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Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) 
therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, 
secreting various factors that are immunomodulatory, anti-inflammatory, anti-
apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction 
with cells native to the tissue they reside in to enhance differentiation of 
surrounding cells to facilitate tissue regrowth. Researchers have developed 
methods for the extraction and expansion of MSCs from animal and human 
tissues. While many sources of MSCs exist, including adipose tissue and iliac crest 
bone graft, compact bone (CB) MSCs have shown great potential for use in 
orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in 
addition to demonstrating excellent regenerative capacity for use in filling boney 
defects. CB MSCs have been shown to have enhanced response to hypoxic 
conditions when compared with other forms of MSCs. More work is needed to 
continue to characterize the potential applications for CB MSCs in orthopaedic 
trauma.
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Core Tip: The use of stem cell therapies continues to emerge as available therapy for 
tissue engineering of orthopedic trauma. Compact bone mesenchymal stem cells 
(MSCs) have been studied for many years and have been found to have a greater 
orthopedic regenerative capacity compared to other autologous sources. Herein, we 
describe and review a novel source of MSCs from compact bone and their uses in 
orthopedic regeneration. This review is best suited for the traumatologist in search of a 
comprehensive review of this novel sources of MSCs and their potential uses in vitro, 
in vivo, and clinically.

Citation: Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation 
and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact 
bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 
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INTRODUCTION
Background on mesenchymal stem cells
The osteogenic ability of bone marrow aspirate was first demonstrated by Jones et al[1,2] 
in 1869. This ability was later attributed to the presence of mesenchymal stem cells 
(MSCs), which are a heterogeneous population of cells defined by surface markers[1,3,4]. 
MSCs isolated from animal models have consistently demonstrated capacity for multi 
lineage differentiation, pluripotency, and myriad MSC surface markers[5]. MSCs have 
also been extracted from human sources, and can be harvested from bone marrow, 
blood, or mesenchymal tissues (including bone, cartilage, meniscus, ligaments, and 
tendons). After harvest, they undergo isolation, expansion, and differentiation to 
create a lineage aimed at modulating the immune system and the regenerative 
response[6-9]. A common harvest site is from the bone marrow (iliac crest), and this 
specimen contains mixtures of mesenchymal progenitors with variable differentiation 
potential[10]. Hernigou et al[11] reported concentrations of approximately 400 
mesenchymal stem cells/mL of iliac crest aspirate. Another site for harvest of MSC is 
adipose tissue, which is obtained through standard liposuction methods[12-15]. While 
these sites are capable of generating a robust number of MSCs, they are both surgically 
morbid procedures with their own sets of complications.

MSC isolation began in the 1970s, where initial investigations demonstrated that 
bone, cartilage, muscle and other mesenchymal tissue could be differentiated from 
embryonic stage chick limb bud mesenchymal progenitor cells[16,17]. MSCs were found 
to have the capacity to differentiate into cartilage, muscle, marrow stroma, tendons, 
ligaments, fat, and other connective tissues[15]. Recent technology developments for 
isolating and culture expanding adult marrow-derived MSCs has led to an explosion 
of research opportunities with current and future clinical applications[18-20]. Most 
recently, MSCs isolated from trabecular and cortical bone portions, referred to as 
cortical bone fraction MSCs (CB-MSCs), have emerged[4]. CB-MSCs have shown to 
have higher biosynthetic activity in vitro under hypoxic conditions when compared to 
MSCs of other sources[21]. These findings have profound implications since CB-MSCs 
have the unique ability to withstand the harsh conditions that may exist in recipient 
tissue. The mechanisms behind enhanced survivability in the hypoxic condition are 
numerous, and may include the enhanced production of a variety of protective 
cytokines[21,22]. Regardless, post-traumatic inflammation, reactive oxygen species, and 
compromised blood flow inducing hypoxic tissue state complicate the in vivo 
environment after fracture, and thus, CB-MSCs may be better suited for orthopedic 
tissue engineering than their bone marrow-derived counterparts[21].

From enhancing current techniques used to treat fractures or bolster fusions, to 

https://www.wjgnet.com/1948-0210/full/v12/i11/1341.htm
https://dx.doi.org/10.4252/wjsc.v12.i11.1341
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tissue engineering and the opportunity to impact genetic diseases such as 
Osteogenesis Imperfecta or muscular dystrophy in cell replacement therapy, the 
number of patients that could be positively impacted by use of MSCs is wide-ranging. 
Prior to exploring current uses of mesenchymal stem cells in orthopaedic surgery and 
discussing emerging evidence in support for further research of CB-MSCs within 
orthopaedics, we will survey current source isolation and characterization techniques 
of MSCs.

