two features are unfairly ignored. We use all three features to quantify the 
transcriptomic change during the progression of the disease and recovery in 
response to a treatment. Data from our published microarray experiments on 
cancer nodules and surrounding normal tissue from surgically removed tumors 
prove that the transcriptomic topologies are not only different in 
histopathologically distinct regions of a tumor but also dynamic and unique for 
each human being. We show also that the most influential genes in cancer nodules 
[the Gene Master Regulators (GMRs)] are significantly less influential in the 
normal tissue. As such, “smart” manipulation of the cancer GMRs expression may 
selectively kill cancer cells with little consequences on the normal ones. Therefore, 
we strongly recommend a really personalized approach of cancer medicine and 
present the experimental procedure and the mathematical algorithm to identify 
the most legitimate targets (GMRs) for gene therapy.

Key Words: Cancer biomarkers; Cancer nodule; Gene therapy; Kidney cancer; Prostate 
cancer; RNA gene; Thyroid cancer
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Core Tip: The Genomic Fabric Paradigm was developed as a holistic alternative to the 
biomarker approach of cancer transcriptomics. The genomic fabric of a functional 
pathway is the transcriptome associated with the most interconnected and stably 
expressed gene network responsible for that pathway. We present the associated 
analytical tools to characterize the topology, remodeling during cancer progression and 
in response to a therapy, and interplay of the genomic fabrics and identify the most 
legitimate targets in cancer gene therapy. The analyses are illustrated with examples 
from our transcriptomic studies on human cancer tissues and cell lines.
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INTRODUCTION
According to the 22.0 release of the NIH National Cancer Institute Genomic Data 
Commons Data Portal[1] on July 5, 2020 there are now 3142246 certified mutations 
detected all over the 22872 genes sequenced from 84031 cases of cancers localized in 67 
primary sites. In addition to the millions of mutations, the “transcriptomic signatures” 
of thousands of genes involved in various forms of cancer were published since the 
first “cDNA microarray analysis of gene expression patterns in human cancer”[2]. Most 
of these transcriptomic signatures resulted from meta-analyses of microarray or next 
generation RNA-sequencing data[3-6] whose purpose was to reduce the number of 
cancer-associated genes to the most frequently altered in large populations of cancer 
patients.

All high throughput transcriptomic studies that compared gene expression levels in 
cancer nodules and normal surrounding tissues of the same subject reported hundreds 
of significantly regulated genes[7-10] in no exactly repeatable combination in any other 
human. As illustrated below for two cases of prostate cancer with the same phenotype, 
not only the gene expression profiles but also the transcriptome topological structure 
differs from person to person. This observation indicates that multiple transcriptomes 
can be associated to the same phenotype (transcriptomic entropy), raising serious 
doubts about the existence of a single common genomic cause for all patients affected 
by the same form of cancer. Also, the possibility of a single gene therapy good for 
everybody looks like an impossible wish.

In this Review, we show that the overall transcriptomic variability is the largest for 
normal (healthy states) and it decreases when the disease aggravates. On several 
animal models of human diseases we found that the expression variation decreases 
with the progression of the sickness but increases back in response to an adequate 
treatment. Alteration of gene networking, higher in later stages of the disorder, also 
decreases after treatment. Therefore, beyond improving the characterization of 
individual genes, we have introduced holistic features that can better characterize the 
cancer-associated transcriptomic alterations.

The large numbers of gene mutations and regulations in cancer[11-13] makes it 
impossible to assess predictive values to all their possible combinations for the number 
of these combinations exceeds by far the estimated number of atoms in the Universe 
(approximately 1078-82). For instance, there are over 10272 distinct combinations of 100 
regulated out of 20000 genes, number that should be multiplied by 1.27 × 1030 
possibilities of the 100 genes to be up-/down-regulated. If one restricts the number of 
candidate genes to only 776 as in the Nanostring panel that claims to identify the 
subtype across 23 key breast cancer pathways[14], there are still 2.1 × 1025 possible 
combinations of 10 genes whose up-/down-regulation is specified. Yet, clinicians 
recognize that such panels do not contain enough genes to cover more than 5%-10% of 
cases[15]. There are also platforms where one can compare the gene expression levels 
from surgically removed tumors with documented cancer samples[16]. How the 
developers of these platforms have determined the predictive values of the test results 
is still a mystery.

In mathematically rigorous studies, the biomarkers are determined from high-
throughput omics datasets with the Principal Component Analysis[17] as metagenes 
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that encompass the largest variability across several conditions. Because the metagene, 
as a mathematical object without a well-defined molecular correspondent, is not an 
intuitive concept, in the vast majority of studies, the biomarkers are selected from the 
most frequently altered genes in cancer populations with respect to healthy 
counterparts.

It is natural to assume that a cell invests energy to protect the sequence and/or 
expression level of a gene proportional to the importance of that gene for the 
phenotypic expression, survival and/or integration into multicellular structures. 
Hence, because of their frequent alteration, the biomarkers appear to be less protected 
than other genes as are the low players in cell life suggesting that restoration of their 
normal sequence or/and expression level may be of little consequence. Thus, although 
cancer biomarkers may be useful for diagnostic purposes, they appear worthless for 
therapeutic purposes.

As proved in numerous studies, a major problem in the transcriptomic signature is 
that the expression profile is modulated by factors such as: Genetic background[18], 
sex[19], age[20], medical history[21], hormonal activity[22], diet[23], cellular environment[24], 
exposure to toxins[25], hypoxia[26], life style[27] etc. Owing to the unique combination and 
fluctuations of such factors, although a trained pathologist can identify common 
phenotypes, each human has a unique transcriptome whose features and dynamics are 
never exactly repeated in another human being. Therefore, it is imperative to develop 
adequate procedures and resources by which to tailor a really personalized[28] and 
time-sensitive cancer gene therapy for each patient, building on the successes of the 
combined therapies[29] and matched targeted therapy[15,30,31].

Because, as any other disease, cancer is not a “one-gene show”, instead of the 
regulation of individual gene biomarkers, one may characterize the cancer 
transcriptome from the holistic perspective of the Genomic Fabric Paradigm[32]. The 
genomic fabric of a functional pathway was defined as the “transcriptome associated 
to the most interconnected and stably-expressed gene network responsible for the 
pathway”. The paradigm was successfully used to quantify the transcriptomic 
alterations occurring in some chronic diseases[33-37] and efficacy of certain 
treatments[33,36].

The genes responsible for the analyzed functional pathways were selected from 
Kyoto Encyclopedia for Genes and Genomes (KEGG)[37]. However, KEGG, as any other 
specialized software (DAVID[38], Ingenuity[39], GeneMAPP[40] etc.) to ensemble genes 
into functional pathways, is a text miner from trustable peer-reviewed publications 
that explores gene and protein expression profiles . Although species-dependent, their 
pathways are universal (identical regardless of the tissue, race/strain, sex, age, 
environment, etc.), unique (no alternative wirings of the same genes) and rigid (no 
remodeling during ageing, progression of a disease or in response to a treatment).

Since chemical elements like carbon and hydrogen can combine in so many ways to 
form alkanes, how to accept that much more and many more complex units (genes, 
proteins) will always combine the same way? And how to conceive that while the 
distribution of alkane types adjusts with changes in pressure and temperature, the 
gene networks do not change when the environment is modified beyond critical 
limits? Therefore, we have generalized Dalton’s Law of Multiple Proportions[41], 
assuming that genes encoding functionally related products are coordinately 
expressed to respect a kind of “transcriptomic stoichiometry”[42]. If true, the significant 
expression coordination of two genes most likely indicates their interaction within a 
functional pathway. In contrast, their significant independent expression indicates that 
the paired genes are not functionally related, or, very unlikely that their synergistic 
expression in a part of the tissue is fully compensated by their antagonistic expression 
in other part.

Here, we consider the transcriptome as composed of partially overlapping multi-
dimensional dynamic genomic fabrics whose topology and interplay remodels during 
ageing and progression of a disease but may recover in response to a well guided 
therapy. In this view, each biological functional pathway is the result of several gene 
networks (distinct wirings) expressed simultaneously. The distribution of the gene 
networks associated to a particular functional pathway depends on tissue, race/strain, 
sex, age, environment, and changes during ageing, progression of a disease or in 
response to a treatment

This Review presents the experimental requirements, strategies, quantifiers and 
analytical tools to characterize and quantify the cancer transcriptome and identify the 
most legitimate targets for gene therapy.
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CANCER SAMPLES
Population meta-analysis or patient-oriented comparisons?
Most transcriptomic studies compare the average gene expression profiles in cancer 
patients with corresponding values in tissues from (not always demographically 
matched) healthy patients[43-45]. However, owing to the (mostly neglected albeit not 
always negligible) contributions of the influencing factors making each human unique, 
such very popular comparison in meta-analyses produces misleading results.

The best reference for the genomic alterations in solid tumors is the normal tissue 
adjacent to the cancer nodule as it became standard in several laboratories[46-49]. We 
used such reference when profiling surgically removed tumors from persons affected 
by clear cell renal cell carcinoma[7], papillary thyroid cancer[8] and prostate cancer[10]. In 
addition to providing much more accurate information, patient-oriented comparison is 
preferable because the therapy should restore what is normal for that person’s tissue 
and not for an imaginary human whose characteristics were obtained by averaging 
those of many healthy individuals. Moreover, very often the “standard human 
features” were not obtained from adequately demographically stratified population as 
race, sex, age and other important risk factors. In the case of leukemia, the best practice 
would be to sort out the normal and modified cells from the same blood sample, 
profile them separately and compare the results. Interesting methods have been also 
developed for circulating tumors[50].

Heterogeneous tissue or cell line?
Tissues are composed of several cell phenotypes whose gene expression profiles and 
susceptibility to alteration in disease may be largely different. The worst scenario for 
the genomist is when the up regulation of a key gene in some cells is balanced by the 
downregulation in others, so that the respective gene appears as unchanged. The 
traditional alternative to the heterogeneous tissue is to create, profile separately and 
compare immortalized cell lines from normal and cancer samples[51]. However, 
regardless of such advantages as low-cost and repeatability, the value of the 
immortalized cell lines for clinical research is limited due to significant genetic 
modifications undergone during passages[52] and immortalization procedure. Cell lines 
are usually developed from advanced cancer stages, unsuitable to understand cancer 
progression. Moreover, as proved by insert experiments, the cellular environment is a 
very strong modulator of the transcriptome via molecular factors (like cytokines, 
neurotransmitters etc.) released by the neighboring cells in the medium[24,53,54]. The 
transcriptome is also very sensitive to the direct intercellular communication via gap-
junction channels[55] as well as to local electrical stimulation[56]. Therefore, the 
investigator should isolate and quickly profile the most histo-pathologically 
homogeneous small regions of the tumor s/he can dissect. In spite of still unresolved 
technological and computational problems mainly related to the sparsity of transcripts 
quantified from different phenotypes, the most promising way to address tissue 
heterogeneity is the single-cell RNA-sequencing[57,58].

