
Supplementary material:

Here, we added more information about Convolutional Neural Network in

Section“MATERIALS AND METHODS 2.2 Convolutional Neural Network ”.

MATERIALS AND METHODS

2 Deep Learning Technique

2.2 Convolutional Neural Network

In the following paragraphs, we discuss these layers in sequence: first, the

convolutional layer, then, the BN layer, the ReLU layer, the max-pooling, and

average-pooling layers, and finally, the fully connected layer. Then, we present

the hyperparameter settings for our model.

2.2.1 Convolutional Layer

The convolutional layers takes a 3-D volume 𝑋 ∈ ℝ𝑊𝑋×𝐻𝑋×𝐷𝑋 as input. For

example, if the input is an image, 𝑊𝑋 and 𝐻𝑋 are its width and height, and

𝐷𝑋 is the depth or the number of channels of the image: 𝐷𝑋is 1 for a grayscale

image and 3 for an RGB color image. The output of each convolutional layer is

also a 3-D volume with reduced width and height but increased depth1.

A convolutional layer uses filters (or kernels) to perform convolution

operations on the input volume. A filter can be regarded as a neuron with

learnable weights that can learn to capture visual features, e.g., edges and

contours, from the input. When performing a convolution operation, each filter

is connected to only a local region of the input, i.e., that neuron will only try to

capture a specific visual feature from a local region. The filter size, which can

be regarded as the receptive field of the neuron, is the same as the size of the

local region. Specifically, in our convolutional layers, the filter depth was equal

to the depth 𝐷𝑥 of the input volume, but the width and height of the local

region were usually smaller than 𝑊𝑥 and 𝐻𝑥 , respectively. A convolution

operation is the dot product of a filter and a local region of the input volume

followed by a bias 𝑏 ∈ ℝ offset. Given a filter with weights 𝑊 ∈ ℝ𝑓×𝑓×𝐷𝑋 and

a local region 𝑅 ∈ ℝ𝑓×𝑓×𝐷𝑋 , the convolution operation between them is as

follows:

𝐶𝑜𝑛𝑣(𝑊, 𝑅) = ∑𝐷𝑋
𝑘=0

∑𝑓
𝑗=0

∑𝑓
𝑖=0 𝑊𝑖𝑗𝑘 𝑅𝑖𝑗𝑘 + 𝑏,,

where 𝑊𝑖𝑗𝑘 is the weight of the filter and 𝑅𝑖𝑗𝑘 is the pixel value of the local

region of the input. Intuitively, the resulting convolution value Conv(W, R)

measures the probability that the visual feature matching the one the filter has

learned appears in the local region.

A convolution operation between a filter and a local region can only capture

whether the local region contains a particular visual feature. To look for the

visual feature in the entire image, we first performed zero-padding around the

border of the input volume to preserve the information at the border during

convolution. Then, we slid the filter over the image horizontally and vertically

and conducted convolution operations on all the possible local regions. The

step size of the slide was specified by a hyperparameter named "stride." This

process produces a matrix of convolution values, called a kernel map.

Additionally, a convolutional layer usually uses a batch of filters to capture

different visual features. The kernel maps of all the filters form a feature map,

which is the final output of the convolutional layer.

2.2.2 Batch Normalization and ReLU Layers

The BN layer was adopted to cope with the Internal Covariate Shift problem in

deep neural network models2. It also helps avoid overfitting and accelerates

deep neural network training. This layer takes the feature map output by the

preceding convolutional layer as input and learns to normalize the feature map.

The input to the ReLU layer is the normalized feature map. It applies an

elementwise activation function (in this case, the max function with a zero

threshold) to the input as follows:

$ReLU(V) = max(0, V)$.

The ReLU layer’s output dimensions are the same as those of its input.

2.2.3 Pooling Layer

The pooling layer was used to progressively reduce the spatial size of the input

volume to reduce the number of parameters and the computation required in

the subsequent model layers, which helps control overfitting. To reduce the

spatial size, the pooling layer leveraged a filter to summarize the local regions

in each depth slice of the input. In contrast to convolutional layer filters, the

filter in a pooling layer implements a fixed function instead of a function with

learnable weights. In each depth slice, the pooling layer also slid the filter over

the width and height of the input volume with a stride of S and summarized

every local region to form a kernel map. The kernel maps of all the depth slices

are used to construct an output feature map. Because the pooling layer operates

independently in each depth slice, the depth dimensions of its output are the

same as those of its input.

Our model included two types of pooling layers: a max-pooling layer and an

average-pooling layer, whose filters implemented the max function and the

average function, respectively. This meant that given a local region 𝑅 ∈ ℝ𝑊×𝐻

in a depth slice, these filters' outputs for this region were the maximum and

average value of this region, respectively.

2.2.4 Fully Connected Layer

The layers before the fully connected layer were expected to extract sufficient

features from an image to perform classification. The fully connected layer is

responsible for projecting the extracted features to a probability distribution for

classification. The fully connected layer includes 𝑛 neurons, where 𝑛 is the

number of classes, and each neuron corresponds to a specific class. When

receiving an input volume, this layer first flattens it into a feature vector 𝑉 ∈

ℝ𝑚. Then, it performs the following linear transformation on 𝑉:

𝑌 = 𝑊𝑉 + 𝐵,

where 𝑊 ∈ ℝ𝕟×𝕞 and 𝐵 ∈ ℝ𝕟 are learnable weights. Finally, the softmax

function was applied to normalize 𝑌 so that 𝑌𝑖 could represent the

probability of the input image belonging to class 𝐶𝑖. This softmax process is as

follows:

𝑃(𝐶𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖) =
𝑒𝑥𝑝𝑦𝑖

∑ 𝑒𝑥𝑝𝑦𝑖
𝑛

𝑗=1

.

2.2.5 Hyperparameter Settings

The convolutional layers and the pooling layers require several

hyperparameters whose settings are shown in Supplementary Table 1. We

selected these values based on the deep residual network architecture that won

the first place in the ILSVRC 2015 classification competition3.

Reference

1. Zeiler MD, Fergus R. Visualizing and understanding convolutional

networks, In European conference on computer vision, Springer, 2014.

2. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167 2015.

3. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition,

In Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016.

Supplementary Table 1 The Hyper-parameters in our model

Layer #Filters Filter Size Stride Padding

Convolutional layer 1 32 7x7x3 2 3

Convolutional layer 2 64 3x3x32 2 1

Convolutional layer 3 128 3x3x64 2 1

All max-pooling layers / 3x3 2 1

Average-pooling layer / 8x8 1 /