Sourcing of MSCs 
Today we have many sources of MSCs, including the two most commonly discussed – 
iliac crest bone marrow aspirate and adipose tissue. These have shown some benefit in 
achieving osseous regeneration in some clinical applications. However, there is a wide 
variation in refining methods and administration techniques within the current 
literature, and there has yet to be a standardized volume or concentration of MSCs 
within published data, which has led to varied results[23-25].

Mesenchymal progenitor cells have a prevalence of approximately one per 30000 
nucleated cells from iliac crest bone marrow aspirate in some studies[9]. This calculates 
to around 600 progenitor cells per milliliter. This could be further increased to 2500 per 
milliliter by concentration techniques, such as centrifugation or freezing, or by small 
volume aspiration[4,9]. Large amounts of progenitor cells are required for most 
orthopedic applications, though, which makes bone marrow aspiration impractical. 
Thus, alternative sources of MSC where yield and osteogenic potential are greater is 
sought.

Adipose tissue, dental pulp, and umbilical cord MSCs are additional sources that 
have proven reliable sources of MSCs[16]. All these sources have their own advantages 
and disadvantages, but one common drawback shared by these sources is donor site 
surgical intervention required to acquire the cells. Further, while many sources have 
been identified and used experimentally in orthopedic regeneration what lacks is a 
consensus on what source is best suited for bony repair. Some studies have shown 
bone marrow MSCs to be equal to umbilical MSCs, but superior to adipose MSCs[26]. 
However, there is newer research showing extraction of MSCs from compact or 
cortical bone[27]. The benefit of this therapy is that it can harvested intra-operatively 
and can potential yield a population of cells predisposed to promoting an osteogenic 
niche. Compact bone has been identified as a viable and reliable source for MSCs. 
Using discarded bone from laminectomy specimens, Fernandez-Moure et al[28] 
demonstrated that CB-MSCs were found in the spine.

Given their origin, this unique population of cells holds significant potential for 
orthopedic regeneration. With intra-operative refinement techniques, this harvested 
compact bone could be a source of MSCs that could be administered during the same 
operative procedure[28]. Theoretically, a surgeon could derive cells from extracted bone 
and reimplant in the same procedure from the same source, thus overcoming many of 
the regulatory hurdles associated with a donor procedure. This will decrease costs, 
anesthesia time, and patient morbidity while giving improved outcomes in skeletal 
reconstruction. While determination of an ideal source remains an ongoing debate, 
isolation techniques once a source has been identified is an additional hurdle to the 
effective implementation of MSCs from various sources.

Isolation techniques of CB-MSCs
Since Friedrichstein identified the isolation of cells of the mesenchymal lineage, many 
methods for the isolation of mesenchymal progenitor cells have been described 
(Table 1). The isolation of bone derived MSCs was first described by Robey et al[29]. In 
this study human bone cell cultures were established by maintaining collagenase-
treated, bone fragments in low Ca2+ medium and the technique described provided a 
useful system for the study of osteoblast metabolism in vitro. This method of isolation 
has been adapted for use in clinical samples. Tuli et al[30] described a method where 
reaming debris was taken from the intramedullary canal of femurs undergoing total 
hip arthroplasty. Reaming debris was then taken and underwent collagenase XI 
digestion for 3-4 d until cellular material had disappeared. Boney fragments were then 
transplanted into new flasks and allowed to culture so that cells would migrate out 
from the bone and onto the plastic surface. Those cells underwent multilineage 
characterization and immunohistochemical analysis. Similarly, others have used 
mono-enzyme digest using collagenase I or II as the sole processing agent for MSC 
isolation[4,31,32]. In order to enhance the selectivity of the cell population isolated Gangji 
et al[33] coupled a Collagase and Dipase digest with fluorescent assisted cell sorting for 
MSC specific makers. This method of characterization lead to a homogenous 
population of MSCs as defined by the standards of the International Society for 
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Table 1 Source and isolation methods of mesenchymal stromal cells

Source Isolation method Ref.

