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Abstract
Numerous reports have identified a dysbiosis in the 
intestinal microbiota in patients suffering from inflam-
matory bowel diseases (IBD), yet the mechanism(s) 
in which this complex microbial community initiates or 
perpetuates inflammation remains unclear. The pur-
pose of this review is to present evidence for one such 
mechanism that implicates enteric microbial derived 
proteases in the pathogenesis of IBD. We highlight and 
discuss studies demonstrating that proteases and pro-
tease receptors are abundant in the digestive system. 
Additionally, we investigate studies demonstrating an 
association between increased luminal protease activity 
and activation of protease receptors, ultimately result-
ing in increased intestinal permeability and exacerba-
tion of colitis in animal models as well as in human IBD. 
Proteases are essential for the normal functioning of 
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bacteria and in some cases can serve as virulence fac-
tors for pathogenic bacteria. Although not classified as 
traditional virulence factors, proteases originating from 
commensal enteric bacteria also have a potential asso-
ciation with intestinal inflammation via  increased enter-
ic permeability. Reports of increased protease activity in 
stools from IBD patients support a possible mechanism 
for a dysbiotic enteric microbiota in IBD. A better un-
derstanding of these pathways and characterization of 
the enteric bacteria involved, their proteases, and pro-
tease receptors may pave the way for new therapeutic 
approaches for these diseases. 

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: It is currently accepted that an enteric dys-
biosis (alteration of the normal bacterial flora) is in-
volved in the pathophysiology of inflammatory bowel 
diseases (IBD). One of the suggested mechanisms 
that ties an intestinal dysbiosis to the pathophysiology 
of IBD involves the release of enteric bacterial prote-
ases that interact with protease activated receptors on 
epithelial cells, resulting in intestinal barrier dysfunc-
tion and exposure of the enteric immune system to 
luminal antigens. We have reviewed the literature that 
examined the role of microbial proteases and their en-
teric receptors in the pathogenesis of IBD, their sug-
gested pathways of action, and discuss future thera-
peutic implications. 
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INTRODUCTION
Inflammatory bowel diseases (IBD), collectively known 
as Crohn’s disease (CD) and ulcerative colitis (UC), are 
caused by dysregulated immune responses towards mi-
crobial antigens in a genetically predisposed host. The in-
cidence of  UC and CD has been increasing worldwide in 
developed and in developing countries[1,2]. These diseases 
are highly prevalent in the United States affecting 1.4 mil-
lion individuals[3] and are associated with reduced quality 
of  life[4,5], and psychological co-morbidity[6]. Current es-
timates for IBD associated treatment costs in the US are 
$6.3 billion[7], but the initiating events of  IBD and causes 
of  disease exacerbation remain unclear. It is postulated 
that one potential mechanism involves disruption of  the 
epithelial barrier, and exposure of  a genetically defective 
immune system to enteric microbial antigens. Consistent 
with this hypothesis are animal models of  colitis that use 
chemical disruption of  the epithelial barrier with trinitro-
benzene sulphonic acid (TNBS), dextran sodium sulfate 
or non-steroidal anti-inflammatory drugs (NSAIDs). Ad-
ditionally, disruption of  the intestinal epithelial barrier by 
exposure of  susceptible patients to NSAIDs (blockers 
of  prostaglandins synthesis) is a known risk factor that 
can trigger intestinal inflammation[8]. In line with this 
observation, in animal studies, the use of  a prostaglandin 
receptor agonist preserved the intestinal epithelial barrier 
structure and function, maintained mucous secretion by 
goblet cells, and prevented the development of  colitis[9].

Proteases, peptidases, or proteolytic enzymes, are a 
class of  enzyme that catalyze the cleavage of  peptide 
bonds in other proteins in the presence of  H2O (hydroly-
sis). Proteases act as both positive and negative effectors 
of  several biological processes either broadly as catalysts 
of  protein degradation or specifically as selective agents 
that control physiological processes[10]. The importance 
of  proteases is highlighted in the human genome where 
2%-4% of  genes encompass the degradome[11]. In bacteria, 
proteases are involved in numerous biological processes, 
such as those associated with metabolism, development, 
and virulence. Additionally, these enzymes can disrupt 
mucosal barriers, provide a metabolic advantage, and 
modulate the host immune response. The high preva-
lence of  proteases in enterobacteria suggests that prote-
ases play important roles in pathogenesis[12]. Both mam-
malian and bacterial proteases have been implicated in 
the pathogenesis of  IBD, usually through disruption of  
the epithelial barrier. In pathogenic bacteria, many pro-
teases are virulence factors that aid in bacterial invasion 
into host cells and cause infectious colitis. However, accu-
mulating evidence shows that commensal enteric micro-
organisms also produce proteases that possess the ability 
to disrupt the epithelial barrier[13,14]. These commensal 
proteases may be involved in the pathogenesis of  IBD 
in the context of  a genetically predisposed host and/or 
when an intestinal microbial dysbiosis occurs. Our aim 
in this review is to provide an overview of  current stud-
ies that suggest potential mechanisms in which microbial 
proteases may play a role in the pathogenesis of  IBD. 

