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Retrospective Study
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Abstract
BACKGROUND 
Efforts should be made to develop a deep-learning diagnosis system to 
distinguish pancreatic cancer from benign tissue due to the high morbidity of 
pancreatic cancer.

AIM 
To identify pancreatic cancer in computed tomography (CT) images automatically 
by constructing a convolutional neural network (CNN) classifier.

METHODS 
A CNN model was constructed using a dataset of 3494 CT images obtained from 
222 patients with pathologically confirmed pancreatic cancer and 3751 CT images 
from 190 patients with normal pancreas from June 2017 to June 2018. We 
established three datasets from these images according to the image phases, 
evaluated the approach in terms of binary classification (i.e., cancer or not) and 
ternary classification (i.e., no cancer, cancer at tail/body, cancer at head/neck of 
the pancreas) using 10-fold cross validation, and measured the effectiveness of the 
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model with regard to the accuracy, sensitivity, and specificity.

RESULTS 
The overall diagnostic accuracy of the trained binary classifier was 95.47%, 
95.76%, 95.15% on the plain scan, arterial phase, and venous phase, respectively. 
The sensitivity was 91.58%, 94.08%, 92.28% on three phases, with no significant 
differences (χ2 = 0.914, P = 0.633). Considering that the plain phase had same 
sensitivity, easier access, and lower radiation compared with arterial phase and 
venous phase , it is more sufficient for the binary classifier. Its accuracy on plain 
scans was 95.47%, sensitivity was 91.58%, and specificity was 98.27%. The CNN 
and board-certified gastroenterologists achieved higher accuracies than trainees 
on plain scan diagnosis (χ2 = 21.534, P < 0.001; χ2 = 9.524, P < 0.05; respectively). 
However, the difference between CNN and gastroenterologists was not 
significant (χ2 = 0.759, P = 0.384). In the trained ternary classifier, the overall 
diagnostic accuracy of the ternary classifier CNN was 82.06%, 79.06%, and 78.80% 
on plain phase, arterial phase, and venous phase, respectively. The sensitivity 
scores for detecting cancers in the tail were 52.51%, 41.10% and, 36.03%, while 
sensitivity for cancers in the head was 46.21%, 85.24% and 72.87% on three phases, 
respectively. Difference in sensitivity for cancers in the head among the three 
phases was significant (χ2 = 16.651, P < 0.001), with arterial phase having the 
highest sensitivity.

CONCLUSION 
We proposed a deep learning-based pancreatic cancer classifier trained on 
medium-sized datasets of CT images. It was suitable for screening purposes in 
pancreatic cancer detection.

Key Words: Deep learning; Convolutional neural networks; Pancreatic cancer; Computed 
tomography

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We developed a deep learning-based, computer-aided pancreatic ductal 
adenocarcinoma model trained on computed tomography images with pathologically 
confirmed pancreatic cancer in this retrospective study. We evaluated the approach used 
on the datasets in terms of both binary and ternary classifier, with the purposes of 
detecting and localizing masses, respectively. In the binary classifier, the performance of 
plain, arterial and venous phase had no difference. Its accuracy on plain scan was 95.47%, 
sensitivity was 91.58%, and specificity was 98.27%. In the ternary classifier, the arterial 
phase had the highest sensitivity in detecting cancer in the head of the pancreas among the 
three phases. Our model is suitable for screening purposes in pancreatic cancer detection.

Citation: Ma H, Liu ZX, Zhang JJ, Wu FT, Xu CF, Shen Z, Yu CH, Li YM. Construction of a 
convolutional neural network classifier developed by computed tomography images for 
pancreatic cancer diagnosis. World J Gastroenterol 2020; 26(34): 5156-5168
URL: https://www.wjgnet.com/1007-9327/full/v26/i34/5156.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i34.5156