Bone 
marrow

Aspirates cultured and media changed every 3-4 d to select for MSCs [34]

Aspirates layered over Ficoll-Paque density-gradient and plates in tissue culture dish. Adherent cells maintained with periodic 
passaging

[82]

Bone marrow mononuclear cells seeded from single colony-forming unit fibroblasts and selected for by CD105(+)/CD45(-) [83]

Sort bone mononuclear cells based on aldehyde deydrogenase expression (ALDHhighCD45-) [84]

Sort based on CD45−/lowCD271+ phenotype following a microbead-based pre-enrichement [85]

Layer bone marrow over hyluronic acid followed by centrifugation, collect most superficial layer containing the mononuclear cells [86]

Compact 
bone

Trabecular bone fragments rinsed and placed in complete α-MEM/Ham’s F12, confluent monolayers were obtained within 10-20 d [87-89]

Bone cell cultures established by treating bone fragments with collagenase in low Ca2+ medium 
[9,90,
30]

Compact bone fragments obtained, cultured, and isolated. CB-MSCs then undergo trypsinization to reveal enhanced osteogenic 
capacity

[43]

Adipose Place 10-20 mL of washed adipose tissue in 100 mm Petri dish; dissect out yellow tissue; mince tissue finely and place in enzymatic 
digestion solution; centrifuge and collect pellet for wash; resuspend in complete culture medium

[14,13]

Wash lipoaspirate with PBS; enzymatically digest using collagenase 1A solution; spin down cells, wash and plate in complete 
medium

[12]

Bone 
marrow

Aspirates cultured and media changed every 3-4 d to select for MSCs [34]

Aspirates layered over Ficoll-Paque density-gradient and plates in tissue culture dish. Adherent cells maintained with periodic 
passaging

[82]

Bone marrow mononuclear cells seeded from single colony-forming unit fibroblasts and selected for by CD105(+)/CD45(-) [83]

Sort bone mononuclear cells based on aldehyde deydrogenase expression (ALDHhighCD45-) [84]

Sort based on CD45−/lowCD271+ phenotype following a microbead-based pre-enrichement [85]

MSC: Mesenchymal stromal cell; CB: Compact bone; PBS: Phosphate buffer saline.

Cellular Therapy[34]. Relied solely on cellular migration outward from the boney 
reamings and the inherent property of stem cell plastic adherence to isolate their cell 
population. They used the bone reamings of patients with closed diaphyseal femur 
fractures who were undergoing internal intramedullary nail fixation for cellular 
extraction without any additional agents. Cells adherent after ten days were 
transferred to a new flask and grown to confluence prior to phenotypic 
characterization. While no comparison was made to other methods of isolation the 
authors did demonstrate the capability of the bone reaming derived cells to transform 
into both neuron-like cells and functional osteoblasts. This suggested that cells derived 
from the bone itself were capable of transdifferentiation, a characteristic of MSCs.

Various processing agents and isolation methods have been described for the 
isolation of CB MSCs as well. Zhu et al[25] 2010 described a protocol for the isolation 
and culture of large numbers of murine MSCs (mMSCs) from compact bones in 
contrast to mMSCs culture from bone marrow, the bone marrow cavities are flushed at 
least three times in order to thoroughly deplete hematopoietic cells[35-37]. The mouse 
compact bones are then dissected into fragments of 1-3 mm3 and digested with 
collagenase II. The released cells are discarded and the digested bone fragments are 
cultivated in an MSC culture medium. In contrast to the frequent medium changes in 
primary culture required in the mouse bone marrow culture technique, the culture 
medium is not changed until the third day after the initiation of culture[35]. During 
cultivation, fibroblast-like cells are observed around the collagenase-digested bone 
fragments within 48 h of cultivation. The mMSC cultures reach 70%-80% confluence 
within 5 d in the first passage and significant numbers (> 107) of mMSC can be 
harvested in a short time from one mouse.

