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Abstract
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. 
Physiological loading contributes to maintaining the homeostasis and adaptation 
of tendon, but aberrant loading may lead to injury or failed repair. It is shown that 
stem cells respond to mechanical loading and play an essential role in both acute 
and chronic injuries, as well as in tendon repair. In the process of 
mechanotransduction, mechanical loading is detected by mechanosensors that 
regulate cell differentiation and proliferation via several signaling pathways. In 
order to better understand the stem-cell response to mechanical stimulation and 
the potential mechanism of the tendon repair process, in this review, we 
summarize the source and role of endogenous and exogenous stem cells active in 
tendon repair, describe the mechanical response of stem cells, and finally, 
highlight the mechanotransduction process and underlying signaling pathways.

Key Words: Stem cells; Mechanical loading; Tendon repair; Mechanotransduction
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Core Tip: Stem cells and mechanical loading are crucial to tendon injuries. In this review, 
we summarize the sources and roles of endogenous and exogenous stem cells for tendon 
repair, describe the mechanical response of stem cells, and finally highlight the 
mechanotransduction process and underlying signaling pathways. The deeper 
understanding of interactions between stem cells and mechanical loading offers great 
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potential for the development of new therapeutic strategies for tendon repair.
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INTRODUCTION
Tendon is a unique form of connective tissue that links muscle to bone. It is the 
anatomical structure that transmits muscle-contraction force to the skeleton in order to 
maintain posture or produce motion. Tendons are composed of triple-helical collagen I 
molecules assembled into fibrils that, in turn, form fibers, fascicles, and ultimately, 
tendon[1-3]. This mechanosensitive tissue has specific mechanical properties that enable 
it to respond and adapt to the loading transmitted by muscles; the collagen fibrils, 
considered to be the fundamental force-transmitting unit of the tendon, are densely 
arranged within the extracellular matrix (ECM), oriented parallel to the bone-muscle 
axis. A multitude of ECM molecules, including collagens, elastin, proteoglycans, and 
glycoproteins, are involved in tendon-specific collagen I. Tenocytes, the main type of 
cell located inside the collagen fibers, produce collagen I and ECM molecules[2]. 
Additionally, tendon stem/progenitor cells (TSPCs), also commonly termed as 
tendon-derived stem cells (TDSCs) or tendon stem cells (TSCs), located in the 
fascicular matrix, are responsible for replenishing tendon cells through differentiation 
and proliferation[4]. Under certain conditions, such as aberrant loading, TSPCs have 
multidifferentiation potential, namely, TSPCs can differentiate into tenocytes, 
chondrocytes, osteocytes, and adipocytes[4,5].

Tendon injuries range from chronic to acute, with partial or complete tendon 
rupture[2,6]. Chronic tendon injury mainly refers to tendinopathy, which is the most 
common tendon overuse injury and is characterized by pain and impaired function 
and performance[7]. The pathogenesis of tendinopathy is far from well understood and 
has been interchangeably defined as a degenerative condition or a failure of the 
healing process. Moreover, increased expression of inflammatory cytokines, such as 
COX-2 and interleukin (IL)-6, has been observed in overuse tendinopathy[8]; currently, 
the production of inflammatory cytokines is not considered to be a classic 
inflammatory response, but rather, the production expressed by resident tenocytes 
under overload[9,10]. Histologically, disorganization of collagen, increased 
noncollagenous ECM, hypercellularity, and neovascularization can be seen[11,12]. The 
exact relationship between tendinopathy and tendon rupture remains unknown, but it 
has been reported that tendinopathy increases the risk of tendon rupture[13]. Acute 
partial or complete tendon rupture interrupts tendon continuity, leading to bleeding, 
clotting, and the release of PDGF, TGF-β, ATP, and ADP from platelets and of 
epinephrine and norepinephrine from blood vessels at the wound site[9], resulting in a 
decrease or even loss of function and, potentially, in the loss of mobility. After injury, 
tendon undergoes a natural healing process involving successive steps—inflammation 
and formation of new cells, as well as ECM formation and remodeling[14]. Currently, 
the treatment for tendon injuries differs from that for other chronic and acute injuries. 
Conservative treatments include therapeutic exercise[15,16], shockwave[17], and injection 
therapy[18], which are helpful for reducing pain and improving function in 
tendinopathy, but pain during treatment, slow recovery, and risk of failure remain. A 
surgical procedure is usually the first choice for total tendon rupture, but patients may 
still face postoperative issues, such as proliferation of scar tissue, decreased mobility, 
and risk of second rupture.