PROTEASE CLASSIFICATION
Proteases frequently exist as multi-domain proteins, 
with catalytic activity restricted to a single structural do-
main. Although these enzymes appear to have a specific 
function (i.e., hydrolysis of  proteins), they exhibit vast 
diversity in their action and structure and are not easily 
categorized by general systems of  enzyme nomenclature. 
Thus, proteases are broadly subdivided into two major 
groups, exopeptidases and endopeptidases. Exopepti-
dases cleave the peptide bond proximal to the amino or 
carboxy termini of  the substrate, whilst endopeptidases 
cleave peptide bonds distant from the termini of  the 
substrate. Proteases are further classified into five distinct 
groups on the basis of  the chemical nature of  the groups 
responsible for their catalytic activity, namely; aspartic, 
cysteine/thiol, metallo-, serine, and unidentified proteas-
es[15]. In order to generate a comprehensive classification 
system for proteases, Rawlings and Barrett[16] developed 
a method to classify this group of  enzymes based on the 
type of  reaction they catalyze, the chemical nature of  
their catalytic site, and their evolutionary structure. This 
approach is a hierarchical system where classification lev-
els were summarized as peptidases (i.e., serine proteases), 
families and clans. This system initially recognized 84 
families of  proteases; however the subsequent massive 
accumulation of  amino acid sequence data and three-
dimensional structures of  proteases from the scientific 
community warranted an updated classification system 
that was easily accessed for academic studies. Thus, based 
on the system outlined by Rawlings and Barrett[16] the 
MEROPS database was developed[17]. Along with data 
regarding protease classification, the MEROPS database 
also provides information regarding classification of  
protein inhibitors of  peptidases[18], small-molecule inhibi-
tors[19], and a collection of  known protease cleavage sites 
and substrates[20]. 

Microbial proteases 
Proteases are found in all forms of  life suggesting that 
they are vital for the survival of  all organisms. Micro-or-
ganisms produce a vast array of  aspartic, cysteine, metal-
lo-, and serine proteases. Microbial aspartic proteases 
are specific for aromatic or bulky amino acid residues on 
both sides of  a peptide bond. They are broadly divided 
into two groups: pepsin- and rennin-like enzymes. Cys-
teine proteases generally are only active in the presence 
of  reducing agents. Some bacterial cysteine proteases are 
notable for their role in virulence and the inflammatory 
response they illicit[21]. Metalloproteases are characterized 
by the requirement for a divalent metal ion for their activ-
ity. These proteases are summarized into neutral and alka-
line groups based on their specificity of  action[22]. Serine 
proteases are characterized by the presence of  a serine 
group in their active site and have broad substrate speci-
ficity. The complex microbial community in the human 
gut (referred to as the intestinal microbiota) is a substan-
tial source of  serine, cysteine, and metallo-proteases[23-25]. 
This is exemplified by the reduction of  colonic bacteria 
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densities and protease activity by oral administration of  
antibiotics to mice[26]. By analyzing the protease activity 
of  representative enteric bacterial strains and human fecal 
samples it has previously been suggested that the activity 
of  specific classes of  proteases present in human feces 
are likely to originate from Bacteroides, Streptococcus, and 
Clostridium species[27]. However, to date only one study 
has reported the correlation between specific groups of  
proteases and the abundance of  enteric bacterial taxa us-
ing modern molecular methods. Carroll et al[28] used high 
throughput sequencing of  the 16S rRNA gene and cor-
related the abundances of  specific bacterial families with 
fecal tryptic activity in stool samples from healthy individ-
uals and IBS patients. This study found positive associa-
tions between Lachnospiraceae, Streptococcaceae and Lactobacil-
lales with fecal protease activity, and a negative correlation 
with Ruminococcaceae. However, to date microbial proteases 
have been mainly exploited for commercial purposes. For 
example, bacterial alkaline proteases are characterized by 
their high activity at an alkaline pH and their broad sub-
strate specificity, thus, making them ideal for use in the 
detergent industry[29]. In addition, most academic studies 
have focused on bacterial proteases as potential virulence 
factors in pathogenic bacteria[30]. However, little is known 
regarding the relationship between microbial proteases, 
found in or on the body, and the health of  the host. Ex-
amples of  such microbial proteases that are produced by 
enteric commensals are specified in Table 1. 

MICROBIAL PROTEASES IN THE 
PATHOGENESIS OF IBD
The antigenic contents of  the intestinal lumen are sepa-
rated from underlying intestinal tissues by an epithelial 
barrier that is one cell thick. Pathogenic bacteria have 
acquired virulence factors, many of  which are prote-
ases, that disrupt this barrier and cause infection[31]. For 
example, the serine protease autotransporter of  Entero-
bacteriaceae family are generally secreted into the external 
milieu and are highly prevalent among enteropathogens, 
including Shigella species and all Escherichia coli (E. coli) pa-
thotypes[12]. As there is an established genetic component 
to IBD[32], it is difficult to identify microbial proteases 
that are potentially involved in the pathogenesis of  these 
diseases as they would not be categorized in the same 
manner as traditional virulence factors. Indeed, an over-
production of  microbial proteases originating for enteric 
commensal microbes may not have an effect on a healthy 
individual, but may play a role in the pathogenesis or per-
turbation of  intestinal inflammation in a population with 
a genetic predisposition to IBD. Here we discuss four 
potential mechanisms in which microbial proteases from 
a non-pathogenic source (the intestinal microbiota) could 
contribute to the pathogenesis of  IBD. 