This protocol has been modified from the original description by Guo et al[24]. Where 
muMPC, murine mesenchymal progenitor cells, culture was developed by addition of 
bone fragments with mouse bone marrow cells in the presence of basic fibroblast 
growth factor and bone fragment-conditioned medium. They postulate that murine 
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counterparts were able to be purified with adherent culture of either enzyme-treated 
bone fragments or the released cells[38-42]. In the protocol the femurs and tibiae were 
collected from 2 to 3-wk old C57BL/6 female mice. The epiphyses were removed, bone 
marrow was flushed out, and the bone cavities were washed thoroughly. In the 
presence of collangease II the cells were allowed to migrate out and seed culture 
plates. Cai et al[43] expanded upon these methodologies by obtaining compact bone 
fragments, culturing them, and isolating CB-MSCs. After trypsinization of these cell 
lines, the cultured fragments exhibited significantly higher proliferation and were 
accompanied with less CD45 expression but more CD90 and CD44 expressions. 
Moreover, the capacity for osteogenic and adipogenic differentiation of the MSCs 
obtained from the cultured compact bone was enhanced when compared to the cells 
harvested from bone marrow[43].

Varying methods of cell isolation have been described yet none has been shown to 
be superior to another. After isolation of MSCs from a donor source, characterization 
of the obtained cells is necessary to maximize downstream utilization as well as to be 
able to standardize methodology for future investigation (Table 1).

Characterization techniques
Techniques have been developed to source, isolate, and experimentally assess CB-
MSCs.

Many laboratories have developed methods for the extraction and expansion of 
MSCs from bone. Once isolated, the characterization of the cell population is critical to 
its downstream uses and potential. The variation of methods used and the variety of 
tissue sources used has lead to significant differences in the cell population isolated 
and the need for minimal criteria for the definition of a mesenchymal stromal cell was 
required to standardize investigation. To address this need, the Mesenchymal and 
Tissue Stem Cell Committee of the International Society for Cellular Therapy 
established the minimal criteria by which a cell could be characterized and thus named 
a mesenchymal stromal cell[44]. Three criteria were proposed: (1) cell adherence to 
plastic; (2) specific surface antigen expression; and (3) multipotent differentiation.

These criteria allowed for a standard to be set for those working in isolation of CB-
MSCs. First, the isolated cells must be adherent to plastic; Second, > 95% of the isolated 
cells must express CD 105, CD73, and CD90 measured with flow cytometry. In 
addition, the absence of CD45, CD34, CD14 or 11b, CD79 or CD19 and human 
leukocyte antigen class II must be documented in < 2% of the cell population; Lastly, 
the cells must be able to differentiate, under appropriate conditions, into adipocytes, 
chondrocytes, and osteocytes. Prior to the establishment of the aforementioned 
standard by the International Society for Cellular Therapy many characterized the cell 
isolated from the bone by their ability to tri-lineage differentiate. While this proved 
useful for their translational potential it underestimated the true potential and full 
character of the cell itself. CB-MSC identified have shown all these characteristics. 
Further, studies into source specific markers for MSC in addition to those identified 
are currently underway.

Clinical applications of MSCs in orthopaedic surgery
MSCs have long been utilized in orthopaedic surgery, and their clinical applications 
are robust. The economic impact that these therapies have the potential to affect is 
immense. Public health investigations have shown that osteoarthritis is associated with 
an economic burden of approximately $150 billion (2007 dollars), and is projected to 
affect 25% of the adult United States Population by 2030[11,45]. From the standpoint of 
orthopedic trauma, it has been estimated that 100000 fractures will go onto non-union 
each year in the United States alone[17]. Zull et al[46] looked at direct and indirect costs of 
reamed intramedullary nailing for tibial fractures compared to casting, casting plus 
ultrasound, and non-reamed intramedullary nailing. They found that reamed intra-
medullary nailing led to significant reduction in non-union rates, and calculated an 
approximate cost of $11800 (Canadian) per non-union case[46]. Beaver et al[47] looked 
establish tibial non-unions and calculated their surgical and medical care to cost 
United States $ 11333 per case. From increasing union rates, enhancing fusions, 
minimizing bone stock defects after total joints to treating articular cartilage defects, 
tendinopathies, avascular necrosis or bone cysts, the full impact of applications of 
MSCs is difficult to quantify both clinically and economically. The possibilities are as 
diverse as they are fascinating, and the ability to consistently improve even one of 
these complications or disease processes would have a great impact on the patients 
that are involved and the healthcare system.