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common solid malignancy of 
the pancreas. It is aggressive and challenging to treat, which is more commonly called 
“pancreatic cancer”[1]. Pancreatic cancer is a highly lethal malignancy with a very poor 
prognosis[2]. Despite recent advances in surgical techniques, chemotherapy, and 
radiation therapy, the 5-year survival rate remains a dismal 8.7%[3]. Most patients with 
pancreatic cancer have nonspecific symptoms, and the disease is often found at an 
advanced stage. Only 10%-20% of patients present at the localized disease stage, at 
which complete surgical resection and chemotherapy offer the best chance of survival, 
with a 5-year survival rate of approximately 31.5%. The remaining 80%-90% of 
patients miss the chance to benefit from surgery because of general or local metastases 
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at the time of diagnosis[4,5].
Currently, effective early diagnosis remains difficult, and it depends mainly on 

imaging modalities[6]. Compared with ultrasonography, magnetic resonance imaging 
(MRI), endoscopic ultrasonography, and positron emission tomography, computed 
tomography (CT) is the most commonly used imaging modality for the initial 
evaluation of suspected pancreatic cancer[7,8]. CT scans are also used for screening 
asymptomatic patients at high risk of developing pancreatic cancer. Patients with 
pancreatic cancer that were incidentally diagnosed during an imaging examination for 
an unrelated disease have a longer median survival time than those who are already 
symptomatic[9]. Sensitivity of CT for the pancreatic adenocarcinoma detection ranges 
from 70% to 90%[10]. The choice for pancreatic cancer diagnosis is a thin section with 
contrast-enhanced, dual-phase multidetector computed tomography[11].

Recently, due to promising achievements in deep neural networks and increasing 
medical needs, computer-aided diagnosis (CAD) systems have become a new research 
focus. There have been some initial successes in applying deep learning to assess 
radiological images. Deep learning-aided decision-making has been used in support of 
pulmonary nodule and skin tumor diagnoses[12,13]. Efforts should be made to develop 
CAD systems to distinguish pancreatic cancer from benign tissue due to the high 
morbidity of pancreatic cancer. Therefore, developing an advanced discrimination 
method for pancreatic cancer is necessary. A convolutional neural network (CNN) is a 
class of neural network models that can extract features from images by exploring the 
local spatial correlations presented in images. CNN models have been shown to be 
effective and powerful for addressing a variety of image classification problems[14].

In this study, we demonstrated that a deep learning method can achieve 
pathologically certified pancreatic ductal adenocarcinoma classification using clinical 
CT images.

MATERIALS AND METHODS
Data collection and preparation
Dataset: Between June 2017 and June 2018, patients with pathologically diagnosed 
pancreatic cancer in the First Affiliated Hospital, Zhejiang University School of 
Medicine, China, were eligible for inclusion in the present study. Patients with CT-
confirmed normal pancreas were also randomly collected in the same period. All data 
were retrospectively obtained from patients’ medical records. Images of pancreatic 
cancers and normal pancreases were extracted from the database. All the cancer 
diagnoses were based on pathological examinations, either by pancreatic biopsy or by 
surgery (Figure 1). Participants gave informed consent to allow data collected from 
them to be published. Because of the retrospective study design, we verbally informed 
all the participants included in the study. Patients who do not want their information 
to be shared could opt out. Subject information was anonymized at the collection and 
analysis stage. All the methods were performed in accordance with the approved 
guidelines. The Hospital Ethics Committee approved the study protocol. A total of 343 
patients were pathologically diagnosed with pancreatic cancer from June 2017 to June 
2018. Of these patients, 222 underwent an abdominal enhanced-CT in our hospital 
before surgery or biopsy. We randomly collected 190 patients who underwent 
enhanced-CT with normal pancreas. Thus, among the 412 enrolled subjects, 222 were 
pathologically diagnosed with pancreatic cancer, and the remaining 190 diagnosed 
with normal pancreas were included as a control group.

Imaging techniques: Multiphasic CT was performed following a pancreas protocol 
and using a 256-channel multidetector row CT scanner (Siemens). The scanning 
protocol included unenhanced and contrast material–enhanced biphasic imaging in 
the arterial and venous phases after intravenous administration of 100 mL ioversol at a 
rate of 3 mL/sec using an automated power injector. Images were reconstructed at 5.0-
mm thickness. For each CT scan, one to nine pictures of the pancreas were selected 
from each phase. Finally, datasets of 3494 CT images obtained from 222 patients with 
pathologically confirmed pancreatic cancer and 3751 CT images from 190 patients with 
normal pancreas were collected.