MICROBIAL PROTEASES AND 
ADHERENCE AND INVASION TO THE 
INTESTINAL EPITHELIUM
Bacterial adhesion to intestinal epithelial cells is believed 
to be one of  the first steps used in the pathogenicity of  
many enteric pathogens. Adhesion enables a microbe 
to colonize the intestinal epithelium and resist exclusion 
from the intestine by the mechanical movement of  the 
gut. Adherent and invasive E. coli (AIEC) are a group 
of  enteric microbes that are capable of  adhering to 
and invading intestinal epithelial cells[33]. AIECs are not 
classified as enteric pathogens, but exhibit some patho-
genic traits in the context of  IBD. For example, AIECs 
isolated from CD patients are able to replicate within 
macrophages without escaping from the phagosome and 
without inducing macrophage death[34]. Proteases for 
pathogenic bacteria play a fundamental role in adherence 
and invasion virulence traits. For example, enteroaggre-
gative E. coli (EAEC) expresses a factor referred to as 
‘‘protease involved in colonization’’ or Pic. Pic catalyzes 
gelatin degradation which can be abolished by disruption 
of  the predicted proteolytic active site. This protease is 
involved in the early stages of  pathogenesis and most 
probably promotes intestinal colonization[30,35]. Pic is also 
essential for biofilm formation in EAEC. The first step 
of  biofilm formation is bacterial adherence to a surface 
and then intercellular aggregation. In general, intercellular 
aggregation is mediated via the proteolytic processing of  
bacterial aggregation proteins by means of  host or bacte-
rial proteases[36,37] ultimately resulting in a biofilm. To date 
the role of  microbial proteases involved in the formation 
of  biofilms in members of  the intestinal microbiota have 
not been investigated in the context of  IBD. However, 
the role of  biofilms in AIEC virulence in IBD has begun 
to emerge. It was reported that biofilm formation indi-
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Table 1  Commensal enteric microbial protease classification 
and origin

Protease category Microbial origin Protease

Aspartic Candida albicans Secreted aspartic 
proteases[119]

Pseudomonas aeruginosa Type 4 prepilin 
peptidase[120]

Methanococcus voltae Preflagellin[121]

Cysteine Gram positive bacteria Sortases[122]

Porphyromonas gingivalis Gingipain[21]

Staphylococcus aureus Staphopain[123]

Metalloprotease Bacteroides fragilis Fragilysin[124]

Enterococcus faecalis Gelatinase[87]

Staphylococcus epidermidis Elastase[123]

Clostridium perfringens Collagenase[13]

Serine Helicobacter pylori High temperature 
requirement A[125]

Bacillus subtilis Subtilisin[126] 
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While the majority of  research relating to the relation-
ship between PARs and colitis has examined the role of  
endogenous activation of  PARs by mammalian proteases, 
the interaction between the enteric microbes, PAR ex-
pression and activation and the pathophysology of  colitis 
have not been extensively studied. The evidence that sup-
ports these associations is summarized below. 

PAR1
PAR1 has been implicated in hemostasis, platelet sig-
naling, systemic pro-inflammatory responses (such as 
vasodilatation, increased vascular permeability and che-
motaxis) and induction of  analgesia[53,54]. PAR1 agonists 
induce apoptosis of  intestinal epithelial cells in a caspase-
3-dependent manner, with a concomitant loss of  the 
epithelial barrier function and a consequent increase of  
permeability to macromolecules and bacteria[55]. PAR1 
is expressed by enterocytes as well as by other cell types 
such as endothelial cells, enteric neurons, myocytes and 
immune cells[52]. The expression of  PAR1 on the intes-
tinal epithelium is linked to the presence of  enteric mi-
crobiota[56], and activation of  this receptor in the mouse 
colon leads to colitis[57,58]. In addition, PAR1 expression 
has been reported to be increased in colonic biopsies 
from IBD patients[54]. Altogether, these reports support a 
role for PAR1 in the pathogenesis of  IBD, however it is 
not clear if  the enteric microbiota directly activate PAR1 
through release of  bacterial proteases. Nonetheless, this 
mechanism is supported by a study investigating oral epi-
thelial cells, where PAR1 activation by a cysteine protease 
released by the oral pathogen Porphyromonas gingivalis (P. 
gingivalis) caused an up-regulation of  pro-inflammatory 
cytokines[59]. 