While the field of orthopaedic surgery has pioneered the use MSCs many other 
fields within medicine have the potential to benefit from the knowledge gained from 
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working with MSCs (Table 2). Within the field of head and neck surgery, animal 
research has shown promise with the use of MSCs along with mandibular distraction 
osteogenesis producing improved total bone production and compact bone ratios in 
the “regenerate” or bone formed at the distraction site[48]. Liu et al[49] published a case 
report of their success using bone marrow aspirated MSCs to treat a patient with 
poorly controlled diabetes mellitus and a severe post-traumatic infection causing non-
healing skin defect in the hand. The wound demonstrated complete healing 10-d after 
treatment saving the patient from wrist amputation[49]. Using a rat-model of ischemic 
cardiomyopathy, Tano et al[50] showed improved cardiac function after application of a 
pericardial MSCs embedded within a biodegradable carrier membrane.

The use of MSCs for regeneration of the musculoskeletal system is an area of much 
basic science research and evolving clinical applications[51-54]. Over the past twenty 
years, MSCs have been used clinically in a variety of scenarios to enhance the outcome 
for orthopedic patients from the standpoint of both wound healing and pain[55]. Dating 
back to the 1980s, bone grafting and bone marrow injection into fracture sites has been 
utilized to enhance union[4]. The use of MSCs in the setting of non-unions and critically 
sized defects, where bone’s natural regenerative capacity to heal without scarring is 
impaired due to poor biology and/or biomechanical environment, was the focus of 
early investigations[6,16]. Connolly et al[32] published a case series of 20 tibial non-unions 
treated with unprocessed bone marrow with 90% demonstrating union at 6-8 mo 
follow-up. Hernigou et al[56] discussed the use aspirated iliac crest marrow with 
centrifugation to separate out osteoprogenitor cells (based on fibroblast colony 
forming units, CFU-F) for re-injection in sixty tibial non-unions. Fifty-three of the 60 
patients went on to union at an average of twelve week[56]. Clinical applications of 
MSCs have since expanded to include healing of high-tibial osteotomies, large bone 
defects after total hip arthroplasty and trauma, distraction osteogenesis, treatment of 
avascular necrosis, articular cartilage defects, tendinopathy (patellar, lateral 
epicondylitis), spinal fusion, and treatment of bone cysts[2,4,31,55,57-60]. These findings 
paved the way for future use and investigations to understand the mechanisms 
underlying the observed wound healing effects. While MSCs have certainly proved to 
have widespread efficacy in orthopaedics, CB-MSCs, remain underutilized and under-
investigated within the field.

The potential of CB-MSCs
MSCs have widespread uses within orthopaedics, but traditionally, the cortical bone 
fragment remains underutilized. Emerging developments have allowed for the 
isolation and characterization of CB-MSCs. Thus, investigation of the efficacy of CB-
MSCs in murine models has been undertaken with very promising results. CB-MSCs 
appear to have beneficial immunomodulatory properties, which indicates that they 
may have great potential for utilization in cases requiring boney augmentation.

Repair of large bone defects still poses a major challenge for the orthopedic surgeon. 
For instance, it is widely known that these defects cannot heal on their own or repair 
themselves to a fully functional tissue. To overcome these issues, orthopedic surgeons 
generally implant a section of bone tissue. Unfortunately, this can lead to immune 
rejection or infections. The severity of these potential complications necessitates careful 
consideration of the immunological milieu surrounding the boney defect. With their 
diverse biological properties and efficacy, MSCs have long been considered as the 
ideal cells for cellular therapy. MSCs have the potential of secreting factors such as 
cytokines and exosomes, to produce varied effects within a specific micro-
environment[61-64]. Once educated, a process also called “licensing”, MSCs turn into 
anti-inflammatory cells within their niche, which can exert immunosuppressive 
functions to affect other cells within the immune system[6,7,65,66].

MSCs have obvious beneficial effects on the inflammatory milieu, and traditionally, 
these cells have been isolated from bone marrow and adipose derived MSCs. 
Emerging techniques have allowed for the additional isolation of MSCs from the 
cortical or compact bone. MSCs harbored within these tissues have been shown to be 
isolated in large quantities making re-transplantation a clinical reality. Once isolated 
their osteogenic regenerative potential has been measured and, in vitro, has been 
shown to be superior to adipose or bone marrow derived MSCs. Blashki et al[67] 
demonstrated that MSCs isolated form the cortical bone had greater potential for 
colony forming unit formation in vitro and greater osteoid generation in vivo. Similarly, 
Murphy et al[68] demonstrated an enhanced potential for CFU formation when cortical 
bone MSCs were cultured on bioactive osteogenic scaffolds. While the potential for 
osteogenesis was demonstrated in these studies a direct comparison had not 
established which tissue surface was ideal for osteogenic regeneration.