To this end, stem-cell-based therapy has been introduced to clinical practice, and it 
may have broader future applications with the advantages of offering regeneration 
and repair. TSPCs, which tend to differentiate into tenocytes and are able to replace 
the loss of normal tenocytes, have been found to reside in tendon tissue. Thus, they 
have great potential to become the ideal cell source for stem-cell-based therapy[19,20].

Mechanical loading plays a crucial role in the biology of TSPCs[21]. In particular, 
proper loading aids in promoting the proliferation and tenogenic differentiation of 
TSPCs, which is beneficial for tendon repair, whereas aberrant loading might lead to 
nontenocyte differentiation, which could hinder tendon healing. In order to further 
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understand the response and mechanism of stem cells to mechanical loading, related 
to tendon injury and repair, this paper summarizes the sources of stem cells and 
describes the mechanical response of TSPCs for tendon repair, and it further discusses 
the underlying signaling pathways of TSPCs responding to mechanical stimuli.

ENDOGENOUS AND EXOGENOUS STEM CELLS/PROGENITORS FOR 
TENDON REPAIR
Several types of endogenous and exogenous stem cells have proven effective for 
tendon repair. TSPCs are fibroblast-like cells[22], which have been identified in mice, 
rabbits, and humans, with typical stem-cell makers[4,22,23]. Nevertheless, the exact source 
location of TSPCs remains unclear. TSPCs have been isolated and differentiated from 
tendon[4], peritenon[24], and perivascular sources[25,26]. A recent study reported that a 
PDGFRA+ cell population expressing tubulin polymerization-promoting protein 
family member 3 (TPPP3+), which is located in peritenon, has stem-cell characteristics, 
such that it may generate new tenocytes and self-renew upon injury[27]. TSPCs share 
some common markers with tenocytes, such as collagen I, collagen III, tenascin C, and 
tenomodulin (TNMD), but they express still more markers, like Oct-4, SSEA-1/4, and 
nucleostemin[4,5]. Both TSPCs isolated from the tendon and peritenon regions of mouse 
Achilles tendons have the Sca1, CD90, and CD44 markers[26], but progenitor cells from 
the tendon and peritenon regions can be distinguished with genes such as Scx, Mkx, 
Thbs4, and Wnt10a[24]. Moreover, perivascular stem cells isolated and cultured from 
human supraspinatus tendon biopsies express both tendon-like and stem/precursor-
cell-like markers, including musashi-1, nestin, prominin-1/CD133, CD29, CD44, Scx, 
and Smad8[25]. TSPCs from the tendon proper lack CD133 markers, however, which 
may help distinguish TSPCs from tendon proper and perivascular sources. TSPCs 
have shown a high capacity for proliferation and multipotential differentiation into 
tenocytes, osteoblasts, chondrocytes, and adipocytes[4,28]. Although TSPCs show 
multipotential differentiation, they also show spontaneous tenogenic differentiation, 
which can be beneficial for tendon repair[20]. In a tendon-window-wound study, TSPCs 
participated in tendon repair by proliferation and activation of tenogenesis[29]. The 
therapeutic effect of TSPCs has also been confirmed by using animal models. It has 
been reported that TSPCs promote tendon repair by improving cell and collagen-fiber 
alignment, collagen birefringence, and Young’s modulus typical of tendon, as well as 
by increasing ultimate stress capacity[30]. Similarly, ultimate failure load and the 
expression of collagen I and collagen III in the ruptured Achilles tendon have been 
much improved by TSPC transplantation[31]. Nevertheless, the abnormal differentiation 
of TSPCs into nontendon cells has a negative effect on tendon development, 
homeostasis, and repair. For instance, tendon progenitor cells of injured tendon have 
strong chondrogenic potential, which may cause endochondral ossification as a result 
of ectopic mineralization[32]. To date, very scant clinical research has been performed 
using TSPCs for tendon-related diseases.