Patient Derived Xenograft animal models
By preserving the original cellular environment (at least for a while) when grown 
subcutaneously or orthotopically in an immune-deficient mouse, and then sub-
cultured into new mice, the Patient Derived Xenograft (PDX) models look well-suited 
for cancer research[59]. Although expensive and time-consuming to generate, the PDX 
models have the undisputable advantage to allow large scale drug screening and co-
clinical trials. However, in time, the different hormones, diet and physiological 
constraints of the animal body take their toll, and the PDX not only loses some of the 
initial human features, but even the original human cells are gradually replaced by the 
cells of the host animal[60].

3D organoids
The 3D organoids, most frequently generated by in vitro self-organizing of pluripotent 
stem cells in three-dimensional culture to produce simplified versions of human 
organs[61], are excellent systems to study cancer development and test drug, radiation 
or gene therapies. 3D organoids are also suitable to studying the spatial interactions 
between cells of the same or different phenotype[62]. The cellular heterogeneity of the 
organoids can be explored using single-cell RNA sequencing[63]. Instead of primary 
cultures, some investigators try to create 3D organoids from cancer patient derived 
xenografts[52,60,64].
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GENE EXPRESSION PROFILE
Biological and technical replicates
Transcriptomic results are affected by both technical noise of the method and natural 
variability of the specimens. Therefore, the experiments need to be repeated on both 
technical and biological replicates to determine the statistical relevance of their 
outcomes. Biological replicates could be the four quarters of a biopsy from a cancer 
nodule or the four dishes of the same cell culture, while technical replicates are 
obtained by profiling several times the same RNA extract. Expression differences 
among biological replicates encompass both biological variability and technical noise, 
while those in the technical replicates “see” only the technical noise. The technical 
noise in the microarray platforms can be also evaluated from the background 
subtracted fluorescence of the control spots when profiling biological replicates.

Four biological replicates are needed for the statistical significance of the results. 
While the traditional three biological replicates experiment provides acceptable 
estimate for the average expression level, it is not sensitive enough for the expression 
variation and much less for the expression coordination. However, more than four 
replicates are overkilling because the accuracy gain is overshadowed by the technical 
noise of the used platform as it can be determined by technical replicates.

Experimental data
The transcriptomic analyses and quantifiers presented here were applied to expression 
profiles generated by our group using Agilent G2519F whole (human, mouse, rat, 
rabbit, dog and chicken embryo) genome 4x44k two-color microarrays and our 
standard experimental protocol[35]. A transcript was considered quantifiable if its 
foreground fluorescence in the array was more than twice the background for its 
probing spot.

Data on human samples were obtained from Dr. Iacobas’ project approved by the 
New York Medical College’s and Westchester Medical Center Committees for 
Protection of Human Subjects L-11,376/2015. The Institutional Review Board approval 
granted access to frozen cancer specimens and depersonalized pathology reports, 
waiving patient’s informed consent. Expression data from surgically removed tumors 
are available from the https://www.ncbi.nlm.nih.gov/gds/?term=iacobas as 
GSE72304 (kidney cancer), GSE97001 (papillary thyroid cancer), and GSE133891 and 
GSE133906 (two cases of prostate cancer). The same website has also expression data 
for several human cell lines profiled also by us: 850c (anaplastic thyroid cancer), A549 
(alveolar basal epithelial adenocarcinoma), BCPAP (papillary thyroid cancer), DU145 
(metastatic to the brain androgen non responsive prostate cancer), HL-60 (acute 
promyelocytic leukemia) and LNCaP cells (prostate cancer androgen-sensitive 
adherent epithelial cells).

GSE72304 data that illustrate most of the analyses presented in this Review were 
obtained from the four frozen samples of a 74 years old man who died because of 
metastatic Fuhrman grade 3 clear cell renal cell carcinoma (CCRCC). From this patient, 
we profiled all four quarters from biopsies of a chest metastasis (MET) and two 
primary cancer nodules (PTA and PTB) from the right kidney. The gene expression 
profiles of the cancer samples were compared with that of the surrounding normal 
tissue (NOR) from the right kidney[7]. One purpose of this study was to check whether 
the gene networks depend on phenotype.

We have compared also the transcriptomes of the normal (N) surrounding tissues 
and the (Gleason score 4 + 5 = 9) cancer nodules (C) of surgically removed prostate 
tumors from a 47 years old white man (hereafter denoted as P1) and from a 65 years 
old black man (hereafter denoted as P2). The comparison aims to test whether the 
same phenotype in two persons is associated with identical transcriptomic alterations.

Independent features
Regardless of the used high-throughput platform (Affymetrix, bead chips, 
microarrays, RNAseq etc.), a well-conducted transcriptomic experiment with at least 
four biological replicas produces three independent features for every single 
quantified gene: Average expression level, expression variability and coordination 
with expression of each other gene. As numerically illustrated in a recent paper[65] and 
in Figure 1 below, the three features are as independent and complementary to each 
other as are the impressions of a blind person and of a deaf one in a movie theater.

By comparing the average expression levels in the cancer nodule and surrounding 
normal tissue), we find what gene was up-/down-regulated or turned on/off by 
cancer. While the average expression level is used in all studies, the other two 

https://www.ncbi.nlm.nih.gov/gds/?term=iacobas
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Figure 1  Individual gene quantifiers in the normal kidney tissue (NOR) from a 74-year-old clear cell renal cell carcinoma patient. A: 
Average expression levels of the first alphabetically ordered 60 genes involved in the chemokine signaling. Brown columns indicate the most highly expressed genes 
and the blue ones the least expressed genes; B: Relative expression variability of the first alphabetically ordered 60 genes involved in the chemokine signaling. 
Brown columns indicate the most controlled genes and the blue ones the least controlled genes; C: Pearson product-moment correlation coefficient (COR) of VHT 
with the first alphabetically ordered 60 genes involved in the chemokine signaling. Brown columns indicate the significantly synergistically expressed partners of VHL 
and the blue ones the significantly antagonistically expressed partners. Note the independence of the three features. COR: Pearson product-moment correlation 
coefficient of VHT; REV: Relative expression variability.
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characteristics are unfairly neglected although they provide extremely useful 
complementary information that cannot be obtained from other sources. The 
expression variability provides an estimate of the control of transcript abundance 
(essential to determine what genes are critical for the phenotypic expression) and the 
expression coordination indicates how the genes are networked in functional 
pathways.

The investigator can combine the independent features from one or more conditions 
(e.g., normal tissue w/o treatment and/or cancer nodule w/o treatment) in several 
ways to get additional characterizations of both individual genes and functionally 
related groups of genes. In this review, in addition to derived measures to strength the 
genes transcriptomic features like: Weighted Individual (gene) Regulation (WIR), 
Weighted Pathway Regulation, we present also the composite measures: Pair-Wise 
Relevance (PWR) and Gene Commanding Height (GCH).

QUANTIFIERS OF INDIVIDUAL GENES IN ONE PHENOTYPE
Average expression level
The expression levels in all replicas and all phenotypes were made comparable by 
iterative alternation of intra- and inter-array normalization to the median of all valid 
spots until the maximum error of estimate became less than 5%.

Figure 1A presents the expression levels of the first 60 alphabetically ordered genes 
involved in chemokine signaling in the normal tissue (NOR) profiled from the 
surgically removed right kidney. Note the wide spectrum of the average expression 
levels, from less than 0.70 of the median expression for ADCY6, BRAF and GNG7 to 
over 100 for CXCL14 and GNAI2. CXCL14 is particularly important for its role in 
apoptosis[66].

Expression variation
Formally, the biological replicas can be considered as the same system subjected to 
non-regulating, slightly different local conditions. As such, lower expression 
variability indicates increased control of the transcript abundance exerted by the 
cellular homeostatic mechanisms. Agilent microarrays probe some transcripts by 
multiple spots. For instance, the human 4 × 44 k two-color microarray probes MIEF1 
and SRRT (RNA effector molecule) with 20 spots each, PPIA, ABCC6, CXCL12 and 6 
other genes with 12 spots and so on.

Because of this non-uniform redundancy and in order to correct for the multiple-
testing, instead of the coefficient of variation (CV) we use to compute the Relative 
Expression Variability (REV)[65] for every single gene i in each phenotype (cancer 
nodule or normal tissue).

(1)Formula 1
REV can be used to estimate the strength of the “control” of the transcript 

abundance (control) as the complement to 100%. By comparing the REV score of the 
gene with the median REVs for all genes quantified in that phenotype, one gets the 
REV and the Relative Expression Control (REC). REC takes positive values for genes 
under a stricter control and negative values for those with a lesser control with respect 
to the median gene, providing a valuable indication about the importance of that gene 
for the survival, phenotypic expression or/and integration in a multicellular 
(heterogeneous) tissue.

(2)Formula 2
Figure 1B presents the REC’s of the same selection of chemokine-signaling genes in 

the normal kidney tissue. Again, there is a wide spectrum of values, from the very 
controlled FGR (REC = 1.979) and ARRB2 (REC = 1.964) to the least controlled CXCL12 
(REC = -0.531) and CCL16 (REC = -0.427). The higher gene expression control in cancer 
tissues may express the cell’s effort to limit the transcriptomic alterations.

Expression coordination
We compute Pearson pair-wise product-moment correlation coefficient “ρ” between 
the (log2) expression levels of pair of genes in all ordered spots in the four biological 
replicates of each phenotype. As illustrated in Supplementary Figure 1A for the 
coordination of AKT2, AKT3, CCL19 with AKT1 in the normal kidney tissue, the 
analysis identifies the genes whose expressions are significantly (P < 0.05) 
synergistically (ρ > 0), antagonistically (ρ < 0) or independently (ρ close to 0) expressed. 
Interestingly in Supplementary Figure 1 is the opposite coordination of AKT1 with 
AKT2, while in all three profiled CCRCC nodules it is positive, indicating that cancer 

https://f6publishing.blob.core.windows.net/0c8072d4-6cbf-4f0d-8af1-76a38a6366c1/WJCO-11-679-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/0c8072d4-6cbf-4f0d-8af1-76a38a6366c1/WJCO-11-679-supplementary-material.pdf
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switched the relationship between the two AKT isoforms.
Based on our hypothesis that genes encoding functionally related products should 

be synergistically or antagonistically expressed (“transcriptomic stoichiometry”) the 
analysis of the expression coordination can be used to test and refine the functional 
pathways[42,65]. The statistical significance is determined with the heteroscedastic t-test 
for the number of degrees of freedom df = 4 (biological replicas) × R (number of spots 
probing redundantly each of the correlated transcripts) – 2. When using human 
Agilent microarrays, df is a natural number between (4 × 1 – 2 =) 2 and (4 × 20 – 2 =) 
78, so that the corresponding significant P < 0.05 absolute |ρ| for synergistically or 
antagonistically expressed genes is a real number decreasing from 0.950 to 0.219 as the 
number of the spots probing redundantly the same transcripts increases[67].