Deep learning technique
Data preprocessing: We adopted a CNN model to classify the CT images. A CNN 
requires the input images to be the same size. Thus, we first cropped each CT image 
starting at the center to transform it into a fixed 512 × 512 resolution. Each image was 
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Figure 1  Examples of dataset.

stored in the RGB color model, which is a model with red, green, and blue light 
merged together to reproduce multiple colors, and thus consisted of three-color 
channels (i.e., red, green, and blue). We normalized each channel of every image using 
0.5 as the mean and the standard deviation. This normalization was performed 
because all the images were processed by the same CNN, and the results might 
improve if the feature values of the images were scaled to a similar range.

CNN: In this work, we designed a CNN model to classify the pancreatic CT images to 
assist in pancreatic cancer diagnosis. The architecture of our proposed CNN model is 
presented in Figure 2. Our model consisted primarily of three convolutional layers and 
a fully connected layer. Each convolutional layer was followed by a batch 
normalization (BN) layer that normalized the outputs of the convolutional layer, a 
rectified linear unit (ReLU) layer that applied an activation function to its input values, 
and a max-pooling layer that conducted a down-sampling operation. We also adopted 
an average-pooling layer before the fully connected layer to reduce the dimensions of 
the feature values input to the fully connected layer. Following the work by Srivastava 
et al[15], a dropout rate of 0.5 was used between the average-pooling layer and the fully 
connected layer to avoid overfitting and increase the performance. We also tried 
Spatial Dropout[16] between each max-pooling layer and its following convolutional 
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Figure 2  Architecture of our convolutional neural network model.

layer, but found that such dropouts resulted in performance degradation. Therefore, 
we did not apply Spatial Dropout. As input, the network takes the pixel values of a CT 
image, and it outputs the probability that the image belongs to a certain class (e.g., the 
probability that the corresponding patient has pancreatic cancer). The CT images were 
fed into our model layer by layer. The input to each layer is the output values of the 
previous layer. The layers perform specific transformations on the input values and 
then pass the processed values to the next layer.

The convolutional layers and the pooling layers require several hyper-parameters 
whose settings are shown in Supplementary Material. In the Supplementary Material, 
we also discuss these layers in sequence: First, the convolutional layer, then, the batch 
normalization (BN) layer, the Rectified Linear Unit (ReLU) layer, the max-pooling, and 
average-pooling layers, and finally, the fully connected layer. Then, we present the 
hyper-parameter settings for our model.

Training and testing the CNN: We collected three types of CT images: Plain scan, 
venous phase, and arterial phase and built three datasets from the collected images 
based on the image types. Each dataset may include several images collected from one 
patient. To divide a dataset into training, validation, and test sets, we first collected the 
identity documents (IDs) of all the patients in the dataset. Each patient was labeled as 
follows: The label may be “no cancer (NC)”, “with cancer at the tail and/or body of 
the pancreas (TC)” or “with cancer at the head and/or neck of the pancreas (HC)”. For 
each label, e.g., “no cancer”, we randomly placed 10% of the patients with this label 
into the validation set, 10% into the test set, and the remaining 80% into the training 
set. Notablly, images of the same patient appear in only one set.

All patients and their CT images were marked by one of the three labels, i.e., “no 
cancer”, “with cancer in the tail of pancreas” and “with cancer in the head of the 
pancreas”. For each dataset, we could treat the TC and HC patients as “with cancer 
(CA)”. Then, we trained a binary classifier to classify all the CT images. We also 
trained a ternary classifier to determine the specific cancer location. Our proposed 
approach was flexible enough to be used as either a binary classifier or a multiple-class 
classifier; we needed only to specify the hyperparameter of the fully-connected layer 
to control the classifier type.

Given a dataset and the number of target classes (denoted as n), we trained our 
model on the training set and set the mini-batch size to 32. After each training 
iteration, we used the cross-entropy loss function to calculate the loss between the 
predicted results (i.e., the probability distribution P output by the fully connected 
layer) of our model and the ground truth (denoted as G), computed as Formula 1.

This loss was used to guide the updates of the weights in our CNN model; we used 
Adam as the optimizer. The statistics of each dataset are presented in Table 1.