As shown in Table 1, stem cells/progenitors derived from other tissues, such as 
bone marrow-derived mesenchymal stem cell (BMSCs) and adipose-derived stem cells 
(ASCs), are much easier to acquire than TSPCs[33,34], and they have been proven 
efficient for tendon repair[14,19]. BMSCs are spindle-shaped[35] and have the potential of 
tenogenic differentiation[36,37] and high proliferation[4,38]. Several mechanisms may 
contribute to tendon repair with exogenic BMSCs. First, BMSCs can differentiate into 
certain new cells (tenocytes) to replace lost normal cells[19,39]; second, BMSCs can secrete 
various cytokines and growth factors to promote the proliferation of cells in injured 
tissue[40]; and third, BMSCs can increase the deposition of collagenous proteins[41]. 
BMSC-based therapy has been found to improve histological and biomechanical 
properties and to increase the expression of collagen in animal injury[42,43]. But the 
application of BMSCs may also carry the risk of nontendon differentiation and of 
forming ectopic bone during tendon repair[44]. The clinical application of BMSCs was 
started very early, and four clinical trials (NCT03688308, NCT01788683, NCT02484950, 
and NCT01687777) using BMSCs for rotator-cuff repair are at the stage of recruiting, 
and the results have not yet been released. ASCs are spindle-shaped[45] with stem-cell 
marks[23,35,46]; these cells commonly being isolated from subcutaneous adipose tissue[34] 
and liposuction aspirates[47], have shown the multipotential ability of differentiation 
including tenogenic cells[48-50] and high proliferation[23,38,51]. ASC transplantation could 
enhance the secretion of collagen I and tenascin-C during healing and improve the 
mechanical strength of tendon[52,53], as well as improve the pathological changes of 
tendinopathy and the normalization of collagen ratios within the affected tendon[54]. 
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Table 1 Difference among tendon stem/progenitor cells, bone marrow-derived mesenchymal stem cells, and adipose-derived stem cells for tendon repair

TSPCs BM-MSCs ASCs

Morphology Fibroblast-like shape[22] Spindle-shaped[35] Spindle-shaped[45]

Phenotypes Positive: CD13, C29, CD44, CD54, CD73, CD90, CD105, CD146 and CD166 Negative: 
CD2, CD3, CD11b, CD14, CD15, CD16, CD18, CD19, CD31, CD34, CD45, CD56, CD71, 
CD106, CD117, CD123, and CD235a[4,22,23]

Positive: CD13, CD29, CD44, CD73, CD90, and CD105 
Negative: CD14, CD19, CD34, CD45[35,37]

Positive: CD13, C29, CD44, CD49d, CD54, CD73, CD90, 
CD105, and CD166 Negative: CD14, CD19, CD31, CD34, 
CD45 and CD71[23,35,46]

Proliferation TSPCs = BM-MSCs[4]; TSPCs ≤ ASCs[23] BM-MSCs = TSPCs[4]; BM-MSCs < ASCs[38] ASCs > BM-MSCs[38]; ASCs ≥ TSPCs[23]

Tenogenic 
differentiation

Spontaneous differentiation[20], or promoted by growth factors[120] and mechanical 
loading[75]

Induced by growth factors[36] and mechanical loading[39] Induced by growth factor supplements[48,49] and 
extracorporeal shockwave[50]

Evidence for tendon 
repair in vitro

Tenogenic differentiation[20,75,120] and high proliferation potential[4,28] Tenogenic differentiation and high proliferation 
potential[4]; enhanced secretion of bioactive factors[40] and 
the deposition of ECM[41]

Tenogenic differentiation and high proliferation rate[51]

Evidence for tendon 
repair in vivo

High proliferation and activation of tenogenesis[29]; improved collagen alignment and 
biomechanical properties[30,31]

Improved histological and biomechanical properties; 
increased expression of collagen[42,43]

Modulation of microenvironment[55]; enhancing the secretion 
of collagen and mechanical strength of tendon[52,53]

Evidence for tendon 
repair in clinics

None Four registered trials, but the results are not available Reduction of pain, tendon defect areas post intervention[56]

Advantages Spontaneous tenogenic differentiation[20]; higher proliferation and therapeutic 
effectiveness[31]

Easier acquirement[33]; enhanced secretion of bioactive 
factors[40]; increased the deposition of collagenous 
proteins[41]

Easier acquirement[34]; inhibition of osteogenic 
differentiation[55]; confirmed clinical outcome[56]

Limitations Limited number obtained from isolation[63] High potential of osteogenic differentiation[44]; lower 
therapeutic effectiveness than TSPCs[31]

Risk of fibrotic tissue formation, scarring[57], and forming 
adipocytes[58]

TSPCs: Tendon stem/progenitor cells; BMSCs: Bone marrow-derived mesenchymal stem cells; ASCs: Adipose-derived stem cells; ECM: Extracellular matrix.