Figure 1C presents the expression coordination in the normal kidney tissue of 
selected chemokine signaling genes with VHL (E3 ubiquitin protein ligase), a gene 
whose mutation allegedly causes von Hippel-Lindau disease and clear cell kidney 
tumors[68]. Note that VHL is significantly (P < 0.05) synergistically expressed with 
ADCY3and CCL28. VHL is antagonistically expressed with ADCY9, CCL4, CXCL9, 
CXCR4, GNB2 and GNG10. For the other plotted genes, there is not enough statistical 
evidence to characterize them as synergistic or antagonistic partners of VHL.

Figure 1 clearly shows that the three features: Average expression level, expression 
variation and expression coordination with other genes are independent to each other, 
providing complementary information for the transcriptome organization 
principles[55].

Pair-wise relevance
The three independent features of each gene can be combined into more complex 
indicators as presented here and in the subsequent sections. In all our experiments 
with genetically modified animals[69] and genetically manipulated cell cultures[70], we 
found that any significant change in the expression level of one gene alters the 
expression levels of hundreds other. Since a gene cluster can be decomposed into gene 
pairs, we use the Pair-Wise Relevance[65] to characterize the strength of genes reciprocal 
influence in a particular condition (here region of a tumor).

(3)Formula 3
The two genes can be from the same pathway, providing the “landscape” of the 

associated genomic fabric, or from two distinct pathways to “see” their interplay. 
Figure 2 presents such analysis for the oncogene genomic fabric (A-D) and for the 
interplay between oncogenes in mitochondrial genes (E-H) in the four regions profiled 
from the CCRCC patient. The most relevant pairs and their PWR scores are shown for 
each landscape. Note the substantial differences among the landscapes. However, for 
the analyzed subgroups of genes, ARAF2P forms the most prominent pairs with the 
mitochondrially encoded cytochrome c oxidases COX1 and COX2.
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COMPARING INDIVIDUAL GENES IN TWO OR MORE PHENOTYPES
Expression regulation
Owing to the non-uniform technical noise of the individual spots probing the gene 
transcripts and the non-uniform expression variability of the gene expression in 
different phenotypes, we have renounced to the uniform 1.5× cut-off of the expression 
ratio. To us, gene “i” is significantly regulated in the cancer nodule with respect to the 
cancer-free surrounding tissue if the absolute expression ratio |xi| is above the fold-
change cut-off (CUTi) computed for that for the compared conditions:

(4)Formula 4
Figure 3A presents the expression ratios (negative for down-regulation) of 14 MRPL 

genes in the three cancer samples (PTA, PTB, MET) with respect to the normal tissue 
(NOR) from the studied CCRCC case. The corresponding CUT value is plotted next to 
the expression ratio column. Note the non-uniformity of the CUT values for this 
selection from 1.35 for MRPL35 in PTA and MET, (less than the uniform arbitrary cut-
off of 1.5× adopted in most studies) to 2.45 for MRPL10 in PTB (more than the 
standard 1.5×). Only the genes whose absolute expression ratio exceeded the 
corresponding CUT for the compared conditions. Three (MRPL36, MRPL40, MRPL45) 
out of this 14 genes selection would be false hits in PTB if the uniform 1.5× cut-off is 
applied. Note also that the regulations are different in the three cancer regions, with 
predominantly higher values in the MET. In a previous report[7], we have determined 
that the metastatic cells most likely came from the PTA nodule.

REV
Figure 3B presents the REV values of 59 randomly selected mitochondrial genes 
(average values in Supplementary Figure 1B) profiled in the four frozenly preserved 
specimens of the CCRCC patient. The most variably expressed genes within the 
selected mitochondrial genes are ATP 6 in both NOR (100%) and PTB (129%). TIMM10 
(REV = 96%) is the most variably expressed in PTA and SLC25A6 (mitochondrial 
carrier; adenine nucleotide translocator) the most variable in MET (51%). Note the 
significantly lower average REVs in the cancer nodules (26% in MET, 33% in PTA and 
38% in PTB) than in the healthy tissue (50% in NOR). The differences between the REV 
distributions in NOR and cancer samples are statistically significant: P < 10-7 for PTA, 
P < 10-4 for PTB and P < 10-15 for MET.

As reported by us in numerous other studies on samples from diseased humans and 
animal models of human diseases[20,32,35] and verified in this example, genes of the 
normal tissues bear larger variability than the disease-affected ones. According to this 
criterion, MET region was more affected than PTA that was more affected than PTB. 
Clinicians also reported larger variability of pathophysiological features in the healthy 
than in the diseased population. If the second law of thermodynamics is considered, 
that means that the normal tissue is closer to the equilibrium than the cancer nodules.

Gene hierarchy
The GCH was introduced by us[7,8,10] to establish the gene hierarchy in each condition. 
It combines the estimate of the transcription control of that gene with a measure of its 
expression coordination with each other gene:

(5)Formula 5
Figure 3C presents the GCH scores of the top 3 genes in each condition plus 48 

randomly selected genes profiled in the four human CCRCC samples. Of note is that 
cancer and normal phenotypes in the same tumor have distinct gene hierarchies.

The top ranked gene in the hierarchy of a particular phenotype is termed the Gene 
Master Regulator (GMR) of that phenotype. As defined, the highly protected 
expression of the GMR is the strongest modulator of the major functional pathways in 
the cell.

Importantly, the GMRs of cancer nodules have very low GCHs in the normal tissue 

https://f6publishing.blob.core.windows.net/0c8072d4-6cbf-4f0d-8af1-76a38a6366c1/WJCO-11-679-supplementary-material.pdf
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Figure 2  Pair-Wise Relevance Analysis of the oncogenes and interplay of oncogenes with mitochondrial genes in the normal tissue 
(NOR) from the right kidney, two primary cancer nodules (PTA, PTB) from the right kidney and the metastasis region in the chest wall of 
a clear cell renal cell carcinoma patient. A-D: Pair-Wise Relevance Analysis of the oncogenes in the normal tissue (NOR) from the right kidney, two primary 
cancer nodules (PTA, PTB) from the right kidney and the metastasis region in the chest wall of a clear cell renal cell carcinoma patient; E-H: Interplay of oncogenes 
with mitochondrial genes in the normal tissue (NOR) from the right kidney, two primary cancer nodules (PTA, PTB) from the right kidney and the metastasis region in 
the chest wall of a clear cell renal cell carcinoma patient.
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and vice-versa, the GMR of the normal tissue scores poorly on the cancer nodules. We 
arrived at the same conclusion when profiling cancer nodules and adjacent normal 
tissues also from surgically removed tumors of a case papillary thyroid cancer[8] and 
two cases of prostate cancer[10].

Expression coordination depends on the phenotype and alternative splicing
Although all pathway software packages network the genes the same way regardless 
of cell specificity and condition, our analysis reveals a strong dependence on the 
cellular phenotype within the same tumor. Figure 4 illustrates this finding with the 
expression coordination of HIF1A, VEGFA, MTOR, RICTOR and RPTOR with other 
genes from the VEGFA signaling pathway in the four phenotypes profiled from the 
CCRCC patient. Note the substantial differences between the cancer samples (PTA, 
PTB, MET) and NOR and also the similarity of PTA and MET, indicating again that 
PTA cells formed the MET in MET region.

We had a number of reasons to choose this illustration. First, VEGFA pathway and 
mTOR-signaling (centered on MTOR, RICTOR, RPTOR) are targeted by several drugs 
in the CCRCC therapy[71,72]. Second, HIF1A is recognized for its role in the renal 
cancer[73]. Third, there is enough evidence of the importance of the alternative 
transcription and alternative splicing in cancer[74].

We presented the coordination of two transcript variants of VEGFA with opposite 
functions (pro-angiogenic and anti-angiogenic) because of their distinct association 
with the cancer[75,76]. In the VEGFA pathway, we included also two transcript variants 
of PXN, known for their differential binding to focal adhesion proteins[77].

Percentage of regulated genes or Weighted Individual (gene) Regulation?
It is customarily to evaluate the transcriptomic alteration by the percentage of 
significantly regulated genes. Although widely used, this evaluation considers all 
regulated genes as equal contributors, regardless their fold-change, confidence of the 
significant regulation or expression level in the normal phenotype. A better alternative 
is the Weighted Individual (gene) Regulation, WIR, defined as:

(6)Formula 6
where pi

(normal→cancer) is the P value of the heteroscedastic t-test of the equality of the 
average expression levels in the compared phenotypes.

The average WIR for all genes of a functional pathway, the Weighted Pathway 
Regulation (WPR)[33,35,36], provides a good measure to compare the alterations of 
different pathways in the phenotype or alterations of the same pathways in different 
cancer nodules from the same tumor. For instance, WPRs of the quantified cyclins in 
the CCRCC experiments were: 1.22 in PTA, -0.46 in PTB and 1.82 in MET, confirming 
again that MET region was the most affected (largest absolute value). The overall up-
regulation of cyclins in both PTA and MET, opposite to the overall downregulation in 
PTB indicates that MET was generated by cells originated in PTA. In the case of the 
prostate cancer pathway, WPR in the first patient was 5.09 and in the second -8.64, 
indicating that the overall transcriptomic alteration differs from person to person, even 
for the same cancer phenotype (here Gleason score 4 + 5 = 9).