Moreover, like MSCs obtained from other sources, CB-MSCs appear to have 
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Table 2 Potential clinical scenarios for use of mesenchymal stromal cell therapy

Ref. Animal model/methods Findings Conclusion
In 
vitro/in 
vivo

Ogulur et al
[91]

mCB-MSCs isolated from 6–8 
wk old BALB/c mice

mCB-MSCs significantly reduced cellular immune 
infiltration and presence of goblet cells as well as the 
thickness of epithelium, smooth muscle layers, and 
basement membrane in ovalbumin induced chronic 
asthmatic mice

Inflammation in distal and proximal 
airways of ovalbumin induced 
asthmatic mice can be suppressed by 
use of IV mCB-MSCs

In vivo

Qiao et al[76] CB-MSCs isolated from 
C57BL/6 mice administered to 
8–10 wk old BALB/c mice

BALB/c mice exposed to 8 Gy TBI and treated with 
CB-MSCs showed improved survival, body weight, 
and CFU-GM counts of bone marrow cells coupled 
with suppressed Th1 immunity with increased Treg 
percentages and decreased IFN-γ, CXCR3 and CCR5

CB-MSC transplantation post total body 
irradiation attenuates radiation-induced 
hematopoietic toxicity and provides 
immunoprotection

In vivo

Duran 
et al[92]

Cortical bone–derived stem 
cells from 12-wk-old EGFP+ 
transgenic mice

Improved 6 wk survival post MI procedure (50.4% 
to 76.5%) from saline to CB-MSC therapy. Increased 
expression of proangiogenic paracrine factors (bFGF 
and VEGF) and differentiation into infarct zone

Treatment with CB-MSCs post MI leads 
to enhanced survival, cardiac function, 
and remodeling

In vivo

Cheng 
et al[93]

MSCs isolated from compact 
bone of Tg26 HIV-1 transgenic 
mice

Transplanted Tg26 HIV-1 MSCs were less effective 
in protecting renal tubular cells compared to healthy 
mice MSCs in a cisplatin-induced AKI model due to 
inferior proliferation and decrease in secretion of 
protective cytokines

Compact bone MSCs infected with HIV-
1 had impaired proliferation, 
differentiation, and function resulting in 
less therapeutic potential

In vivo

Yamachika 
et al[94]

MSCs from compact bone of 5-
week-old C57-GFP male mice

Cells cultured in bFGF-conditioned medium 
demonstrated trilineage differentiation potential 
even at passage 24 in contrast to leukemia inhibitory 
factor-conditioned medium 

Compact bone MSCs cultured in bFGF-
conditioned medium demonstrated 
bone formation ability in vivo

In vivo

Bakker 
et al[95]

Tibial reaming debris from 
adult female sheep

Treatment with reaming debris, similar to iliac crest, 
revealed larger callus volume with decreased 
cartilage in the fracture gap, increased bone volume, 
and improved toughness at 3 wk with greater 
torsional stiffness at 6 wk

Reaming debris has characteristics 
similar to iliac crest bone that allow it to 
be an excellent replacement for 
enhancing healing of bone defects fixed 
with an intramedullary nail

In vivo

Guo et al[24] Murine mesenchymal 
progenitor cells (muMPCs) 
isolated from 2-3 wk old 
C57BL/6 female mice 
tibia/femur compact bone

Collagenase-digested bone fragments produced 
muMPCs that inhibited Con A-stimulated 
splenocyte proliferation and suppressed lymphocyte 
activation by allogeneic cellular stimuli in vitro. In 
addition, muMPCs improved survival of allogeneic 
skin grafts in vivo

Using this protocol allows acquiring of 
muMPCs with similar properties to 
marrow counterparts, which allows 
them to be used in future investigations 
with mouse models

In vivo

Lim et al[96] hABMSCs hABMSCs exposed to low-intensity pulsed 
ultrasound revealed increased ALP, expression 
levels of CD29, CD44, COL1, and OCN, and calcium 
deposition

Treatment with LIPUS could improve 
the cell viability and osteogenic 
differentiation of hABMSCs

In vitro

Lim et al[97] hABMSCs hABSMSCs treated with extremely low frequency 
pulsed electromagnetic fields (ELF-PEMFs) revealed 
15% increased proliferation at day 5, increased ALP, 
vinculin, vimentin, and CaM expressions, and 
enhanced mineralization during osteogenesis