PAR2
The majority of  evidence that points towards an associa-
tion between PARs and intestinal inflammation involves 
PAR2. This receptor is localized to the apical and baso-
lateral membrane[60-62] of  the intestinal epithelium and can 
be activated by trypsin, tryptase, and bacterial proteas-
es[63]. PAR2 is expressed in immune, stromal, endothelial, 
and intestinal epithelial cells and thus, PAR2-associated 
inflammation may be a result of  multiple, systemic and 
local pathways. Systemically, this receptor impacts leuko-
cytes by mediating rolling, adhesion, and extravasation[64]. 
When activated on sensory neurons PAR2 mediates pain 
and edema[65]. In the mouse colon, activation of  this re-
ceptor results in colitis[60] that is significantly ameliorated 
in PAR2-deficient mice[60,66]. Additionally, antagonism of  
PAR2 (by GB88) results in amelioration of  colitis in rats 
that is induced by either TNBS or a PAR2 agonist (SLI-
GRL-NH2)[67]. Thus, most studies indicate that activation 
of  PAR2 leads to an inflammatory response. However, a 
single study has reported a protective effect of  daily intra 
colonic administration of  PAR2 agonist in a TNBS colitis 
model in rats[68]. It is not entirely clear why PAR2 exhibits 
anti-inflammatory properties in this model; however it 
may be the result of  a chronic PAR2 activation and lo-

ces were higher amongst AIEC than non-AIEC strains 
isolated from the intestinal mucosa of  CD, UC, and non-
IBD controls[38]. Additionally, the adhesion and invasion 
properties of  AIECs correlated positively with higher 
biofilm formation indices. Furthermore, the σE factor, 
which up-regulates genes that encode proteases, periplas-
mic foldases, and chaperones in response to environmen-
tal stresses, plays a pivotal role in biofilm formation in 
AIECs in the context of  CD[39]. Thus, proteases may be 
important in biofilm formation and colonization of  com-
mensal enteric bacteria and related to IBD pathogenesis. 

PROTEASE RECEPTORS 
Proteases can mediate their activity on mammalian cells 
through activation of  protease receptors. Protease activat-
ed receptors (PARs) are a family of  7 transmembrane do-
main G-protein-coupled receptors (GPCRs) that mediate 
multiple responses to external stimuli, such as hemostasis, 
thrombosis and inflammation, and exist in four isoforms 
(PARs 1-4)[40-44]. PARs are activated through proteolytic 
cleavage of  the extracellular N-terminal component of  
the receptor unmasking a tethered peptide ligand residue 
that binds with another region of  the receptor causing a 
conformational change[45]. The result is an initiation of  
an intracellular signaling cascade that is diverse and in-
cludes calcium mobilization, phospholipase C-dependent 
production of  inositol phosphates and diacylglycerol, 
Rho and Rac activation, mitogen-activated protein kinase 
signaling, and gene transcription[46]. Alternatively, PARs 
can be activated through peptide sequences that are ho-
mologues to the intrinsic tethered ligand. These synthetic 
peptides activate PARs without proteolysis of  the N-ter-
minal of  the receptor in PAR1, PAR2 and PAR4 but not 
in PAR3[47]. The outcome of  PAR activation is dependent 
on the type of  ligand (e.g., serine protease, matrix metallo-
protease, plasmin, coagulation factors etc.), receptor type 
(PAR1, 2, 3 or 4) and on the type of  cell which the PAR 
is expressed (e.g., epithelial cells, platelets, nerve cells, or 
leukocytes). PAR activation, signaling and degradation are 
highly regulated by post translational modifications such 
as phosphorylation, glycosylation and ubiquitination (for 
review- Grimsey et al[48]). In the gastrointestinal (GI) tract, 
PARs are activated by endogenous proteases secreted by 
the pancreas (such as trypsin), by cells of  the enteric wall 
(such as mast cells), or by the luminal enteric microbiota. 
Moreover, PAR expression on the gut epithelium differs 
between IBD patients and healthy individuals. This may 
be a result of  the type of  micro-organisms present in the 
GI tract and other receptors [such as toll-like receptors 
(TLRs)] they interact with. For example, on polymorpho-
nuclear (PMN) cells, Candida albicans promoted a TLR2-
dependent PAR1 activation and expression in contrast 
to Aspergillus fumigatus that suppressed TLR4-dependent 
PAR2 activation and expression[49]. In this regard it is im-
portant to note that endogenous host proteases are also 
PAR specific, e.g., - thrombin activates PAR1[50], PAR3[40,43] 
and PAR4[44], while trypsin activates PAR2[51] and PAR4[52]. 
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cal desensitization, or via anti-inflammatory effects on 
macrophages[69]. Additionally, it is not clear which of  the 
various mechanisms that have been implicated in PAR2 
activation in the gut is responsible for PAR2-dependent 
colitis. However, it has been speculated that PAR2-medi-
ated intestinal inflammation is a result of  increased levels 
of  PAR2 ligands in the colon of  IBD patients. Indeed, 
in the colon of  human IBD patients the natural PAR2 
ligands, trypsin[70] and tryptase[71,72] are elevated compared 
to healthy controls. Moreover, in human IBD, PAR2 is 
overexpressed on mast cells[73] which have also been im-
plicated in the pathogenesis of  PAR2-mediated colitis. In 
non-IBD patients permeability was found to be propor-
tional to the concentration of  tryptase (naturally secreted 
by mast cells) added to the basolateral surface and not to 
the mucosal surface of  mucosal biopsies[74]. These studies 
support the importance of  mast cells in colitis via PAR2 
activation, however enteric bacteria may also play a role in 
PAR2 activation in the colon through release of  bacterial 
proteases in the gut lumen[24]. Róka et al[26] demonstrated 
increased levels of  serine proteases in fecal samples from 
UC patients and hypothesized that these enzymes origi-
nated from luminal bacteria as it was reported that in-
creased fecal protease activity was neither of  a mast cells 
nor pancreatic origin. PAR2 can be activated by enteric 
bacteria either directly by bacterial proteases, as demon-
strated in the oral epithelium by proteases of  P. gingiva-
lis[63] and in infectious colitis by the Toxin A of  Clostridium 
difficile[75], or indirectly by bacterial-dependent induction 
of  host proteases[76], as discussed above. Finally, it has 
been reported that antibiotic treatment directed at the gut 
microbiota resulted in reduced PAR2 expression suggest-
ing that PAR2 is not only activated by enteric bacteria but 
its expression is also regulated by the presence of  these 
microbes[77].