Recently, a study indicated that ASCs improved tendon repair in tendinopathy by 
inhibiting inflammation and inducing neovascularization at the early stage of tendon 
healing, and ASCs are also effective for the inhibition of ectopic ossification in vivo[55]. 
Additionally, the clinical safety and efficacy of ASCs therapy have been reported. 
After allogeneic ASC treatment, patients with lateral elbow epicondylosis self-reported 
outcomes with reduced pain and improved function, without safety issues, as well as 
demonstrated decreased tendon defect areas in ultrasound images at 52 wk post-
injection[56]. However, the application of ASCs may give rise to fibrotic tissue formation 
and scarring[57] as well as forming adipocytes[58] during tendon repair. In addition, 
induced pluripotent stem cells (iPSCs) can be reprogrammed from adult somatic cells. 
It has been found that human iPSC-derived neural crest stem cells (iPSC-NCSCs) can 
differentiate into mesenchymal-lineage tenocytes, which accelerate the process of 
tendon repair[59]. In a rat patellar-tendon window-defect trial, iPSC-NCSCs promoted 
healing by improving matrix synthesis and mechanical properties and by increasing 
fetal tendon-related matrix proteins, stem-cell recruitment factors, and the tenogenic 
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differentiation factor[60].
Compared with exogenic stem cells/progenitors, TSPCs possess higher regenerative 

potential for tendon repair. For instance, during treatment of rat Achilles tendon 
injury, TSPCs have a greater positive effect on morphological and histological 
alteration and biomechanical strength when compared to BMSC transplantation[31]. 
This distinction may be because TSPCs proliferate more rapidly and have a greater 
capacity for colony formation[41,61,62]; additionally, TSPCs undergo spontaneous 
tenogenic differentiation, whereas BMSCs do not[20]. It has been demonstrated that 
mouse TSPCs express higher levels of tenogenic markers, such as Scx, Comp, Sox9, 
and Runx2, than mouse BMSCs; similarly, human TSPCs express more TNMD than 
BMSCs[4]. Thus, TSPCs more rapidly differentiate to functional tenocytes. Moreover, 
the expression of collagen I and collagen III is higher in TSPCs, which results in greater 
biomechanical strength at the early stage of repair[31]. However, the limited number of 
resident TSPCs hinders the large-scale clinical application[63]. Hence, both endogenous 
and exogenous stem cells have therapeutic potential. According to current evidence, 
TSPCs possess some advantages for tendon repair, but the efficacy of endogenic and 
exogenic stem cells requires further investigation.

MECHANICAL RESPONSE OF STEM CELLS/PROGENITORS FOR 
TENDON REPAIR
A number of factors influence the homeostasis of tendon, in which mechanical loading 
plays a critical role[64]. Under normal or physiological loading, the magnitude of 
loading is much less than the ultimate tensile strength (UTS). Typically, tendon could 
return to its original length when the strain is less than 4% of elongation; but tendon 
will have macroscopic tearing and eventually rapture when the strain is beyond 8%-
10% of elongation[65]. Researchers usually use 4% cyclic uniaxial stretching to mimic 
this loading condition in vitro, and to moderate treadmill running model of rats (13 
m/min, 15 min/d, and 5 d/wk in the first week; 13 m/min, 50 min/d, and 5 d/wk for 
another 3 wk) in vivo[21]. In normal or physiological loading, tendon can maintain 
homeostasis and respond to loading through cellular anabolic adaptation[3,21]. By 
contrast, abnormal loading may be different from normal mechanical loading in 
magnitude, frequency, duration, and/or direction; typically, abnormal loading of 
tendon can be unload, overload, or high repetitive low load[66]. Compared with 
explants tensioned with constant 4% strain, nontensioned rabbit patellar tendon 
decreased linear stiffness, elongation to failure, and maximum failure force after 20 
h[67]; undergoing cyclic loading at approximately 35% of the UTS led to tendon rapture 
in 15 min[68]; also, cyclic loading under 5% of UTS (around 1% strain) resulted in 
rupture within 15 h[69]. In vitro, researchers usually use 8% cyclic uniaxial stretching to 
mimic the overloading condition, as well as intensive treadmill running (13 m/min, 15 
min/d, and 5 d/wk in the first week; 13 m/min, 3 h/d, 4 h/d, and 5 h/d in the 
second, third, and fourth weeks for 5 d)[21]. Abnormal loading can lead to failed repair 
or pathological changes by causing anabolic changes in tendon[14,21,70]. After high-
intensity repetitive-exercise-induced injury, the expression level of IL-1β increases in 
mouse tendon[71]. Moreover, a greater production of inflammatory mediators induced 
by IL-1β, including COX-2, MMP-1, and PGE-2, has been reported for human tendon 
fibroblasts with excessive stretch loading than with moderate stretching or without 
stretch loading in vitro[72]. Similarly, the level of PGE-2 significantly increases in mouse 
patellar and Achilles tendons after rigorous treadmill running compared to caged 
control groups in vivo[73], indicating that overloading tendon may lead to a higher 
production of PGE-2. These inflammatory mediators may, in turn, promote the 
degradation of tendon, such as through neutrophil infiltration and decreased collagen 
production, thereby negatively impacting the repair of injured tendon.