After updating the model, we calculated the accuracy (see section Evaluation below) 
of the new model on the validation set to assess the quality of the current model. We 
trained our model for a maximum of 100 epochs, and the model with the highest 
accuracy on the validation set was selected as the final model. A 10-fold cross-
validation process was used to evaluate our techniques. We randomly divided the 
images in each phase into 10 folds, 8 of which were used to do the training, 1 fold was 
the validation set, and the remaining one was used to test the model. The entire 
process was repeated 10 times, and each fold will be used as the test set once. The 
average performance was recorded. We evaluated the effectiveness of our CNN model 
on the test sets in terms of accuracy, precision, and recall (see section Evaluation 
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Table 1 Statistics of our datasets

Number of patients Number of images

With cancer With cancerCT phase
Without cancer cancer

At tail1 At head Total
Total Without cancer

At tail At head Total
Total

Plain Scan 182 91 123 214 396 1182 416 496 912 2094

Arterial phase 179 91 129 220 399 1282 575 735 1310 2592

Sets

Venous phase 178 93 129 222 400 1287 573 699 1272 2559

Total 539 275 381 656 1195 3751 1564 1930 3494 7245

1“At tail” means at tail or body of pancreas, while “At head” means at head or neck of pancreas. CT: Computed tomography.

below).

Evaluation: We evaluated our approach on the three datasets in terms of both binary 
and ternary classifications and measured the effectiveness of our approach relying on 
widely adopted metrics of classification aspects: Accuracy, precision, and recall. 
Accuracy is the proportion of the images that are correctly classified (denoted as TP) 
among all the images (denoted as All) for all classes. The precision for class Ci is the 
proportion of images that are correctly classified as class Ci (denoted as TPi) among all 
images that are classified as class (denoted as TPi + FPi). The recall for class Ci is the 
proportion of images that are correctly classified as class Ci (denoted as TPi) among all 
the images that actually belong to class Ci (denoted as Alli). These metrics are 
calculated as follows:

Accuracy = TP/All;
Precisioni = TPi/( TPi + FPi);
Recalli= TPi/Alli.
We evaluated our approach relying on the accuracy because it measures the overall 

quality of a classifier on all classes instead of only a specific class Ci, which is shown as 
follows:

Sensitivity = Recall in cancer detection = (The correctly predicted malignant 
lesions)/(All the malignant lesions);

Specificity = Recall in detecting noncancer = (The correctly predicted nonmalignant 
cases)/(All non-malignant cases);

Precision in cancer detection = (The correctly predicted malignant lesions)/(All 
images classified as malignant).

Evaluation between deep learning and gastroenterologists
Ten board-certified gastroenterologists and 15 trainees participated in the study, and 
the accuracy of their image classifications was compared with the predictions of the 
deep learning technique. Each gastroenterologist or trainee classified the same 100-
image set in plain scan randomly selected from the test dataset of the deep learning 
technique. The human response time was approximately 10 s per image. The images 
accurately classified by the board-certified gastroenterologists and trainees were 
compared with the results of the deep learning model.

Statistical analysis
We performed statistical analyses using SPSS 13.0 for Windows (SPSS, Chicago, IL, 
United States). Continuous variables are expressed as mean ± SD and were compared 
using Student’s t-test. The χ2 test was used to compare categorical variables. A value of 
P < 0.05 (2-tailed test) was considered statistically significant.

RESULTS
Characteristics of the study participants
Among the 412 enrolled subjects, 222 were pathologically diagnosed with pancreatic 



Ma H et al. CNN classifier identifies pancreatic cancer

WJG https://www.wjgnet.com 5162 September 14, 2020 Volume 26 Issue 34

cancer, and 190 diagnosed with normal pancreas were included as a control group. 
The characteristics of the enrolled participants, classified by the presence or absence of 
pancreatic cancer, are shown in Table 2. The mean age was 63.8 ± 8.7 years for cancer 
group (range, 39-86 years, 124 men/98 women) and 61.0 ± 12.3 years for non-cancer 
group (range, 35-83 years, 98 men/92 women). These two groups had no significant 
differences in age or gender (P > 0.05). For the cancer group, 129 cases were located at 
the head and neck of pancreas, 93 cases at the tail and body of pancreas. The median 
tumor size of cancer group was 3.5 cm (range, 2.7-4.3 cm).

Performance of the deep convolutional neural network used as a binary classifier
Datasets of 3494 CT images obtained from 222 patients with pathologically confirmed 
pancreatic cancer and 3751 CT images from 190 patients with normal pancreas were 
included, statistics of each dataset are presented in Table 1. We labeled each CT image 
as “with cancer” or “no cancer”. Then, we constructed a binary classifier using our 
CNN model by 10-fold cross validation on 2094, 2592, and 2559 images in the plain 
scan, arterial phase, and venous phase, respectively (Table 1).