PAR3
The biological significance of  PAR3 has not been fully 
delineated. Structurally, this PAR isotype does not have a 
C-terminal intra cytoplasmatic tail and thus cannot signal 
through GPCRs. However, PAR3 may serve as a cofactor 
or co-receptor of  other PARs. In mouse platelets, PAR3 
functions as a cofactor for PAR4 by presenting thrombin 
to low-affinity PAR4, thereby resulting in efficient recep-
tor cleavage[78]. On endothelial cells PAR3 can regulate 
PAR activity by forming a heterodimer with PAR1[79]. 
Despite evidence of  PAR3 mRNA expression in the 
small intestine, this receptor’s relationship with intestinal 
inflammation and bacterial proteases are unknown[40]. 

PAR4
PAR4 is expressed in the small and large intestine[44] and 
is localized to colonocytes in rats[80]. It can be proteolyti-
cally activated by thrombin, trypsin and by the neutrophil 
granule protease cathepsin G[81]. Its activation induces 
leukocyte rolling and adherence, suggesting a pro-inflam-
matory role for this receptor[45,82-84]. Exposure of  mouse 
colons to PAR4 agonists results in increased paracellular 

colonic permeability, suggesting that this receptor may 
be involved in the pathophysiology of  IBD[85]. In the 
human colon, expression of  PAR4 on epithelial cells is 
negligible in non-IBD patients but is significantly higher 
in UC patients. Interestingly, the activity of  cathepsin G 
was increased in the feces of  UC patients compared to 
controls and inhibition of  its activity resulted in ame-
liorated enteric permeability[85]. Thus, cathepsin G may 
mediate PAR4-dependent enteric permeability in UC pa-
tients. Nevertheless, a direct effect of  bacterial proteases 
was not examined; therefore it is still unknown whether 
proteases released by the enteric microbiota contribute 
to enteric permeability and colitis in a PAR4 dependent 
manner. 

PROTEASES AND INTESTINAL BARRIER 
DISRUPTION
The intestinal epithelial barrier is made up of  a single 
layer of  cells that are tethered together via tight junc-
tions and cell adhesion molecules. Enteric microbes can 
circumvent the defense of  the intestinal epithelial barrier 
either directly through proteolytic degradation of  cell 
adhesion molecules (such as E-cadherin) or indirectly 
by regulation of  paracellular permeability via tight junc-
tions. Intestinal epithelial tight junctions are composed 
of  different protein complexes which consist of  trans-
membrane and intracellular scaffold proteins (Figure 1). 

The trans-membrane proteins include occludin, clau-
dins, and junctional adhesion molecules whose extracel-
lular loops are bound together and intracellular domains 
interact with scaffold proteins such as zonula occludens 
(ZO), which in turn are anchored to the actin cytoskel-
eton. In the intestine the adherence junction protein, 
E-cadherin, cements epithelial cells together and is a 
significant factor in maintenance of  the epithelial bar-
rier function. The enteric commensal Enterococcus faecalis 
(E. faecalis) can induce inflammation in a gnotobiotic 
IL-10-/- mouse[86] and secretes a protease (gelatinase) 
which has the capacity to degrade collagen, fibrinogen, 
fibrin, endothelin-1, bradykinin, LL-37, and comple-
ment components C3 and C3a[87-92]. The potential of  E. 
faecalis gelatinase to damage the intestinal epithelial bar-
rier and cause inflammation in the IL-10-/- mouse was 
recently investigated[14]. Steck and associates created an 
E. faecalis mutant lacking the gelE gene (ΔgelE). IL-10-/- 
mice mono-associated with E. faecalis ΔgelE exhibited 
significantly lower colonic inflammation when compared 
to mice mono-associated with wild-type E. faecalis. The 
reduction in colonic inflammation was independent of  
colonization densities of  E. faecalis strains. Interestingly, 
the expression of  E-cadherin on epithelial cells in IL-10-/- 

mice was reduced in the presence of  gelE (wild-type E. 
faecalis) but not when gelE was absent from E. faecalis 
(ΔgelE). It was further demonstrated that E. faecalis gelE 
can degrade recombinant mouse E-cadherin. These data 
strongly suggest a mechanism in which a bacterial pro-
tease can disrupt the intestinal barrier function and lead 
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to inflammation. This finding is specifically significant to 
CD pathogenesis where a greater diversity of  microbes 
with gelatinolytic activity was reported when compared 
to healthy controls[13].