Figure 5 presents how the contribution of regulated genes to the transcriptome 
alteration is considered in: Percentage of regulated genes, expression ratios, and WIRs. 
The examples are from the prostate cancer pathway in the cancer nodules of two 
patients (P1C and P2C) with respect to the corresponding cancer-free surrounding 
tissues (P1N, P2N, expression data from GSE133891 and GSE133906). In the 
percentage expression, each gene contributes the same regardless of how much is the 
fold change and the p value of the regulation. While the expression ratio offers a more 
accurate description, it is WIR weighting the expression ratio with the normal 
expression level and the confidence in the expression regulation, which is the best 
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Figure 3  Comparing individual gene quantifiers in the four frozenly preserved specimens of a clear cell renal cell carcinoma 74 years old 
man. A: Expression ratios (negative for down-regulation) of 14 MRPL genes in the three cancer samples (PTA, PTB, MET) with respect to the normal tissue (NOR) 
from the studied clear cell renal cell carcinoma case. The arrows indicate the genes which would be false hits in the standard uniform 1.5× absolute fold-change cut. 
Note that regulation is higher for most genes in MET than in PTA which at its turn is higher than in PTB; B: Relative expression variability (REV) of 59 randomly 
selected mitochondrial genes. Note the significantly lower averages for the cancer regions with respect to the control (healthy) tissue; C: GCH of the top 3 genes in 
each condition plus 48 randomly selected ones. NOR: Normal kidney tissue; PTA: Cancer nodule (primary tumor) A; PTB: Cancer nodule (primary tumor) B; MET: 
Metastatic chest wall. Colored continues lines are the average REVs in each condition. Note that the GCHs of the same gene are region dependent.
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descriptor out of the three.
Note the large range of gene contributions to the alteration of the pathway and the 

substantial differences between the two persons. Thus, HSP90B1 with WIR = 69 in P1C 
and WIR = -141 in P2C was not only the most altered gene in both patients but its 
regulations were opposite. Higher expression of HSP90B1 was associated with poor 
prognosis in non-small cell lung cancer patients[78] but the regulation of this gene 
during the progression of the prostate cancer is not yet known. There are, however, 
reports on how this gene is affected when the androgen-sensitive LNCaP and the 
androgen-insensitive prostate cancer cell lines are treated with androgen[79] or boric 
acid[80].

Other oppositely regulated genes in this pathway include the v-akt murine 
thymoma viral oncogene homologs AKT2 and AKT3, CREB3L1 and IGF1 up-regulated 
in P1C but down-regulated in P2C. In contrast, Lef1, MAPK3, PDGFC, SOS2 and TCF7 
were down-regulated in P1 but up-regulated in P2.

Measures of gene expression restoration
Both percentage of regulated genes and weighted pathway regulation can be used to 
quantify how efficient was a treatment to restore the normal expression levels for all 
genes or just for a particular pathway. Thus, Gene Expression Recovery, GER is:

(7)Formula 7
We consider that the Pathway Restoration Efficiency (PRE) is the better measure.
(8)Formula 8
For both measures, the ideal treatment yields 100%, an ameliorative one between 0% 

and 100%, the neutral one 0% and one that gets you sicker (contradicting “primum 
non nocere” principle of Hippocratic Oath of the medical practice) takes negative 
values. We have used these measures to quantify the efficiency of the ACTH and 
PMX53 treatment of the infantile spasms in rats[36] and of the bone marrow 
mononuclear cells of the myocardium infarct[81] and Chagas cardiomyopathy[33] in 
mice.

One phenotype, two persons, two distinct transcriptomes
In this section, we show that the same phenotype has different transcriptomic 
expressions in different persons. Because of this, it makes no sense to compare the 
average expression levels in distinct populations of health and cancer individuals. For 
example, Figure 6 shows the regulation of genes included by KEGG in the prostate 
cancer pathway in the cancer nodules of two men with the same phenotype, prostate 
cancer Gleason score 4 + 5 = 9. Thus, patient P1 had 39% of the pathway genes up-
regulated and 23% down-regulated, while P2 had 23% up-regulated and 17% down-
regulated with respect to the corresponding cancer-free tissue collected from the same 
tumors. Interestingly, some of the usual suspects in prostate cancer, the oncogene 
androgen receptor and the tumor suppressors CDKN1B, NKX3-1 and PTEN were not 
regulated in either patient. TMPRSS2 was not regulated in P1 but down regulated in 
P2). Like for the CCRCC samples (Figure 2), the CUT criterion detected significant 
regulations neglected by the uniform 1.5× cut-off and eliminated those over the 
absolute 1.5× fold-change but below the CUT computed for individual transcripts in 
the compared conditions. For instance, CREB3 is down-regulated with x = -1.43 in P1C 
(CUT = 1.35×), but not with x = 1.57 in P2C (CUT = 1.58×).

Note that there is not perfect overlap of the sets of the regulated genes. Moreover, as 
illustrated also in Figure 4, the common hits may have not only different fold-changes, 
but the regulations can be even in opposite directions, as are the cases of AKT2/3, 
CREB3L1, HSP90B1, IGF1, LEF1 and other genes. While the different fold-changes 
suggest different severities of the disease (even in this example both persons have the 
same Gleason score), the opposite regulations indicate distinct molecular mechanisms.

Differential expression regulation is only a part of the transcriptome uniqueness of 
each of us; expression control and coordination are also unique. For example, Figure 7 
presents the expression coordination of PTEN with apoptotic genes. Only the 
significant synergistic, antagonistic and independent pairings in at least one out of the 
four conditions are presenting. Although not regulated in either patient, PTEN was 
chosen for this illustration owing to its polymorphism in prostate cancer patients[82]. 
We found that cancer turned the negative (antagonistic) coordination of PTEN with 
DDIT3 in P1N into a positive (synergistic) one in P1C. Also, the coordination of PTEN 
with ATF4 is positive in the normal tissue of patient P1 but negative in P2.

Biomarkers and GMRs
Gene hierarchy is also different for the same phenotype profiled from different 
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persons as we verified in the two cases of prostate cancer. Figure 8 presents the GCH 
of the top 10 genes in the cancer nodules of the two prostate cancer patients (P1C and 
P2C) and the corresponding scores of the same genes in the normal adjacent tissues 
(P1N and P2N). Interestingly, the first two genes for P1 are: The uncharacterized 
LOC145474 and the pseudogene SCARNA7 (also known as U90), the latter being 
associated with the non-small cell lung cancer[83]. The top 2 genes in P2C are: 
DENND1B, associated with gastric cancer[84] and TOR1A associated with dystonia and 
spermatogenesis[85]. Note the lack of overlap between the top 10 genes of the two 
persons and that the GCHs of the cancer top genes have much lower scores in the 
normal tissue. Observe also that the highly ranked elements may be both coding - or 
non-coding (RNA) as reported also in other studies[83].

Interestingly but not surprisingly because of the low expression control, all 
considered prostate cancer biomarkers have modest GCH scores in the cancer nodules 
as illustrated in panels B and C for the two profiled prostate cancer tumors. This result 
confirms our anterior finding for the biomarkers in a surgically removed papillary 
thyroid cancer[8]. Thus, while LOC145474 (the GMR of P1C) has a GCH = 126 and 
DENND1B (the GMR of P2C) has GCH = 150, the best ranked biomarker, TP53 (tumor 
protein p53)[86] has GCH = 25 in P1C (GCH = 1 in P2C). Another biomarker with better 
score (GCH = 22) in P1C is the transcription factor E2F1, whose role in the 
development of the prostate cancer is still conflicting[87]. Moreover, none of the known 
biomarkers performs higher than PDGFC (platelet derived growth factor C)[88,89], GCH 
= 8.15 in P2C.

The GMRs approach of cancer gene therapy
The above sections suggested that a cancer phenotype may be compatible with as 
many transcriptomes as human beings that were, are, or will be affected by the same 
disease. Hence, there is not one gene whose alteration would explain all cases, nor one 
gene whose targeting would treat each and everyone. Therefore, a really personalized 
genomic medicine needs to be developed in which only the procedures to be applied 
are common but not the targeted gene and the concrete result. Cancer surgery 
residents learn the general procedures[90] but not the exact anatomy of every patient 
they will ever have to deal with nor the exact consequences of their intervention. 
Because of these, let us switch the focus from identifying THE (non-existing) gene that 
will cure everybody to the PROCEDURE that identifies and manipulate the most 
legitimate target genes for THIS person and NOW.

In recent publications, we proposed that the GMRs of cancer nodules could be the 
most legitimate targets for cancer gene therapy[8,10,91] because: (1) The strict control of 
the expression level indicates that the right amount of GMR transcripts is critical for 
the cell survival; (2) The high coordination degree with expressions of many other 
genes shows how influential the GMR is for the cell physiology; and (3) The very low 
GCH scores of the cancer nodule GMR in the surrounding normal substance suggest 
that silencing the GMR may selectively kill the cancer cells from the tissue.

As the most frequently altered genes in large population, the biomarkers are among 
the most alterable genes of the individual and, by consequence, they would never be 
the GMRs, nor reasonable targets for gene therapy.

The reason for the “c” suggestion came from the results of transfecting the same 
gene in two standard human thyroid cancer cell lines, BCPAP (papillary) and 850C 
(anaplastic), and determine the effects. We found that manipulating the expression of: 
NEMP1, PANK2, DDX19B and UBALD1 had transcriptomic consequences in line with 
their GCH in the untransfected cells[8,10].

The GMR approach can be easily turned into a clinical practice by profiling the four 
quarters of the biopsy from a cancer nodule (or the modified white blood cells), 
determine the GMRs and silence them by CRISPR-Cas9 or other gene editing 
method[92]. In time, the industry will produce ready-to-use CRISPR-Cas constructs for 
every gene, so that, once identified the GMR(s) of the cancer nodule(s), the procedure 
can be applied to the patient with similar costs as the biomarker-based therapy but 
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Figure 4  Gene networking depends on phenotype and may include different coordination for alternative transcripts. A-D: A brown/blue line 
indicates that the connected genes are (P < 0.05) significantly synergistically/antagonistically expressed. Brown/blue background of the gene symbol denotes 
significant up-/down regulation, while the yellow background stands for not statistically significant expression change. NOR: Normal kidney tissue; PTA: Cancer 
nodule (primary tumor) A; PTB: Cancer nodule (primary tumor) B; MET: Metastatic chest wall.

with much better results.
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Figure 5  Quantification of expression regulation of prostate cancer pathway genes in two patients. A: Uniform (unit) contribution; B: Expression 
ratio; C: Weighted individual (gene) regulations. Only the values of the significantly regulated genes in both patients were plotted. WIR: Weighted individual (gene) 
regulation.