TSPCs undergo similar mechanical loading as tenocytes. Mechanical loading, no 
matter what level, can increase TSC proliferation, which is indeed necessary for 
healing injured tendon[21]. Patellar and Achilles TSCs isolated from mice after moderate 
treadmill running have nearly double proliferation rates compared to the TSCs 
isolated from less active mice in vitro[21]; also, compared to inactive mice, cellular 
production of collagen increases by 70% and 200% for patellar and Achilles TSCs, 
respectively, for mice completing moderate treadmill running in vivo[74]. Currently, few 
studies have found that the magnitude of stretching could lead to different cell fate. In 
particular, a higher magnitude of stretching may cause aberrant differentiation 
compared to a lower magnitude of stretching in vitro. It was reported that 4% 
stretching promoted the differentiation of TSCs into tenocytes with increased gene 



Wang HN et al. Stem cells and tendon repair

WJSC https://www.wjgnet.com 957 September 26, 2020 Volume 12 Issue 9

expression of collagen I; 8% stretching, however, promoted the differentiation of TSCs 
into nontenocytes, including adipocytes, chondrocytes, and osteocytes, aside from 
differentiation into tenocytes, as evidenced by higher expression levels of genes such 
as PPARγ, collagen II, Sox-9, and Runx2 in vitro[75]. Similarly, increased differentiation 
into adipocytes, chondrocytes, osteocytes, and tenocytes with high gene expression of 
LPL, Sox-9, Runx2, Osterix, collagen I, and TNMD was found in mice after intensive 
treadmill running in vivo[76]. Also, mechanical loading can influence both TSC 
proliferation and differentiation due to an inflammatory mediator. In response to 
rigorous treadmill running, mouse patellar and Achilles tendons increase the 
production of PGE-2, which can decrease cell proliferation and induce both 
adipogenesis and osteogenesis of TSCs, as well as promote the production of fatty and 
calcified tissues within tendon[73]. These findings are consistent with the clinical 
understanding that complete rest without loading will decrease tendon strength and 
induce pathologic change in tendon, such that total rest is relatively contraindicated 
for tendinopathy[77,78]. In short, mechanical loading is necessary for TSC proliferation 
and collagen production, but excessive loading may cause abnormal differentiation of 
TSCs into nontenocytes, leading to tendon injury or failed tendon repair.

TSPCs would not be able to respond to mechanical loading without 
mechanotransduction, which converts mechanical signals from the environment into 
biochemical signals[79] (Figure 1). As a mechanical signal is transmitted to the 
microenvironment, it causes the physical perturbation of cells and deformation of the 
extracellular matrix[80,81]. Both TSPCs and tenocytes reside in the pericellular matrix, 
such that TSPCs experience a force similar to tenocytes. In tendon, tissue probably 
undergoes various types of force, including tensile loading, shear, and even 
compression force[81,82]. As tendon has the function of transmitting force from muscle to 
bone, tendon is exposed to high-tensile force, whereas the tendon-bone junction area 
commonly experiences compression force[83]. Further, the midportion of a tendon can 
potentially be exposed to both shear and compression forces due to the different forces 
to which the posterior and anterior areas of the tendon are exposed[84]. It has been 
reported that cyclic tensile loading on tendon may cause interstitial fluid flow, leading 
to shear force and perhaps hydrostatic force.