Exposing hABMSCs with ELF-PEMFs 
could improve and accelerate the 
process of early cell proliferation 
mediated osteogenesis

In vitro

Lim et al[98] hABMSCs harvested from 
human mandibular alveolar 
bone

hABSMSCs exposed to LFDSS for 10–60 min/d 
demonstrated improved viability, proliferation, and 
mineralization in culture with osteoblasts. ALP 
activity and gene expression of IBSP, COL-I, OCN, 
and OPN increased

Proper intensity and exposure time of 
LFDSS to hABMSCs can improve their 
differentiation and maturation

In vitro

Soleimani et 
al[35]

MSCs isolated from 6-8 wk old 
BALB/c mouse tibial and 
femoral bone marrow

The protocol states MSCs should be cultured in 
Dulbecco's modified Eagle's medium (DMEM) and 
fetal bovine serum (FBS) in a 37 °C–5% CO2 
incubator with passage at 2 wk of culture

This protocol allows development of a 
purified population of MSCs 3 wk after 
the initiation of culture

In vitro

Dominici et 
al[44]

Human multipotent MSC In standard culture, MSC must be plastic-adherent, 
express CD105, CD73 and CD90, and lack 
expression of CD45, CD34, CD14 or CD11b, 
CD79alpha or CD19 and HLA-DR and demonstrate 
tridifferentiation in vitro

Standard criteria for MSC 
characterization, will allow for exchange 
of more uniform data between 
researchers

In vitro

Wenisch 
et al[99]

Mesenchymal stem cells 
harvested from HRD of 12 adult 
patients with closed diaphyseal 
femoral fractures

With neuronal induction, MSCs assumed neuronal 
morphologies and expressed neuron-specific 
enolase, beta-III-tubulin, neurofilament-H and 
HNK-1. Similar to immature neurons, MSCs had 
features of neuritogenesis and synaptogenesis and 
lacked electrical signaling

Neuronal induction allowed initiation of 
the early neuronal differentiation, but 
exposure to non-neurological stressors 
led to necrotic alterations

In vitro
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Wenisch 
et al[100]

Mesenchymal stem cells 
harvested from HRD of 12 adult 
patients with closed diaphyseal 
femoral fractures

After multiple passages, HRD-derived cells and 
MSCs maintained a nondifferentiated phenotype 
and showed osteogenic and neuronal pathway 
differentiation ability after induction

Human reaming debris provides a 
multipotent stem cells which have the 
ability to grow and proliferate in vitro

In vitro

Tuli et al[90] Collagenase-treated human 
trabecular bone chips

Collagenase-treated trabecular bone fragments 
contain cells that stain positive for CD73, STRO-1, 
and CD105, and negative for CD34, CD45, and 
CD144 with tridifferentiation potential

Trabecular bone-derived cells maintain 
a nondifferentiated phenotype and 
display tridifferentiation potential with 
long-term in vitro culture

In vitro

AKI: Acute kidney injury; bFGF: Basic fibroblast growth factor; CBSC: Cortical bone stem cell; CB-MSCs: Compact bone mesenchymal stem cells; CFU-
GMC: Colony-forming unit granulocyte/macrophage; LIPUS: Low intensity pulsed ultrasound; MI: Myocardial infarction; TBI: Total body irradiation; 
VEGF: Vascular endothelial growth factor; HRD: Human reaming debris; hABMSC: Human alveolar bone-derived mesenchymal stem cell; LFDSS: Low 
fluid dynamic shear stress; ALP: A lkaline phosphatase; HLA: Human leukocyte antigen; HIV: Human immunodeficiency virus.