CONCLUSION
“There is no sickness but sick persons” is what all medical courses start with all over 
the world, although after that they teach only the sickness…

The transcriptomic differences between people encompass the expression profile, 
strength of the control of transcript abundance and gene networking. The existence of 
three independent transcriptomic features of a gene indicates that just restoring the 
normal expression of the biomarkers included in the transcriptomic signature of the 
disease is not enough to cure the disease. We need to restore also their allowed 
expression fluctuations and the right networking. For analogy, it is not enough to 
restore the number of functional diodes in a TV set, they need the normal voltages and 



Iacobas DA. Cancer transcriptomics quantifiers

WJCO https://www.wjgnet.com 697 September 24, 2020 Volume 11 Issue 9

the right wiring.
There are two major options for cancer gene therapy: (1) To force the cancer cells to 

go back to the normal differentiation state and programmed cell death; or (2) To clean 
the tissue by selectively killing them. The second option needs either to make the 
cancer cells vulnerable to the immune response or to silence their GMRs.
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Figure 6  Regulation of the prostate cancer pathway. A: Patient 1; B: Patient 2. Note the different regulations of the pathways although the two patients 
have the same Gleason score.
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Figure 7  Even with the same phenotype and Gleason score, the genes are networked differently in the prostates of distinct persons. A: 
Cancer of patient P1; B: Normal tissue of patient P1; C: Cancer of patient P2; D: Normal tissue of patient P2; Continuous brown/blue lines indicate statistically (P < 
0.05) significant synergistic/antagonistic pairing of the connected genes, while dashed black ones that the two genes are independently expressed. Black arrows point 
to a gene whose coordination with PTEN was switched from negative in the normal tissue to positive in the corresponding cancer nodule. Brown arrows mark the 
opposite coordination when comparing the normal tissues of the two patients.
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Figure 8  Biomarkers are not the most important genes for the cell phenotype. A: Top 10 genes in the prostate cancer nodules of the two patients and 
their scores in the corresponding normal prostate tissues; B and C: Gene commanding height scores of the known prostate cancer biomarkers in the cancer nodules 
of the two pattients. GCH: Gene commanding height.

REFERENCES
National Institutes of Health.   Harmonized Cancer Datasets – Genomic Data Commons Data Portal. 
Available from: https://portal.gdc.cancer.gov

1     

DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM. Use of a cDNA 2     

https://portal.gdc.cancer.gov


Iacobas DA. Cancer transcriptomics quantifiers

WJCO https://www.wjgnet.com 702 September 24, 2020 Volume 11 Issue 9

microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14: 457-460 [PMID: 
8944026 DOI: 10.1038/ng1296-457]
Pérez-Pena J, Tibor Fekete J, Páez R, Baliu-Piqué M, García-Saenz JÁ, García-Barberán V, Manzano A, 
Pérez-Segura P, Esparis-Ogando A, Pandiella A, Gyorffy B, Ocana A. A Transcriptomic Immunologic 
Signature Predicts Favorable Outcome in Neoadjuvant Chemotherapy Treated Triple Negative Breast 
Tumors. Front Immunol 2019; 10: 2802 [PMID: 31921107 DOI: 10.3389/fimmu.2019.02802]

3     

Zhao B, You Y, Wan Z, Ma Y, Huo Y, Liu H, Zhou Y, Quan W, Chen W, Zhang X, Li F, Zhao Y. Weighted 
correlation network and differential expression analyses identify candidate genes associated with BRAF gene 
in melanoma. BMC Med Genet 2019; 20: 54 [PMID: 30925905 DOI: 10.1186/s12881-019-0791-1]

4     

PCAWG Transcriptome Core Group, Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, 
Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang 
Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin 
MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak 
SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H; PCAWG 
Transcriptome Working Group, Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z; 
PCAWG Consortium. Genomic basis for RNA alterations in cancer. Nature 2020; 578: 129-136 [PMID: 
32025019 DOI: 10.1038/s41586-020-1970-0]

5     

Gao X, Zhong S, Tong Y, Liang Y, Feng G, Zhou X, Zhang Z, Huang G. Alteration and prognostic values of 
collagen gene expression in patients with gastric cancer under different treatments. Pathol Res Pract 2020; 
216: 152831 [PMID: 32005407 DOI: 10.1016/j.prp.2020.152831]

6     

Iacobas DA, Iacobas S. Towards a Personalized Cancer Gene Therapy: A Case of Clear Cell Renal Cell 
Carcinoma. Cancer & Oncol Res 2017; 5: 45-52 [DOI: 10.13189/cor.2017.050301]

7     

Iacobas DA, Tuli NY, Iacobas S, Rasamny JK, Moscatello A, Geliebter J, Tiwari RK. Gene master 
regulators of papillary and anaplastic thyroid cancers. Oncotarget 2018; 9: 2410-2424 [PMID: 29416781 
DOI: 10.18632/oncotarget.23417]

8     

Teng H, Mao F, Liang J, Xue M, Wei W, Li X, Zhang K, Feng D, Liu B, Sun Z. Transcriptomic signature 
associated with carcinogenesis and aggressiveness of papillary thyroid carcinoma. Theranostics 2018; 8: 
4345-4358 [PMID: 30214625 DOI: 10.7150/thno.26862]

9     

Iacobas S, Ede N, Iacobas DA. The Gene Master Regulators (GMR) Approach Provides Legitimate Targets 
for Personalized, Time-Sensitive Cancer Gene Therapy. Genes (Basel) 2019; 10 [PMID: 31349573 DOI: 
10.3390/genes10080560]

10     

Welford SM, Gregg J, Chen E, Garrison D, Sorensen PH, Denny CT, Nelson SF. Detection of differentially 
expressed genes in primary tumor tissues using representational differences analysis coupled to microarray 
hybridization. Nucleic Acids Res 1998; 26: 3059-3065 [PMID: 9611255 DOI: 10.1093/nar/26.12.3059]

11     

Chakladar J, Li WT, Bouvet M, Chang EY, Wang-Rodriguez J, Ongkeko WM. Papillary Thyroid 
Carcinoma Variants are Characterized by Co-dysregulation of Immune and Cancer Associated Genes. 
Cancers (Basel) 2019; 11 [PMID: 31443155 DOI: 10.3390/cancers11081179]

12     

Zhang HJ, Sun ZQ, Qian WQ, Sheng L. Abnormal gene expression profile reveals the common key 
signatures associated with clear cell renal cell carcinoma: a meta-analysis. Genet Mol Res 2015; 14: 2216-
2224 [PMID: 25867368 DOI: 10.4238/2015.March.27.7]

13     

NanoString.   nCounter® Breast Cancer 360™ Panel. Available from: 
https://www.nanostring.com/products/gene-expression-panels/gene-expression-panels-overview/ncounter-
breast-cancer-360-panel

14     

Sicklick JK, Kato S, Okamura R, Schwaederle M, Hahn ME, Williams CB, De P, Krie A, Piccioni DE, 
Miller VA, Ross JS, Benson A, Webster J, Stephens PJ, Lee JJ, Fanta PT, Lippman SM, Leyland-Jones B, 
Kurzrock R. Molecular profiling of cancer patients enables personalized combination therapy: the I-
PREDICT study. Nat Med 2019; 25: 744-750 [PMID: 31011206 DOI: 10.1038/s41591-019-0407-5]

15     

Origene.   TissueScan™ Cancer and Normal Tissue cDNA Arrays. Available from: 
https://www.origene.com/products/tissues/tissuescan

16     

Kim S, Kang D, Huo Z, Park Y, Tseng GC. Meta-analytic principal component analysis in integrative omics 
application. Bioinformatics 2018; 34: 1321-1328 [PMID: 29186328 DOI: 10.1093/bioinformatics/btx765]

17     

Iacobas S, Iacobas DA, Spray DC, Scemes E. The connexin43-dependent transcriptome during brain 
development: importance of genetic background. Brain Res 2012; 1487: 131-139 [PMID: 22771707 DOI: 
10.1016/j.brainres.2012.05.062]

18     

Iacobas DA, Iacobas S, Thomas N, Spray DC. Sex-dependent gene regulatory networks of the heart rhythm. 
Funct Integr Genomics 2010; 10: 73-86 [PMID: 19756788 DOI: 10.1007/s10142-009-0137-8]

19     

Iacobas DA, Fan C, Iacobas S, Spray DC, Haddad GG. Transcriptomic changes in developing kidney 
exposed to chronic hypoxia. Biochem Biophys Res Commun 2006; 349: 329-338 [PMID: 16934745 DOI: 
10.1016/j.bbrc.2006.08.056]

20     

Iacobas DA, Fan C, Iacobas S, Haddad GG. Integrated transcriptomic response to cardiac chronic hypoxia: 
translation regulators and response to stress in cell survival. Funct Integr Genomics 2008; 8: 265-275 [PMID: 
18446526 DOI: 10.1007/s10142-008-0082-y]

21     

Velíšková J, Iacobas D, Iacobas S, Sidyelyeva G, Chachua T, Velíšek L. Oestradiol Regulates Neuropeptide 
Y Release and Gene Coupling with the GABAergic and Glutamatergic Synapses in the Adult Female Rat 
Dentate Gyrus. J Neuroendocrinol 2015; 27: 911-920 [PMID: 26541912 DOI: 10.1111/jne.12332]

22     

Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food 
Res 2017; 61 [PMID: 27138454 DOI: 10.1002/mnfr.201500902]

23     

Iacobas DA, Iacobas S, Stout RF, Spray DC. Cellular Environment Remodels the Genomic Fabrics of 
Functional Pathways in Astrocytes. Genes (Basel) 2020; 11 [PMID: 32392822 DOI: 
10.3390/genes11050520]

24     

Kobets T, Iatropoulos MJ, Duan JD, Brunnemann KD, Iacobas DA, Iacobas S, Vock E, Deschl U, Williams 
GM. Expression of Genes Encoding for Xenobiotic Metabolism After Exposure to Dialkylnitrosamines in the 
Chicken Egg Genotoxicity Alternative Model. Toxicol Sci 2018; 166: 82-96 [PMID: 30102407 DOI: 