Moreover, effector-cell mechanosensors detect mechanical signals and induce an 
intercellular response via various downstream signaling pathways to regulate stem-
cell differentiation and proliferation[85,86]. Typically, effector cells can sense mechanical 
signaling from groups of transmembrane mechanosensitive proteins, namely, 
mechanosensors such as ion channels, integrins, G-protein coupled receptors (GPCRs), 
growth factor receptor (GFR), and primary cilium[85]. Ion channels play an essential 
role in cellular mechanotransduction. Cystic fibrosis transmembrane conductance 
regulator (CFTR) is a stretch-medicated activation channel that aids in passing 
chloride and water in and out of cells[87,88]. Recently, a study reported that CFTR 
regulates tenogenic differentiation through inhibiting the Wnt/β-catenin/ERK1/2 
signaling pathway in TSPCs[89]. Also, Ca2+ is a greatly powerful second messenger 
regulating cell migration and influencing the differentiation of stem cells[90,91]. Several 
studies have shown that transient receptor potential melastatin 7 (TRPM7) works as a 
calcium channel conducting calcium influx[90,92], which, in turn, activates transcription 
factor NFATc1, which then induces osteogenesis in mesenchymal stem cells 
(MSCs)[93,94]. Interestingly, integrins become involved in the intracellular concentration 
of calcium by interaction with ion channels[95]. In addition to interaction with ion 
channels, accumulating evidence indicates that integrin systems can detect mechanical 
signals and then transduce them to nuclear signaling[96,97]. Once integrin receptors bind 
their ligands in the ECM, they move laterally in the plane of the membrane to form 
focal adhesions, which play a central role in cell motility and cytoskeletal dynamics, as 
well as in regulating cell proliferation, differentiation, and gene expression[98]. GPCRs 
have the ability to sense mechanical loading and regulate molecular mechanisms 
downstream via binding protein ligand. For instance, Wnt binds frizzled receptors, 
which span the plasma membrane and constitute a distinct family of GPCRs that 
regulate osteogenic differentiation in MSCs[99]. Studies have found that, when a 
stretching force is applied to TSPCs, Wnt5a activates a co-receptor, receptor tyrosine 
kinase-like orphan receptor 2 (ROR2), and regulates Wnt5a/JNK and Wnt5a/RhoA 
signaling pathways downstream for osteogenic differentiation in TSPCs[100,101]. 
Additionally, growth factors bind their GFRs and regulate signaling pathways 
downstream—in TSPCs, GFRs mediate bone morphogenetic protein (BMP) signaling 
pathways involved in biomechanical loading-induced differentiation[102,103]. Further, 
primary cilium, an extraordinary organelle that exists on nearly all somatic cells, also 
plays a role in the detection of mechanical signaling. Currently, research specifically 
focused on the primary cilium of TSPCs is rare, but it can be hypothesized that the 
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Figure 1  Process of mechanotransduction in stem cells for tendon repair. This figure describes various ways by which mechanical loading stimulates 
mechanosensors to emit mechanical signals that convert into biochemical signals, which, in turn, activate the rearrangement of cytoskeleton and activate genetic 
expression via various signaling pathways. Cell-cell communication transduces signals from one cell to another cell via gap junctions. GPRC: G protein-coupled 
receptor; GFR: Growth factor receptor.

principle might be similar to tenocytes and MSCs. In tenocytes, the length of primary 
cilium immediately and significantly increases in a stress-deprived environment and 
can be reversed by cyclic tensile loading[104]. In MSCs, frizzled receptors are thought to 
localize cilium membranes, such that primary cilium is involved in controlling 
differentiation by tuning Wnt signaling pathways in MSCs[105,106].

In addition, even if a cell is not to receive mechanical stimulation, the cell can still 
respond via a process known as cell-cell communication, whereby it can communicate 
with a distant cell receiving mechanical stimulation[107,108]. To date, limited research has 
investigated the mechanism of cell-cell communication in TSPCs. Because TSPCs are 
stem cells/progenitors of tendon, however, they may have similar communication 
characteristics as tenocytes and MSCs. Connexins form gap junctions between the 
cytoplasm of adjacent cells allow for the direct intercellular exchange of ions and 
molecules[109]. Gap junctions are immunohistochemically detected among tenocytes, 
and connexins 32 and 43 form a three-dimensional network to respond to mechanical 
stimulation together[110]—connexin 32 has a stimulatory function, whereas connexin 43 
is inhibitory[109]. Additionally, cell-cell communication can be altered to some degree by 
stretching; specifically, communication increases under low-level stretching (4%) and 
decreases under high-level stretching (8%)[111]. Moreover, a recent study has shown 
that connexin 43 plays an impactful role in protecting MSCs from premature 
senescence, which results in the failure to properly differentiate in vitro[112]. Connexin 
43 may contribute to early tenogenesis in MSCs, but the mechanism in 
mechanotransduction is still not clear[113].