The intestinal microbiota has long been thought of  
as a significant contributor to the proteolytic activity of  
stool[24,27]. Specifically, Macfarlane et al[24] found that the 
proteolytic activity in the stool from a patient that had 
undergone a pancreatectomy was comparable to that of  
the protease activities in stools from individuals that had 
not undergone surgery to remove their pancreas. This in-
dicates that a source other than the pancreas (i.e., enteric 
microbes) significantly contributes to the protease activity 
of  the intestine. These observations have been more re-
cently demonstrated by the reduction of  colonic bacteria 
densities and protease activity by oral administration of  
antibiotics to mice[26]. As previously mentioned, increased 
protease activity has been reported in fecal samples 
obtained from subgroups of  patients suffering from ir-
ritable bowel syndrome (IBS) and IBD[25,93,94]. Róka et al[26] 
initially saw a four-fold increase in trypsin-like activity 
in diarrhea-predominant IBS (D-IBS) and UC patients. 

Subsequently, it was found that fecal supernatants from 
D-IBS patients could increase colonic paracellular perme-
ability in the mouse gut[94]. The application of  D-IBS su-
pernatants to the mouse colon resulted in an increase in 
phosphorylation of  myosin light chain kinase and delayed 
redistribution of  the tight junction-associated molecule 
ZO-1. Further investigations demonstrated that fecal 
supernatants from UC patients can affect visceral sensi-
tivity and colonic permeability in mice that was mediated 
via differing protease receptors (see protease receptors in 
this review). Together these studies suggest a mechanism 
in which microbial proteases can alter intestinal barrier 
function by regulating tight-junctions. 

ENTERIC MICROBIAL PROTEASES AND 
IMMUNE CELL REGULATION
Once the intestinal epithelial barrier has been breached 
microbes or microbial antigens can potentially traverse 
into the underlying tissues of  the intestine and interact 
with immune cells, ultimately leading to inflammation. 
Although enteric microbes are essential environmental 
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receptors (PARs) through release of the tethered ligand. This results in intra-cellular signal transduction and activation of ERK 1, 2 and MAPK. These signaling mol-
ecules mediate disruption of tight junctions and consequently cause increased intestinal permeability that enables penetration of microbes and their proteases which 
can act upon cytokines. Further possible effects of bacterial proteases on the immune response are illustrated in the black box. These mechanisms have been dem-
onstrated for Porphyromonas gingivalis in the oral cavity (and not in the gut) where gingipain proteases can enhance Interleukin (IL)-8-dependent attraction of neutro-
phils (when in their soluble forms) by partially degrading the N-terminal of this cytokine, or inhibit neutrophil activity via complete degradation of IL-8 when associated 
with the microbial membrane. 
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factors for immune cell development, as evidenced by 
an under established immune system found in germ-
free mice[95], the immune system can also be subverted by 
enteric microorganisms via microbial proteases. Bacterial 
proteases capable of  disrupting cytokine signaling can 
potentially affect the pathogenesis of  disease. For ex-
ample, cysteine protease gingipains K (Kgp) and R (RgpA 
and RgpB) are produced by P. gingivalis and are significant 
factors in this oral microbe’s pathogenesis[96]. Soluble gin-
gipains secreted by P. gingivalis are capable of  cleaving the 
N-terminus of  IL-8 and enhancing this cytokine’s activ-
ity of  attracting neutrophils[97]. Additionally, Kgp, RgpA, 
and RpgB can also instantly degrade IL-8 when these 
enzymes are associated with membrane vesicles of  P. gin-
givalis. This dual role of  enhancing and inhibiting immune 
cell activity by the soluble and membrane-bound forms 
of  these microbial proteases, respectively, may explain the 
pro- and anti-inflammatory sites found in periodontitis 
infections. The massive infiltration of  neutrophils at peri-
odontitis sites without the elimination of  infection may 
also be explained by the dual roles of  these microbial 
proteases. Another example is that of  necrotizing fasciitis 
caused by Streptococcus pyogenes (S. pyogenes) that is charac-
terized by an absence of  neutrophils within lesions. It has 
been reported that the relative absence of  neutrophils in 
necrotizing fasciitis lesions were due to restricted proteol-
ysis of  the C-terminal of  IL-8 by the S. pyogenes protease 
SlyCEP[98]. Further investigations revealed that cleavage 
of  the IL-8 C-terminal by SlyCEP from S. pyogenes is suf-
ficient to reduce neutrophil endothelial trans-migration 
and is fundamental in the promotion of  resistance of  this 
microbe to neutrophil killing[99]. Given that a homologue 
of  SlyCEP has been found in another Streptococcus species 
and no substrates other than cytokines have been identi-
fied, it is likely that this microbial protease is an effective 
weapon used by streptococci to impair bacterial clear-
ance by neutrophils. Enteric microbial proteases can not 
only affect cytokines that are responsible for attracting 
the cellular branch of  the innate immune system, but can 
also directly act upon neutrophils, macrophages, mono-
cytes, and natural killer cells. SpeB from S. pyogenes has 
been shown to cause mitochondrial damage and prevent 
phagocytosis by granulocytes[100]. Additionally, a cysteine 
protease from Staphylococcus aureus (SspB) has been shown 
to selectively cleave CD11b on phagocytes which un-
dergo apoptosis and are subsequently cleared by macro-
phages[101]. Taken together these studies identify microbial 
proteases from pathogenic and potentially commensal 
sources important molecules that have the ability to regu-
late the host immune system via specific mechanisms. 