25     

http://www.ncbi.nlm.nih.gov/pubmed/8944026
https://dx.doi.org/10.1038/ng1296-457
http://www.ncbi.nlm.nih.gov/pubmed/31921107
https://dx.doi.org/10.3389/fimmu.2019.02802
http://www.ncbi.nlm.nih.gov/pubmed/30925905
https://dx.doi.org/10.1186/s12881-019-0791-1
http://www.ncbi.nlm.nih.gov/pubmed/32025019
https://dx.doi.org/10.1038/s41586-020-1970-0
http://www.ncbi.nlm.nih.gov/pubmed/32005407
https://dx.doi.org/10.1016/j.prp.2020.152831
https://dx.doi.org/10.13189/cor.2017.050301
http://www.ncbi.nlm.nih.gov/pubmed/29416781
https://dx.doi.org/10.18632/oncotarget.23417
http://www.ncbi.nlm.nih.gov/pubmed/30214625
https://dx.doi.org/10.7150/thno.26862
http://www.ncbi.nlm.nih.gov/pubmed/31349573
https://dx.doi.org/10.3390/genes10080560
http://www.ncbi.nlm.nih.gov/pubmed/9611255
https://dx.doi.org/10.1093/nar/26.12.3059
http://www.ncbi.nlm.nih.gov/pubmed/31443155
https://dx.doi.org/10.3390/cancers11081179
http://www.ncbi.nlm.nih.gov/pubmed/25867368
https://dx.doi.org/10.4238/2015.March.27.7
https://www.nanostring.com/products/gene-expression-panels/gene-expression-panels-overview/ncounter-breast-cancer-360-panel
https://www.nanostring.com/products/gene-expression-panels/gene-expression-panels-overview/ncounter-breast-cancer-360-panel
http://www.ncbi.nlm.nih.gov/pubmed/31011206
https://dx.doi.org/10.1038/s41591-019-0407-5
https://www.origene.com/products/tissues/tissuescan
http://www.ncbi.nlm.nih.gov/pubmed/29186328
https://dx.doi.org/10.1093/bioinformatics/btx765
http://www.ncbi.nlm.nih.gov/pubmed/22771707
https://dx.doi.org/10.1016/j.brainres.2012.05.062
http://www.ncbi.nlm.nih.gov/pubmed/19756788
https://dx.doi.org/10.1007/s10142-009-0137-8
http://www.ncbi.nlm.nih.gov/pubmed/16934745
https://dx.doi.org/10.1016/j.bbrc.2006.08.056
http://www.ncbi.nlm.nih.gov/pubmed/18446526
https://dx.doi.org/10.1007/s10142-008-0082-y
http://www.ncbi.nlm.nih.gov/pubmed/26541912
https://dx.doi.org/10.1111/jne.12332
http://www.ncbi.nlm.nih.gov/pubmed/27138454
https://dx.doi.org/10.1002/mnfr.201500902
http://www.ncbi.nlm.nih.gov/pubmed/32392822
https://dx.doi.org/10.3390/genes11050520
http://www.ncbi.nlm.nih.gov/pubmed/30102407


Iacobas DA. Cancer transcriptomics quantifiers

WJCO https://www.wjgnet.com 703 September 24, 2020 Volume 11 Issue 9

10.1093/toxsci/kfy197]
Fan C, Iacobas DA, Zhou D, Chen Q, Lai JK, Gavrialov O, Haddad GG. Gene expression and phenotypic 
characterization of mouse heart after chronic constant or intermittent hypoxia. Physiol Genomics 2005; 22: 
292-307 [PMID: 15928208 DOI: 10.1152/physiolgenomics.00217.2004]

26     

Tcheandjieu C, Cordina-Duverger E, Mulot C, Baron-Dubourdieu D, Guizard AV, Schvartz C, Laurent-
Puig P, Guénel P, Truong T. Role of GSTM1 and GSTT1 genotypes in differentiated thyroid cancer and 
interaction with lifestyle factors: Results from case-control studies in France and New Caledonia. PLoS One 
2020; 15: e0228187 [PMID: 31999731 DOI: 10.1371/journal.pone.0228187]

27     

Vasudev NS, Selby PJ, Banks RE. Renal cancer biomarkers: the promise of personalized care. BMC Med 
2012; 10: 112 [PMID: 23016578 DOI: 10.1186/1741-7015-10-112]

28     

Marshall HT, Djamgoz MBA. Immuno-Oncology: Emerging Targets and Combination Therapies. Front 
Oncol 2018; 8: 315 [PMID: 30191140 DOI: 10.3389/fonc.2018.00315]

29     

O'Hayer KM, Brody JR. Personalized therapy for pancreatic cancer: Do we need better targets, arrows, or 
both? Discov Med 2016; 21: 117-123 [PMID: 27011047]

30     

Tsimberidou AM, Hong DS, Ye Y, Cartwright C, Wheler JJ, Falchook GS, Naing A, Fu S, Piha-Paul S, 
Janku F, Meric-Bernstam F, Hwu P, Kee B, Kies MS, Broaddus R, Mendelsohn J, Hess KR, Kurzrock R. 
Initiative for Molecular Profiling and Advanced Cancer Therapy (IMPACT): An MD Anderson Precision 
Medicine Study. JCO Precis Oncol 2017; 2017 [PMID: 29082359 DOI: 10.1200/PO.17.00002]

31     

Iacobas DA. The Genomic Fabric Perspective on the Transcriptome between Universal Quantifiers and 
Personalized Genomic Medicine. Biological Theory 2016; 11: 123-137 [DOI: 10.1007/s13752-016-0245-3]

32     

Iacobas DA, Iacobas S, Tanowitz HB, Campos de Carvalho A, Spray DC. Functional genomic fabrics are 
remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy. Microbes 
Infect 2018; 20: 185-195 [PMID: 29158000 DOI: 10.1016/j.micinf.2017.11.003]

33     

Iacobas DA, Iacobas S, Nebieridze N, Velíšek L, Velíšková J. Estrogen Protects Neurotransmission 
Transcriptome During Status Epilepticus. Front Neurosci 2018; 12: 332 [PMID: 29973860 DOI: 
10.3389/fnins.2018.00332]

34     

Mathew R, Huang J, Iacobas S, Iacobas DA. Pulmonary Hypertension Remodels the Genomic Fabrics of 
Major Functional Pathways. Genes (Basel) 2020; 11 [PMID: 31979420 DOI: 10.3390/genes11020126]

35     

Iacobaş DA, Chachua T, Iacobaş S, Benson MJ, Borges K, Velíšková J, Velíšek L. ACTH and PMX53 
recover synaptic transcriptome alterations in a rat model of infantile spasms. Sci Rep 2018; 8: 5722 [PMID: 
29636502 DOI: 10.1038/s41598-018-24013-x]

36     

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, 
pathways, diseases and drugs. Nucleic Acids Res 2017; 45: D353-D361 [PMID: 27899662 DOI: 
10.1093/nar/gkw1092]

37     

Guo J, Gu Y, Ma X, Zhang L, Li H, Yan Z, Han Y, Xie L, Guo X. Identification of hub genes and pathways 
in adrenocortical carcinoma by integrated bioinformatic analysis. J Cell Mol Med 2020; 24: 4428-4438 
[PMID: 32147961 DOI: 10.1111/jcmm.15102]

38     

Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. 
Bioinformatics 2014; 30: 523-530 [PMID: 24336805 DOI: 10.1093/bioinformatics/btt703]

39     

Frigeri A, Iacobas DA, Iacobas S, Nicchia GP, Desaphy JF, Camerino DC, Svelto M, Spray DC. Effect of 
microgravity on gene expression in mouse brain. Exp Brain Res 2008; 191: 289-300 [PMID: 18704384 DOI: 
10.1007/s00221-008-1523-5]

40     

Petrucci RH, Harwood WS, Herring FG. General chemistry: principles and modern applications. 8th ed. 
Upper Saddle River, NJ: Prentice Hall, 2002

41     

Iacobas DA, Iacobas S, Spray DC. Connexin43 and the brain transcriptome of newborn mice. Genomics 
2007; 89: 113-123 [PMID: 17064878 DOI: 10.1016/j.ygeno.2006.09.007]

42     

Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, Wallden B, Marincola FM, Cesano A. Pan-
cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The 
Cancer Genome Atlas (TCGA). J Immunother Cancer 2018; 6: 63 [PMID: 29929551 DOI: 
10.1186/s40425-018-0367-1]

43     

Machnik M, Cylwa R, Kiełczewski K, Biecek P, Liloglou T, Mackiewicz A, Oleksiewicz U. The expression 
signature of cancer-associated KRAB-ZNF factors identified in TCGA pan-cancer transcriptomic data. Mol 
Oncol 2019; 13: 701-724 [PMID: 30444046 DOI: 10.1002/1878-0261.12407]

44     

Alshalalfa M, Liu Y, Wyatt AW, Gibb EA, Tsai HK, Erho N, Lehrer J, Takhar M, Ramnarine VR, Collins 
CC, Den RB, Schaeffer EM, Davicioni E, Lotan TL, Bismar TA. Characterization of transcriptomic signature 
of primary prostate cancer analogous to prostatic small cell neuroendocrine carcinoma. Int J Cancer 2019; 
145: 3453-3461 [PMID: 31125117 DOI: 10.1002/ijc.32430]

45     

Liu Y, Weber Z, San Lucas FA, Deshpande A, Jakubek YA, Sulaiman R, Fagerness M, Flier N, Sulaiman J, 
Davis CM, Fowler J, Starks D, Rojas-Espaillat L, Lazar AJ, Davies GE, Ehli EA, Scheet P. Assessing inter-
component heterogeneity of biphasic uterine carcinosarcomas. Gynecol Oncol 2018; 151: 243-249 [PMID: 
30194005 DOI: 10.1016/j.ygyno.2018.08.043]

46     

Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T, Ono R, Kaneko A, Takagi S, Najima 
Y, Hijikata A, Cui L, Ueki T, Oda Y, Hori S, Ohara O, Nakamura M, Saito T, Ishikawa F. Deregulated 
Mucosal Immune Surveillance through Gut-Associated Regulatory T Cells and PD-1+ T Cells in Human 
Colorectal Cancer. J Immunol 2018; 200: 3291-3303 [PMID: 29581358 DOI: 10.4049/jimmunol.1701222]

47     

Yang C, Gong J, Xu W, Liu Z, Cui D. Next-generation sequencing identified somatic alterations that may 
underlie the etiology of Chinese papillary thyroid carcinoma. Eur J Cancer Prev 2019 [PMID: 31724970 
DOI: 10.1097/CEJ.0000000000000529]

48     

Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost F, Reva B, Lih TM, 
Chang HY, Ma W, Huang C, Ricketts CJ, Chen L, Krek A, Li Y, Rykunov D, Li QK, Chen LS, Ozbek U, 
Vasaikar S, Wu Y, Yoo S, Chowdhury S, Wyczalkowski MA, Ji J, Schnaubelt M, Kong A, Sethuraman S, 
Avtonomov DM, Ao M, Colaprico A, Cao S, Cho KC, Kalayci S, Ma S, Liu W, Ruggles K, Calinawan A, 
Gümüş ZH, Geiszler D, Kawaler E, Teo GC, Wen B, Zhang Y, Keegan S, Li K, Chen F, Edwards N, 