UNDERLYING SIGNALING PATHWAYS OF STEM CELLS/PROGENITORS 
RESPONDING TO MECHANICAL STIMULI
As the important role of mechanotransduction in TSPCs responding to mechanical 
loading has been realized, it has been demonstrated that various underlying signaling 
pathways transmit biomechanical signals to nuclei (Figure 2). With the noncanonical 
Wnts signaling pathway, Wnts binds co-receptor ROR2 and regulates signaling 
pathways downstream, in turn influencing osteogenic differentiation in TSPCs[114]. 
Mechanical tension promotes osteogenic differentiation of rat TSPCs via the 
Wnt5a/Wnt5b/JNK signaling pathway. Under 8% elongation uniaxial mechanical 
tension (UMT) stimulation, TSPCs exhibit increased protein levels of Wnt5a, Wnt5b, 
and P-JNK, as well as increased cytoskeletal rearrangement[100]. The mRNA expression 
of osteogenic genes, such as Runx2, Dlx5, Alpl, and collagen Ia1, also increases[100]. 
Additionally, UMT induces the appearance of osteogenic differentiation in rat TSCs 
through the Wnt5a/RhoA signaling pathway. RhoA and its effector protein, ROCK, 
play an important role in osteogenetic differentiation of MSCs[115], as they show 
increased mRNA expression of the osteogenic genes Runx2, Alpl, and collagen Ia1, 
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Figure 2  Signaling pathways responding to mechanical stimuli applied to a cell. This figure describes how mechanosensors, such as G-protein 
coupled receptors, integrins, ion channels, and growth factor receptor, sense mechanical loading and activate a series of signaling pathways downstream, in turn 
promoting gene expression and/or cytoskeleton rearrangement in tendon repair. ECM: Extracellular matrix; ROR: Receptor tyrosine kinase-like orphan receptor; 
GPCRs: G-protein coupled receptors; GFRs: Growth factor receptor; JNK: c-Jun N-terminal kinase; ROCK: Rho-associated protein kinase; ERK: Extracellular signal-
regulated kinase; YAP: Yes-associated protein; TAZ: PDZ-binding motif.

along with ALP activity, as well as ALP cytochemical staining and Runx2 protein 
expression after 2% elongation mechanical tension[101]. Only the expression of Wnt5a 
increased under UMT, not the other noncanonical Wnts, such as Wnt5b, Wnt7a, and 
Wnt11, but it can be inferred that the difference in Wnt protein levels might be due to 
varying magnitude of loading[101]. To date, the interaction between Wnt5a/JNK and 
Wnt5a/RhoA remains to be further investigated, insofar as whether Wnt5a/JNK 
regulates cells independent of or depending on the RhoA pathway[116].

In addition to noncanonical Wnts signaling pathways, the Wnt/β-catenin signaling 
pathway also contributes to differentiation in TSPCs. Wnt commonly binds frizzled 
receptors and downregulates β-catenin in the canonical Wnt/β-catenin signaling 
pathway[114]. In a rat tendinopathy model and a human tendon with tendinopathy, 
increased expression of Wnt3 and β-catenin has been observed. Wnt3a can increase 
ALP activity, calcium nodule formation, and the expression of osteogenic markers in 
TSPCs[117]. Similarly, strain loading promotes osteogenetic differentiation and inhibits 
adipogenesis via β-catenin[99]. A recent study reported that CFTR, a stretch-mediated 
activation channel, can regulate TSPCs during tenogenic differentiation under 
mechanical stretching. Mice with dysfunctional CFTR showed reduced levels of 
tendon markers, including Scx, TNMD, collagen Ia1 chain, and decorin, as well as 
abnormally active Wnt/β-catenin signaling, which, in turn, further activated the 
ERK1/2 signaling pathway[89]. Inhibiting ERK1/2 signaling can promote tenogenic 
differentiation in TSPCs, both in vitro and in vivo, however, and increase matrix 
formation and mechanical properties, which is helpful in the tendon healing 
process[89]. Moreover, activation of Wnt/β-catenin signaling suppressed the expression 
of tenogenic genes Scx, Mkx, and Tnmd in TSPCs by reducing the amount of Smad2 
and Smad3, which are intracellular mediators for TGF-β signaling[118].