FUTURE FOR MICROBIAL PROTEASES 
AND IBD
The importance of  the enteric microbiota in IBD has 
been established during the last decade[102]. Currently, ef-
forts are being made to decipher the pathways through 
which bacteria and their products cross-talk with various 

cell types in the digestive tract that can potentially medi-
ate inflammatory responses, pain or protection from 
chronic inflammation. The diversity of  bacterial proteases 
and their effect on the intestinal epithelial, immune cells, 
and the enteric nervous system through various receptors 
open new avenues for research and potential therapeutic 
targets. Characterization of  pathogenic proteases in IBD, 
the bacterial species that produce them and their mecha-
nism of  action are required to enhance our capability 
to understand the pathogenesis of  these diseases and 
therapeutically intervene. Potential targets for therapeutic 
intervention include the following.

Specific bacterial groups that carry potentially 
pathogenic bacterial proteases 
The list of  specific enteric bacteria that carry bacterial 
proteases that can disrupt epithelial barrier function and 
cause colitis in animal models is small and has been dis-
cussed earlier in this review. In humans there is even less 
information. However, the beneficial effects of  antibiot-
ics and probiotics in pouchitis[103,104] and IBS[105-107], and 
antibiotics in CD[108] are well established. Although the 
proposed mechanisms for antibiotic and probiotic action 
are beyond the scope of  this review, it is conceivable that 
one of  the mechanisms involves action against protease-
producing bacteria that cause increased permeability, pain 
and activation of  the immune response. Future research 
characterizing these bacteria using high throughput se-
quencing, proteomics and metabolomics will potentially 
identify microbial targets for treatment of  IBD. 

Bacterial proteases
Production of  proteases is not restricted to bacteria. Host 
derived proteases have an important role in normal phys-
iology of  the digestion, immune response, signaling etc. 
Therefore, strategies that target bacterial derived, intra-
luminal, colonic proteases without harming the host may 
prove to be beneficial. Novel drugs for IBD could po-
tentially target bacterial protease production or secretion, 
such as the serine protease autotransporters from Entero-
bacteriaceae[12]. This approach was recently demonstrated 
by Löwer et al[109] who investigated a specific inhibitor 
for the Helicobacter pylori serine protease. High tempera-
ture requirement A (HtrA) is a secreted serine protease 
that cleaves E-cadherin on the surface of  host cells and 
disrupts the epithelial barrier. Through a receptor-based 
virtual screening method, they found a specific inhibitor 
of  HtrA activity that was able to prevent in vitro cleavage 
of  E-cadherin, without cross reactivity to mammalian 
proteases. HtrA is a virulence factor for other enteric 
bacteria, such as E. coli, Shigella flexneri and Campylobacter 
jejuni[110]. Thus, examining the ability of  this inhibitor to 
reduce HtrA activity and its effect on intestinal inflamma-
tion and permeability in models of  colitis is warranted. 

An alternative approach is to use probiotics that can 
be beneficial through various mechanisms such as favor-
able metabolic effects on the epithelial cells, anti-bacterial 
activity or directly through production of  protease inhibi-
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tors. For example, Bifidobacterium longum and Bifidobacterium 
breve produce serine protease inhibitors (serpins)[111,112] 
that may antagonize potentially pathogenic bacteria pro-
teases and may exert at least part of  its favorable effects 
on the colon through this mechanism. Another probiotic 
micro-organism, the yeast Saccharomyces boulardii, produces 
a serine protease that is beneficial to the host through it 
activity against Clostridium difficile adherence to the gut wall 
and against its toxin, and thus suppresses bacterial over-
growth and infectious colitis[113]. These examples demon-
strate that the potential favorable effects of  the enteric 
microbiota on gut inflammation are vast and involve mul-
tiple mechanisms that are not yet fully understood. 
 
Protease activated receptors
PARs can be activated or antagonized by synthetic pep-
tides that are analogous to the tethered ligand, irrespec-
tive of  proteolytic cleavage of  the receptor. Design of  
new, selective and potent drugs that correspond to the 
tethered ligand but also contain non-peptidic moieties 
may become useful in selective activation or inhibition of  
specific PARs. Activation of  PAR2 is associated with coli-
tis in animal models and has been used as a colitis model 
in rats[67] while oral administration of  PAR2 antagonist 
resulted in amelioration of  colitis. Although it is not clear 
if  this action antagonizes host or bacterial derived prote-
ases, the advantage of  this approach is that it targets the 
final common receptor of  the proteases, regardless of  
their source (bacterial or mammalian). 