49     

https://dx.doi.org/10.1093/toxsci/kfy197
http://www.ncbi.nlm.nih.gov/pubmed/15928208
https://dx.doi.org/10.1152/physiolgenomics.00217.2004
http://www.ncbi.nlm.nih.gov/pubmed/31999731
https://dx.doi.org/10.1371/journal.pone.0228187
http://www.ncbi.nlm.nih.gov/pubmed/23016578
https://dx.doi.org/10.1186/1741-7015-10-112
http://www.ncbi.nlm.nih.gov/pubmed/30191140
https://dx.doi.org/10.3389/fonc.2018.00315
http://www.ncbi.nlm.nih.gov/pubmed/27011047
http://www.ncbi.nlm.nih.gov/pubmed/29082359
https://dx.doi.org/10.1200/PO.17.00002
https://dx.doi.org/10.1007/s13752-016-0245-3
http://www.ncbi.nlm.nih.gov/pubmed/29158000
https://dx.doi.org/10.1016/j.micinf.2017.11.003
http://www.ncbi.nlm.nih.gov/pubmed/29973860
https://dx.doi.org/10.3389/fnins.2018.00332
http://www.ncbi.nlm.nih.gov/pubmed/31979420
https://dx.doi.org/10.3390/genes11020126
http://www.ncbi.nlm.nih.gov/pubmed/29636502
https://dx.doi.org/10.1038/s41598-018-24013-x
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://dx.doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/32147961
https://dx.doi.org/10.1111/jcmm.15102
http://www.ncbi.nlm.nih.gov/pubmed/24336805
https://dx.doi.org/10.1093/bioinformatics/btt703
http://www.ncbi.nlm.nih.gov/pubmed/18704384
https://dx.doi.org/10.1007/s00221-008-1523-5
http://www.ncbi.nlm.nih.gov/pubmed/17064878
https://dx.doi.org/10.1016/j.ygeno.2006.09.007
http://www.ncbi.nlm.nih.gov/pubmed/29929551
https://dx.doi.org/10.1186/s40425-018-0367-1
http://www.ncbi.nlm.nih.gov/pubmed/30444046
https://dx.doi.org/10.1002/1878-0261.12407
http://www.ncbi.nlm.nih.gov/pubmed/31125117
https://dx.doi.org/10.1002/ijc.32430
http://www.ncbi.nlm.nih.gov/pubmed/30194005
https://dx.doi.org/10.1016/j.ygyno.2018.08.043
http://www.ncbi.nlm.nih.gov/pubmed/29581358
https://dx.doi.org/10.4049/jimmunol.1701222
http://www.ncbi.nlm.nih.gov/pubmed/31724970
https://dx.doi.org/10.1097/CEJ.0000000000000529


Iacobas DA. Cancer transcriptomics quantifiers

WJCO https://www.wjgnet.com 704 September 24, 2020 Volume 11 Issue 9

Pierorazio PM, Chen XS, Pavlovich CP, Hakimi AA, Brominski G, Hsieh JJ, Antczak A, Omelchenko T, 
Lubinski J, Wiznerowicz M, Linehan WM, Kinsinger CR, Thiagarajan M, Boja ES, Mesri M, Hiltke T, 
Robles AI, Rodriguez H, Qian J, Fenyö D, Zhang B, Ding L, Schadt E, Chinnaiyan AM, Zhang Z, Omenn 
GS, Cieslik M, Chan DW, Nesvizhskii AI, Wang P, Zhang H; Clinical Proteomic Tumor Analysis 
Consortium. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019; 179: 
964-983.e31 [PMID: 31675502 DOI: 10.1016/j.cell.2019.10.007]
Lee AC, Svedlund J, Darai E, Lee Y, Lee D, Lee HB, Kim SM, Kim O, Bae HJ, Choi A, Lee S, Jeong Y, 
Song SW, Choi Y, Yeom H, Lee CS, Han W, Lee DS, Jang JY, Madaboosi N, Nilsson M, Kwon S. 
OPENchip: an on-chip in situ molecular profiling platform for gene expression analysis and oncogenic 
mutation detection in single circulating tumour cells. Lab Chip 2020; 20: 912-922 [PMID: 32057051 DOI: 
10.1039/c9lc01248f]

50     

Papp E, Hallberg D, Konecny GE, Bruhm DC, Adleff V, Noë M, Kagiampakis I, Palsgrove D, Conklin D, 
Kinose Y, White JR, Press MF, Drapkin R, Easwaran H, Baylin SB, Slamon D, Velculescu VE, Scharpf RB. 
Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep 2018; 25: 
2617-2633 [PMID: 30485824 DOI: 10.1016/j.celrep.2018.10.096]

51     

Nelson SR, Zhang C, Roche S, O'Neill F, Swan N, Luo Y, Larkin A, Crown J, Walsh N. Modelling of 
pancreatic cancer biology: transcriptomic signature for 3D PDX-derived organoids and primary cell line 
organoid development. Sci Rep 2020; 10: 2778 [PMID: 32066753 DOI: 10.1038/s41598-020-59368-7]

52     

Iacobas S, Iacobas DA. Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes. 
Neuron Glia Biol 2010; 6: 157-169 [PMID: 21208491 DOI: 10.1017/S1740925X10000220]

53     

Iacobas S, Thomas NM, Iacobas DA. Plasticity of the myelination genomic fabric. Mol Genet Genomics 
2012; 287: 237-246 [PMID: 22246408 DOI: 10.1007/s00438-012-0673-0]

54     

Spray DC, Iacobas DA. Organizational principles of the connexin-related brain transcriptome. J Membr Biol 
2007; 218: 39-47 [PMID: 17657523 DOI: 10.1007/s00232-007-9049-5]

55     

Lee PR, Cohen JE, Iacobas DA, Iacobas S, Fields RD. Gene networks activated by specific patterns of action 
potentials in dorsal root ganglia neurons. Sci Rep 2017; 7: 43765 [PMID: 28256583 DOI: 
10.1038/srep43765]

56     

Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, Poultsides G, Ji HP. Single-Cell Genomic 
Characterization Reveals the Cellular Reprogramming of the Gastric Tumor Microenvironment. Clin Cancer 
Res 2020; 26: 2640-2653 [PMID: 32060101 DOI: 10.1158/1078-0432.CCR-19-3231]

57     

Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, Liao Q, Zhou Y, Gong Q, Xiang B, Zhou M, Li X, Li G, 
Xiong W, Fang J, Zeng Z. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells 
in nasopharyngeal carcinoma. Cancer Lett 2020; 477: 131-143 [PMID: 32061950 DOI: 
10.1016/j.canlet.2020.02.010]

58     

Jung J, Seol HS, Chang S. The Generation and Application of Patient-Derived Xenograft Model for Cancer 
Research. Cancer Res Treat 2018; 50: 1-10 [PMID: 28903551 DOI: 10.4143/crt.2017.307]

59     

Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 
2020; 13: 4 [PMID: 31910904 DOI: 10.1186/s13045-019-0829-z]

60     

Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid 
technologies. Science 2014; 345: 1247125 [PMID: 25035496 DOI: 10.1126/science.1247125]

61     

Oliveira B, Çerağ Yahya A, Novarino G. Modeling cell-cell interactions in the brain using cerebral 
organoids. Brain Res 2019; 1724: 146458 [PMID: 31521639 DOI: 10.1016/j.brainres.2019.146458]

62     

Samocha A, Doh H, Kessenbrock K, Roose JP. Unraveling Heterogeneity in Epithelial Cell Fates of the 
Mammary Gland and Breast Cancer. Cancers (Basel) 2019; 11 [PMID: 31554261 DOI: 
10.3390/cancers11101423]

63     

Lee S, Burner DN, Mendoza TR, Muldong MT, Arreola C, Wu CN, Cacalano NA, Kulidjian AA, Kane CJ, 
Jamieson CAM. Establishment and Analysis of Three-Dimensional (3D) Organoids Derived from Patient 
Prostate Cancer Bone Metastasis Specimens and their Xenografts. J Vis Exp 2020 [PMID: 32065165 DOI: 
10.3791/60367]

64     

Iacobas DA, Iacobas S, Lee PR, Cohen JE, Fields RD. Coordinated Activity of Transcriptional Networks 
Responding to the Pattern of Action Potential Firing in Neurons. Genes (Basel) 2019; 10 [PMID: 31561430 
DOI: 10.3390/genes10100754]

65     

Lyu XJ, Li HZ, Ma X, Li XT, Gao Y, Ni D, Shen DL, Gu LY, Wang BJ, Zhang Y, Zhang X. Elevated 
S100A6 (Calcyclin) enhances tumorigenesis and suppresses CXCL14-induced apoptosis in clear cell renal 
cell carcinoma. Oncotarget 2015; 6: 6656-6669 [PMID: 25760073 DOI: 10.18632/oncotarget.3169]

66     

Chapter 6: Analysing the Data Part III: Common Statistical Tests.  Available from: 
https://webstat.une.edu.au/unit_materials/c6_common_statistical_tests/test_signif_pearson.html

67     

Schmidt LS, Linehan WM. Genetic predisposition to kidney cancer. Semin Oncol 2016; 43: 566-574 [PMID: 
27899189 DOI: 10.1053/j.seminoncol.2016.09.001]

68     

Iacobas DA, Iacobas S, Spray DC. Connexin-dependent transcellular transcriptomic networks in mouse 
brain. Prog Biophys Mol Biol 2007; 94: 169-185 [PMID: 17507080 DOI: 10.1016/j.pbiomolbio.2007.03.015]

69     

Iacobas DA, Iacobas S, Urban-Maldonado M, Scemes E, Spray DC. Similar transcriptomic alterations in 
Cx43 knockdown and knockout astrocytes. Cell Commun Adhes 2008; 15: 195-206 [PMID: 18649190 DOI: 
10.1080/15419060802014222]

70     

Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. 
Renal cell carcinoma. Nat Rev Dis Primers 2017; 3: 17009 [PMID: 28276433 DOI: 10.1038/nrdp.2017.9]

71     

Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells 
in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative 
review. Crit Rev Oncol Hematol 2018; 132: 89-99 [PMID: 30447930 DOI: 
10.1016/j.critrevonc.2018.09.005]

72     

Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, Hypoxia-inducible 
Transcription Factors, and Renal Cancer. Eur Urol 2016; 69: 646-657 [PMID: 26298207 DOI: 
10.1016/j.eururo.2015.08.007]

