
Supplementary material:  

Here, we added more information about Convolutional Neural Network in 

Section“MATERIALS AND METHODS 2.2 Convolutional Neural Network ”. 

 

MATERIALS AND METHODS 

2 Deep Learning Technique 

2.2 Convolutional Neural Network 

In the following paragraphs, we discuss these layers in sequence: first, the 

convolutional layer, then, the BN layer, the ReLU layer, the max-pooling, and 

average-pooling layers, and finally, the fully connected layer. Then, we present 

the hyperparameter settings for our model. 

 

2.2.1 Convolutional Layer 

The convolutional layers takes a 3-D volume 𝑋 ∈ ℝ𝑊𝑋×𝐻𝑋×𝐷𝑋  as input. For 

example, if the input is an image, 𝑊𝑋  and 𝐻𝑋  are its width and height, and 

𝐷𝑋 is the depth or the number of channels of the image: 𝐷𝑋is 1 for a grayscale 

image and 3 for an RGB color image. The output of each convolutional layer is 

also a 3-D volume with reduced width and height but increased depth1. 

 

A convolutional layer uses filters (or kernels) to perform convolution 

operations on the input volume. A filter can be regarded as a neuron with 

learnable weights that can learn to capture visual features, e.g., edges and 

contours, from the input. When performing a convolution operation, each filter 

is connected to only a local region of the input, i.e., that neuron will only try to 

capture a specific visual feature from a local region. The filter size, which can 

be regarded as the receptive field of the neuron, is the same as the size of the 

local region. Specifically, in our convolutional layers, the filter depth was equal 

to the depth 𝐷𝑥  of the input volume, but the width and height of the local 

region were usually smaller than 𝑊𝑥  and 𝐻𝑥 , respectively. A convolution 

operation is the dot product of a filter and a local region of the input volume 



followed by a bias 𝑏 ∈ ℝ offset. Given a filter with weights 𝑊 ∈ ℝ𝑓×𝑓×𝐷𝑋  and 

a local region 𝑅 ∈ ℝ𝑓×𝑓×𝐷𝑋 , the convolution operation between them is as 

follows: 

𝐶𝑜𝑛𝑣(𝑊, 𝑅) = ∑𝐷𝑋
𝑘=0

∑𝑓
𝑗=0

∑𝑓
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where 𝑊𝑖𝑗𝑘  is the weight of the filter and 𝑅𝑖𝑗𝑘  is the pixel value of the local 

region of the input. Intuitively, the resulting convolution value Conv(W, R) 

measures the probability that the visual feature matching the one the filter has 

learned appears in the local region. 

 

A convolution operation between a filter and a local region can only capture 

whether the local region contains a particular visual feature. To look for the 

visual feature in the entire image, we first performed zero-padding around the 

border of the input volume to preserve the information at the border during 

convolution. Then, we slid the filter over the image horizontally and vertically 

and conducted convolution operations on all the possible local regions. The 

step size of the slide was specified by a hyperparameter named "stride." This 

process produces a matrix of convolution values, called a kernel map. 

Additionally, a convolutional layer usually uses a batch of filters to capture 

different visual features. The kernel maps of all the filters form a feature map, 

which is the final output of the convolutional layer. 

 

2.2.2 Batch Normalization and ReLU Layers 

The BN layer was adopted to cope with the Internal Covariate Shift problem in 

deep neural network models2. It also helps avoid overfitting and accelerates 

deep neural network training. This layer takes the feature map output by the 

preceding convolutional layer as input and learns to normalize the feature map. 

 

The input to the ReLU layer is the normalized feature map. It applies an 



elementwise activation function (in this case, the $max$ function with a zero 

threshold) to the input as follows: 

 

$ReLU(V) = max(0, V)$. 

 

The ReLU layer’s output dimensions are the same as those of its input. 

 

2.2.3 Pooling Layer 

The pooling layer was used to progressively reduce the spatial size of the input 

volume to reduce the number of parameters and the computation required in 

the subsequent model layers, which helps control overfitting. To reduce the 

spatial size, the pooling layer leveraged a filter to summarize the local regions 

in each depth slice of the input. In contrast to convolutional layer filters, the 

filter in a pooling layer implements a fixed function instead of a function with 

learnable weights. In each depth slice, the pooling layer also slid the filter over 

the width and height of the input volume with a stride of S and summarized 

every local region to form a kernel map. The kernel maps of all the depth slices 

are used to construct an output feature map. Because the pooling layer operates 

independently in each depth slice, the depth dimensions of its output are the 

same as those of its input. 

 

Our model included two types of pooling layers: a max-pooling layer and an 

average-pooling layer, whose filters implemented the max function and the 

average function, respectively. This meant that given a local region 𝑅 ∈ ℝ𝑊×𝐻 

in a depth slice, these filters' outputs for this region were the maximum and 

average value of this region, respectively. 

 

2.2.4 Fully Connected Layer 

The layers before the fully connected layer were expected to extract sufficient 

features from an image to perform classification. The fully connected layer is 



responsible for projecting the extracted features to a probability distribution for 

classification. The fully connected layer includes 𝑛 neurons, where 𝑛 is the 

number of classes, and each neuron corresponds to a specific class. When 

receiving an input volume, this layer first flattens it into a feature vector 𝑉 ∈

ℝ𝑚. Then, it performs the following linear transformation on 𝑉: 

 

𝑌 = 𝑊𝑉 + 𝐵, 

 

where 𝑊 ∈ ℝ𝕟×𝕞  and 𝐵 ∈ ℝ𝕟  are learnable weights. Finally, the softmax 

function was applied to normalize 𝑌  so that 𝑌𝑖  could represent the 

probability of the input image belonging to class 𝐶𝑖. This softmax process is as 

follows: 

 

𝑃(𝐶𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖) =
𝑒𝑥𝑝𝑦𝑖

∑ 𝑒𝑥𝑝𝑦𝑖
𝑛

𝑗=1

. 

2.2.5 Hyperparameter Settings 

The convolutional layers and the pooling layers require several 

hyperparameters whose settings are shown in Supplementary Table 1. We 

selected these values based on the deep residual network architecture that won 

the first place in the ILSVRC 2015 classification competition3. 
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Supplementary Table 1 The Hyper-parameters in our model 

Layer #Filters Filter Size Stride Padding 

Convolutional layer 1 32 7x7x3 2 3 

Convolutional layer 2 64 3x3x32 2 1 

Convolutional layer 3 128 3x3x64 2 1 

All max-pooling layers / 3x3 2 1 

Average-pooling layer / 8x8 1 / 

 

 