In rat TSPCs, both 4% and 8% stretching can increase the amount of BMP-2, and 4% 
stretching upregulates BMP-2 genetic expression, when compared to unstretching, 
which does not obviously promote the expression of BMP-2[119]. Studies have proven 
that BMP-2 causes aberrant proliferation and differentiation in TSPCs, in other words, 
the addition of BMP-2 to human TSPC cultures reduces the proliferation of cells and 
promotes osteogenic differentiation in vitro [120]. BMP-2 promotes osteogenic 
differentiation through ALP cytochemical staining, ALP activity, and calcium nodule 
formation. Additionally, BMP-2 inhibits tenogenic marker expression, but promotes 
osteogenic, adipogenic, and chondrogenic differentiation in TSPCs[103]. After BMP-2 
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stimulation, TSPCs show increased glycosaminoglycan (GAG) production and mRNA 
expression of aggrecan (Acan), along with decreased mRNA expression of decorin (
Dcn), biglycan (Bgn), and fibromodulin (Fmod)[103]. To date, it remains to be determined 
whether the BMP-2 downstream molecular signaling pathways induce differentiation 
of TSPCs. Smad8 might play a role, as activated Smad8 promotes MSC tenogenic 
differentiation via inhibiting the BMP-2 induced osteogenic pathway[121].

ECM deformation initiates integrin signaling at focal adhesion sites where the ECM 
binds integrin, which activates downstream proteins, such as ERK1/2, p38, and 
JNK[98]. Higher matrix stiffness increases TDSC proliferation and forms more stress 
fibers, as well as inhibits the differentiation of TDSCs into tenogenic, chondrogenic, 
and osteogenic lineages via focal adhesion kinase (FAK) or ERK1/2 signaling 
pathways[122]. Similarly, another study found that ERK/MAPK signaling pathways 
increase the tenogenic expression level in mouse MSCs[123]. In addition to ERK, p38 
kinases also affect integrin-induced signaling pathways in TSPCs, as it was reported 
that 8% mechanical stretching caused an upregulated response in ERK1/2 and p38 
kinases, as well as altered expression of matrix proteins, integrins, and matrix 
metalloproteinases[124]. Interestingly, mechanical loading might precisely regulate ERK 
signaling, as the level of ERK1/2 phosphorylation induced by cyclic uniaxial 
mechanical stretching is related to stretching time in vitro [125]. Furthermore, 
RhoA/ROCK and the cytoskeleton may also contribute to integrin signaling. This 
demonstrates that FAK has the ability to regulate mechanical stretch-induced 
tenogenic differentiation by mediating RhoA/ROCK downstream and interacting with 
the cytoskeleton in human MSCs[126].

Recent studies have identified two important transcriptional coactivators—Yes-
associated protein (YAP) and transcriptional coactivator with PDZ-binding motif 
(TAZ) in the Hippo signaling pathway[127]. Mechanical loading has the ability to 
influence YAP/TAZ activities through stretching, geometry, and substrate rigidity, 
which, in turn, regulates stem-cell fate and behavior[128]. In human MSCs, YAP/TAZ 
knockdown promotes adipogenic differentiation on rigid substrates, which commonly 
happens on soft substrates[127]. Also, shear stress can induce human MSC osteogenic 
and fibrochondrogenic differentiation and promote TAZ nuclear translocation via the 
RhoA/ROCK signaling pathway and YAP/TAZ[129,130]. In addition, another study 
suggests that YAP/TAZ may be a downstream effector of the noncanonical Wnts 
signaling pathway, which plays a crucial role in TSPC differentiation. Thus, YAP/TAZ 
might mediate gene expression, osteogenesis, and cell migration of TSPCs[131]. To date, 
limited research has been conducted into the deep mechanism of Hippo and 
YAP/TAZ signaling pathways in tenocytes and TSPCs, but the potential value of this 
area is certain. In short, several signaling pathways have been demonstrated to 
participate in the mechanotransduction of TSPCs, such as noncanonical Wnts, Wnt/β-
catenin, BMP-2, and integrin, as well as YAP/TAZ.

CONCLUSION
This review summarizes the sources and roles of the endogenous and exogenous stem 
cells that can be used for tendon repair, describes the mechanical response of stem 
cells in tendon repair, and finally, highlights the mechanotransduction process and its 
underlying signaling pathways. Mechanical loading plays a crucial role in both tendon 
injury and repair. When mechanical loading is applied, the stimulation is detected by 
mechanosensors, such as ion channels, integrin, GPCRs, GFR, and primary cilium, 
which then transmute the mechanical signal into a biological signal, and in turn, 
regulate various downstream signaling pathways. Suitable mechanical loading is 
helpful for promoting both the proliferation and differentiation of TSPCs, which are 
crucial for tendon repair. These findings promise a bright future with new therapeutic 
strategies for tendon repair. Further studies are necessary to identify mechanosensors 
and deeply understand the signaling pathways of stem cells.
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