73     

Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV. Alternative 74     

http://www.ncbi.nlm.nih.gov/pubmed/31675502
https://dx.doi.org/10.1016/j.cell.2019.10.007
http://www.ncbi.nlm.nih.gov/pubmed/32057051
https://dx.doi.org/10.1039/c9lc01248f
http://www.ncbi.nlm.nih.gov/pubmed/30485824
https://dx.doi.org/10.1016/j.celrep.2018.10.096
http://www.ncbi.nlm.nih.gov/pubmed/32066753
https://dx.doi.org/10.1038/s41598-020-59368-7
http://www.ncbi.nlm.nih.gov/pubmed/21208491
https://dx.doi.org/10.1017/S1740925X10000220
http://www.ncbi.nlm.nih.gov/pubmed/22246408
https://dx.doi.org/10.1007/s00438-012-0673-0
http://www.ncbi.nlm.nih.gov/pubmed/17657523
https://dx.doi.org/10.1007/s00232-007-9049-5
http://www.ncbi.nlm.nih.gov/pubmed/28256583
https://dx.doi.org/10.1038/srep43765
http://www.ncbi.nlm.nih.gov/pubmed/32060101
https://dx.doi.org/10.1158/1078-0432.CCR-19-3231
http://www.ncbi.nlm.nih.gov/pubmed/32061950
https://dx.doi.org/10.1016/j.canlet.2020.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28903551
https://dx.doi.org/10.4143/crt.2017.307
http://www.ncbi.nlm.nih.gov/pubmed/31910904
https://dx.doi.org/10.1186/s13045-019-0829-z
http://www.ncbi.nlm.nih.gov/pubmed/25035496
https://dx.doi.org/10.1126/science.1247125
http://www.ncbi.nlm.nih.gov/pubmed/31521639
https://dx.doi.org/10.1016/j.brainres.2019.146458
http://www.ncbi.nlm.nih.gov/pubmed/31554261
https://dx.doi.org/10.3390/cancers11101423
http://www.ncbi.nlm.nih.gov/pubmed/32065165
https://dx.doi.org/10.3791/60367
http://www.ncbi.nlm.nih.gov/pubmed/31561430
https://dx.doi.org/10.3390/genes10100754
http://www.ncbi.nlm.nih.gov/pubmed/25760073
https://dx.doi.org/10.18632/oncotarget.3169
https://webstat.une.edu.au/unit_materials/c6_common_statistical_tests/test_signif_pearson.html
http://www.ncbi.nlm.nih.gov/pubmed/27899189
https://dx.doi.org/10.1053/j.seminoncol.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/17507080
https://dx.doi.org/10.1016/j.pbiomolbio.2007.03.015
http://www.ncbi.nlm.nih.gov/pubmed/18649190
https://dx.doi.org/10.1080/15419060802014222
http://www.ncbi.nlm.nih.gov/pubmed/28276433
https://dx.doi.org/10.1038/nrdp.2017.9
http://www.ncbi.nlm.nih.gov/pubmed/30447930
https://dx.doi.org/10.1016/j.critrevonc.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/26298207
https://dx.doi.org/10.1016/j.eururo.2015.08.007


Iacobas DA. Cancer transcriptomics quantifiers

WJCO https://www.wjgnet.com 705 September 24, 2020 Volume 11 Issue 9

transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. 
Genome Res 2011; 21: 1260-1272 [PMID: 21712398 DOI: 10.1101/gr.120535.111]
Pal S, Gupta R, Davuluri RV. Alternative transcription and alternative splicing in cancer. Pharmacol Ther 
2012; 136: 283-294 [PMID: 22909788 DOI: 10.1016/j.pharmthera.2012.08.005]

75     

Pentheroudakis G, Kotoula V, Kouvatseas G, Charalambous E, Dionysopoulos D, Zagouri F, Koutras A, 
Papazisis K, Pectasides D, Samantas E, Dimopoulos MA, Papandreou CN, Fountzilas G. Association of 
VEGF-A splice variant mRNA expression with outcome in bevacizumab-treated patients with metastatic 
breast cancer. Clin Breast Cancer 2014; 14: 330-338 [PMID: 24703319 DOI: 10.1016/j.clbc.2014.02.009]

76     

Mazaki Y, Hashimoto S, Sabe H. Monocyte cells and cancer cells express novel paxillin isoforms with 
different binding properties to focal adhesion proteins. J Biol Chem 1997; 272: 7437-7444 [PMID: 9054445 
DOI: 10.1074/jbc.272.11.7437]

77     

Xu Y, Chen Z, Zhang G, Xi Y, Sun R, Wang X, Wang W, Chai F, Li X. HSP90B1 overexpression predicts 
poor prognosis in NSCLC patients. Tumour Biol 2016; 37: 14321-14328 [PMID: 27599983 DOI: 
10.1007/s13277-016-5304-7]

78     

Romanuik TL, Wang G, Holt RA, Jones SJ, Marra MA, Sadar MD. Identification of novel androgen-
responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009; 10: 476 [PMID: 19832994 
DOI: 10.1186/1471-2164-10-476]

79     

Kobylewski SE, Henderson KA, Yamada KE, Eckhert CD. Activation of the EIF2α/ATF4 and ATF6 
Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron 
Intake. Biol Trace Elem Res 2017; 176: 278-293 [PMID: 27587023 DOI: 10.1007/s12011-016-0824-y]

80     

Lachtermacher S, Esporcatte BL, Fortes Fda S, Rocha NN, Montalvão F, Costa PC, Belem L, 
Rabischoffisky A, Faria Neto HC, Vasconcellos R, Iacobas DA, Iacobas S, Spray DC, Thomas NM, 
Goldenberg RC, de Carvalho AC. Functional and transcriptomic recovery of infarcted mouse myocardium 
treated with bone marrow mononuclear cells. Stem Cell Rev Rep 2012; 8: 251-261 [PMID: 21671060 DOI: 
10.1007/s12015-011-9282-2]

81     

Nóbrega M, Cilião HL, Souza MF, Souza MR, Serpeloni JM, Fuganti PE, Cólus IMS. Association of 
polymorphisms of PTEN, AKT1, PI3K, AR, and AMACR genes in patients with prostate cancer. Genet Mol 
Biol 2020; 43: e20180329 [PMID: 32484847 DOI: 10.1590/1678-4685-GMB-2018-0329]

82     

Lv P, Yang S, Liu W, Qin H, Tang X, Wu F, Liu Z, Gao H, Liu X. Circulating plasma lncRNAs as novel 
markers of EGFR mutation status and monitors of epidermal growth factor receptor-tyrosine kinase inhibitor 
therapy. Thorac Cancer 2020; 11: 29-40 [PMID: 31691525 DOI: 10.1111/1759-7714.13216]

83     

Shi J, Cheng C, Ma J, Liew CC, Geng X. Gene expression signature for detection of gastric cancer in 
peripheral blood. Oncol Lett 2018; 15: 9802-9810 [PMID: 29928354 DOI: 10.3892/ol.2018.8577]

84     

Serrano JB, Martins F, Pereira CD, van Pelt AMM, da Cruz E Silva OAB, Rebelo S. TorsinA Is 
Functionally Associated with Spermatogenesis. Microsc Microanal 2019; 25: 221-228 [PMID: 30246678 
DOI: 10.1017/S1431927618015179]

85     

Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, Shah 
N, Adams EJ, Abida W, Watson PA, Prandi D, Huang CH, de Stanchina E, Lowe SW, Ellis L, Beltran H, 
Rubin MA, Goodrich DW, Demichelis F, Sawyers CL. SOX2 promotes lineage plasticity and antiandrogen 
resistance in TP53- and RB1-deficient prostate cancer. Science 2017; 355: 84-88 [PMID: 28059768 DOI: 
10.1126/science.aah4307]

86     

Chun JN, Cho M, Park S, So I, Jeon JH. The conflicting role of E2F1 in prostate cancer: A matter of cell 
context or interpretational flexibility? Biochim Biophys Acta Rev Cancer 2020; 1873: 188336 [PMID: 
31870703 DOI: 10.1016/j.bbcan.2019.188336]

87     

Bartoschek M, Pietras K. PDGF family function and prognostic value in tumor biology. Biochem Biophys 
Res Commun 2018; 503: 984-990 [PMID: 29932922 DOI: 10.1016/j.bbrc.2018.06.106]

88     

Hong MG, Karlsson R, Magnusson PK, Lewis MR, Isaacs W, Zheng LS, Xu J, Grönberg H, Ingelsson E, 
Pawitan Y, Broeckling C, Prenni JE, Wiklund F, Prince JA. A genome-wide assessment of variability in 
human serum metabolism. Hum Mutat 2013; 34: 515-524 [PMID: 23281178 DOI: 10.1002/humu.22267]

89     

Stanford Health Care.   Types of Surgery for Cancer Treatment. Available from: 
https://stanfordhealthcare.org/medical-treatments/c/cancer-surgery/types.html

90     

Iacobas DA. Commentary on “The Gene Master Regulators (GMR) Approach Provides Legitimate Targets 
for Personalized, Time-Sensitive Cancer Gene Therapy”. J Cancer Immunol 2019; 1: 31-33 [DOI: 
10.33696/cancerimmunol.1.005]

91     

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the 
targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 
2020; 5: 1 [PMID: 31934359 DOI: 10.1038/s41392-019-0089-y]

92     

http://www.ncbi.nlm.nih.gov/pubmed/21712398
https://dx.doi.org/10.1101/gr.120535.111
http://www.ncbi.nlm.nih.gov/pubmed/22909788
https://dx.doi.org/10.1016/j.pharmthera.2012.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24703319
https://dx.doi.org/10.1016/j.clbc.2014.02.009
http://www.ncbi.nlm.nih.gov/pubmed/9054445
https://dx.doi.org/10.1074/jbc.272.11.7437
http://www.ncbi.nlm.nih.gov/pubmed/27599983
https://dx.doi.org/10.1007/s13277-016-5304-7
http://www.ncbi.nlm.nih.gov/pubmed/19832994
https://dx.doi.org/10.1186/1471-2164-10-476
http://www.ncbi.nlm.nih.gov/pubmed/27587023
https://dx.doi.org/10.1007/s12011-016-0824-y
http://www.ncbi.nlm.nih.gov/pubmed/21671060
https://dx.doi.org/10.1007/s12015-011-9282-2
http://www.ncbi.nlm.nih.gov/pubmed/32484847
https://dx.doi.org/10.1590/1678-4685-GMB-2018-0329
http://www.ncbi.nlm.nih.gov/pubmed/31691525
https://dx.doi.org/10.1111/1759-7714.13216
http://www.ncbi.nlm.nih.gov/pubmed/29928354
https://dx.doi.org/10.3892/ol.2018.8577
http://www.ncbi.nlm.nih.gov/pubmed/30246678
https://dx.doi.org/10.1017/S1431927618015179
http://www.ncbi.nlm.nih.gov/pubmed/28059768
https://dx.doi.org/10.1126/science.aah4307
http://www.ncbi.nlm.nih.gov/pubmed/31870703
https://dx.doi.org/10.1016/j.bbcan.2019.188336
http://www.ncbi.nlm.nih.gov/pubmed/29932922
https://dx.doi.org/10.1016/j.bbrc.2018.06.106
http://www.ncbi.nlm.nih.gov/pubmed/23281178
https://dx.doi.org/10.1002/humu.22267
https://stanfordhealthcare.org/medical-treatments/c/cancer-surgery/types.html
https://dx.doi.org/10.33696/cancerimmunol.1.005
http://www.ncbi.nlm.nih.gov/pubmed/31934359
https://dx.doi.org/10.1038/s41392-019-0089-y


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2020 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