An additional approach would be to block PAR asso-
ciated receptors. There is evidence that PAR signaling by 
Candida or Aspergilus on PMNs depends on the presence 
of  TLR 2 and 4[49]. Although, similar studies regarding 
enteric epithelial cells is lacking, it is conceivable that such 
mechanisms are also required to induce PAR signaling on 
epithelial cells, and thus may be serve as additional poten-
tial targets against activation by microbial proteases. 

Inhibitors of downstream molecular pathways 
Activation of  PARs by bacterial proteases results in di-
verse and complex signaling pathways. Characterization 
of  specific pathways that may be inhibited to block the 
pathogenic effect of  bacterial proteases without harm-
ing host homeostatic pathways, are required. Pepducins 
are such an evolving therapy[114]. Peducins are lipoprotein 
molecules, composed of  a synthetic peptide sequence 
(10-20 amino acids) that relates to the GPCR intracellular 
sequences and of  a lipid hydrophobic moiety. The lipid 
component tethers the pepducin in the lipid bilayer mem-
brane of  the cells and enables these molecules to interact 
with specific and stabilize GPCRs (for review, Dimond et 
al[115]). Specific pepducins that act as antagonists of  PAR1 
GPCR (P1pal-7) have shown favorable results in pre-clin-
ical trials for lung cancer[116]. Additionally, PAR2 GPCR 
specific pepducin (P2pal-18S) ameliorates experimental 
pancreatitis through inhibition of  PAR2 action that is 
expressed on pancreatic acinar cells[117] and ameliorates 
inflammation in additional mouse models[118]. 

CONCLUSION
In this review we have discussed the putative role and 
evidence of  microbial proteases in inflammatory bowel 
disease pathogenesis. Proteases are essential for normal 
physiological development and are involved in numerous 
processes in our body. They are secreted by various cell 
types and their receptors are abundant in the gut wall, 
on immune cells, epithelial cells, and on neuronal cells. 
A growing amount of  evidence supports a role for pro-
teases and their receptors to IBD pathophysiology. The 
understanding that the enteric microbiota are crucial to 
disease initiation, and the fact that proteases are secreted 
by most bacteria and are considered virulence factors in 
infectious colitis, suggest that perhaps commensal bacte-
rial proteases can also damage epithelial barrier function 
and may be involved in the initiation and perpetuation of  
IBD in genetically predisposed patients. Indeed, in this 
review we have summarized the current evidence that 
support this notion, the mechanisms through which bac-
terial proteases can impact the mucosal barrier function 
(through activation of  PAR receptors), and the down-
stream signal pathways that result in increased epithelial 
permeability and perhaps in colitis. 

However, it is not clear whether the proteolytic activ-
ity found in the gut lumen is exclusively of  mammalian or 
bacterial origin. This is complicated by the fact that mam-
malian proteases, such as pancreatic digestive enzymes, 
are abundant in the gut lumen, and proteases secreted 
within the gut wall by leukocytes, such as neutrophils 
(cathepsin G) or mast cells (tryptase), “spill” into the in-
flamed gut. These factors may account for some of  the 
discrepancies found between various studies investigating 
the origin of  luminal proteolytic activity and the recep-
tors they activate. Moreover, it is currently difficult to 
characterize luminal proteolytic activity, and while some 
research studies examine tryptic activity or gelatinase ac-
tivity (each of  which represents only a portion of  the to-
tal luminal proteolytic activity) other studies have sought 
to characterize total luminal protease activity via func-
tional assays and through inhibition of  specific protease 
activity. These challenges may also explain why it is not 
fully clear which PAR isotype mediates increased enteric 
permeability and inflammation. For example, PAR1 and 
PAR2 have been implicated in mediating enteric inflam-
mation or permeability by bacterial proteases or mamma-
lian proteases while activation of  PAR4 can equally result 
in increased enteric permeability. It is not improbable to 
hypothesize that for increased intestinal permeability and 
colitis to occur there is a multi-factorial hit process that 
results in activation of  multiple PARs simultaneously by 
different proteases. 

Only now we begin to unravel the effects of  altera-
tions in the normal enteric microbiota (dysbiosis), and 
how these “normal” bacteria can potentially induce coli-
tis. The current challenge is to explore which commensal 
bacteria can secrete proteases that result in damage of  
the mucosal barrier. Additionally, we need to understand 
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which microbes are associated with colitis and what the 
genetically predisposing factors are that “allow” these 
events to happen. For example, genetic mutations asso-
ciated with the reduction of  mucus production and in-
creased mucosal bacterial adherence, immune abnormali-
ties that result in dysbiosis, and innate immune response 
defects that cause dysregulated immune responses once 
the mucosal barrier is breached. 

Investigating these aspects through cell lines, mono-
associated gnotobiotic animals, Ussing chambers, high-
throughput sequencing of  microbial DNA, metabolo-
mics and genome wide association studies will enable us 
to understand the role of  enteric microbial proteases in 
the pathogenesis of  IBD and to develop effective tar-
geted therapies that will involve specific enteric bacteria, 
PARs, and the downstream regulation and host immune 
response. 
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