excellent immunomodulatory properties. Previously, Guo et al[24] performed skin 
grafting in a mouse model (C57BL/63BALB/c) with or without murine CB-MSCs pre-
transfusion in order to determine if these cells had immunosuppressive effects in vivo. 
Their findings indicated that the delivery of these cells caused a significant increase in 
survival of allogeneic skin grafts further ascertaining the anti-inflammatory role that 
these cells exert on the in vivo immune response. Recently, some studies have shown 
that CB-MSCs are both multipotent and capable of extensive in vitro expansion similar 
to BM-MSCs, enhancing their therapeutic appeal in the field of orthopedics[69,70]. 
Besides phonotypical properties, CB-MSCs have been shown to share with BM-MSCs 
functional properties such as tri-differentiation potential in adequate conditions and 
immune suppression both in vitro and in vivo[71-73]. For instance, in a mouse model of 
acute graft-versus-host disease, Zhu et al[25] reported a decrease in tissue damage after 
transfusion of murine CB-MSCs, potentially altering the phenotype and function of 
splenic lymphocyte[74]. Similarly, these authors inferred that CB-MSCs also affected 
functional properties of T lymphocytes and dendritic cells by modulating their 
migratory behavior leading to a delayed lethal acute graft-versus host disease 
reaction[75]. Furthermore, Qiao et al[76] demonstrated a significant protective benefit of 
CB-MSCs in a radiation-induced hematopoietic toxicity mouse model. CB-MSCs acted 
to alleviate lymphocyte-mediated CFU-GM, colony-forming unit granulocyte/ 
macrophage, inhibition and expand regulatory T cell lineages. They also mitigated T 
cell chemokine receptor expression and shifted the Th1/Th2 balance toward anti-
inflammatory Th2 polarization[76].

In another study, authors investigated the impact of CB-MSCs in airway remodeling 
and inflammation in experimental ovalbumin-induced mouse model of chronic 
asthma. The authors infused GFP-labeled murine CB-MSCs which were located in the 
lungs of OVA group 2 wk after intravenous induction accompanied with a significant 
Treg response in ovalbumin-treated mice. It is worth noting that increase in Treg cell 
numbers along with other factors such as cytokines, to be linked to MSC-mediated 
immunomodulation[77]. Thus murine CB-MSCs could be effective at reducing an 
allergic inflammation. Furthermore, Shan et al[78] demonstrated mitigation of prion 
disease in brain extracts from infected mice after administration of CB-MSCs by 
enhancing microglial activation. Remarkably, the Intra-hippocampus transplantation 
of CB-MSCs had a small but statistically significant effect on prolonging the survival of 
mice inoculated with the Chandler prion strain[78].

CB-MSCs appear to not only have efficacy from an immunomodulatory standpoint, 
but may serve as an ideal scaffold material adjunct to repair boney defects. CB-MSCs 
when compared with BM-MSC, are bigger in size, show a lower proliferation rate at 
early passages, and have a greater commitment toward the osteogenic lineage. This 
cell source has been shown in vitro to generate greater alkaline phosphatase and 
calcium deposition in both normoxic and hypoxic conditions[23]. MSCs attached to 
three-dimensional scaffold designed to mimic the biological and mechanical role of 
extracellular matrix can be a faster approach to promote bone regeneration[79]. To date, 
several scaffolds have been used in MSC-based bone augmentation procedures. For 
these scaffolds, most of the literature reports on hydroxy apatite, b-tricalcium 
phosphate or a mixture of the two as mineral component interacting with MSC[80,81]. 
These scaffolds for bone engineering should possess key characteristic specifications 
including: osteo-conductivity, biocompatibility (adequate biological response), 
biodegradability, easily manufactured and sterilized, easily handled in the surgery 
room, and cost effective[82-85]. Moreover, the scaffold should have an architecture that 
resembles the structure of bone.

Thus, with their vast appealing functional roles, including immunosuppression, CB-
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MSCs are ideal cells for cellular therapy in bone tissue engineering. Several researchers 
have proposed using CB-MSCs and three-dimensional scaffolds and implanting this 
combination into donor patients. To date, however, very few studies have looked into 
the use of CB-MSCs and scaffolds for compact bone regeneration. Perhaps with future 
research, CB-MSCs will be also considered as promising candidates for use in 
development of bioengineered bone to potentially impact clinical therapy and possibly 
beneficial to in bone engineering and regeneration[86-100].

CONCLUSION
MSCs hold great promise for regenerative therapies in osteogenic surgery. While there 
is still debate on the ideal source of MSCs to use in tissue regeneration, the field is still 
moving in the right direction for clinical applications. Previous work from our lab 
shows that compared with BM-MSCs and AD-MSCs, CB-MSCs have superior ability 
to survive in hypoxic conditions while remaining biosynthetically active[27]. CB-MSCs 
have been demonstrated to have excellent immunomodulatory efficacy in various 
animal models. More work needs to be continued both in vitro and in vivo to properly 
characterize these cells and make them functional for tissue engineering and 
regeneration.
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