The overall diagnostic accuracy of the CNN was 95.47%, 95.76%, and 95.15% on the 
plain scan, arterial phase, and venous phase, respectively. The sensitivity of the CNN 
(known as recall in cancer detection - the correctly predicted malignant lesions divided 
by all the malignant lesions) was 91.58%, 94.08%, and 92.28% on the plain scan, arterial 
phase, and venous phase images, respectively. The specificity of the CNN (known as 
recall in detecting non-cancer - the correctly predicted nonmalignant cases divided by 
all nonmalignant cases) was 98.27%, 97.57% and 97.87% on the three phases, 
respectively. The results are summarized in Table 3.

The difference in accuracy, specificity and sensitivity among the three phases were 
not significant (χ2 = 0.346, P = 0.841; χ2 = 0.149, P = 0.928; χ2 = 0.914, P = 0.633; 
respectively). Sensitivity of the model is considerably more important than its 
specificity and accuracy, because the purpose of a CT scan is cancer detection. 
Compared with arterial and venous phase, plain phase had same sensitivity, easier 
access, and lower radiation. Thus, these results indicated that the plain scan alone 
might be sufficient for the binary classifier.

Comparison between CNN and gastroenterologists for the binary classification
Table 4 shows the results of the image evaluation of the test data by ten board-certified 
gastroenterologists and 15 trainees. The accuracy, sensitivity, and specificity in the 
plain phase were 81.0%, 84.4%, and 80.4%, respectively. The gastroenterologist group 
was found to have significantly higher accuracy (92.2% vs 73.6%, P < 0.05), specificity 
(92.1% vs 79.2%, P < 0.05), and sensitivity (92.3% vs 72.5%, P < 0.001) than trainees.

As described in the methods section, ten board-certified gastroenterologists and 15 
trainees participated in the study, and their image classification accuracy was 
compared with that of the deep learning technique as a binary classifier. The accuracy 
of the gastroenterologists, trainees, and the CNN was 92.20%, 73.60%, and 95.47%, 
respectively. The accuracy by CNN and board-certified gastroenterologists achieved 
higher accuracies than trainees (χ2 = 21.534, P < 0.001; χ2 = 9.524, P < 0.05; respectively). 
However, the difference between CNN and gastroenterologists was not significant (χ2 
= 0.759, P = 0.384). Figure 3 demonstrates the receiver operating characteristic (ROC) 
curves for the binary classification of the plain scan.

Performance of the deep convolutional neural network as a ternary classifier
We also trained a ternary classifier using our CNN model and evaluated it by 10-flod 
cross validation (Table 1). The overall diagnostic accuracy of the ternary classifier 
CNN was 82.06%, 79.06%, and 78.80% on the plain scan, arterial phase, and venous 
phase, respectively. The sensitivity scores for detecting cancers in the tail of pancreas 
were 52.51%, 41.10% and 36.03% on the three phases. The sensitivity scores for 
detecting cancers in the pancreas head were 46.21%, 85.24%and 72.87% on the three 
phases, respectively.

The difference in accuracy and specificity among the three phases was not 
significant (χ2 = 1.074, P = 0.585; χ2 = 0.577, P = 0.749). The difference in the sensitivity 
scores of cancers in the pancreas head among the three phases was significant (χ2 = 
16.651, P < 0.001), with the arterial phase having the highest sensitivity. However, 
difference in sensitivity in cancers in the pancreas tail among the three phases was not 
significant (χ2 = 1.841, P = 0.398). The results are summarized in Table 5.
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Table 2 Characteristics of study participants

Variables With pancreatic cancer (n = 222) Without cancer (n = 190) Z value P value

Age (yr) 63.8 (8.7) 61.0 (12.3) 3.391 0.66

Gender (male/female) 124/98 98/92 0.3852 0.54

Diagnosis method surgery/biopsy3 161/61 - - -

Tumor location; head and neck/tail and body 129/63 - - -

Tumor size4 [median (quartile 1, quartile 3)], 
cm

3.5 (2.7-4.3) - - -

≤ 2 29 - - -

2-4 134 - - -

> 4 59 - - -

Data are expressed as the mean ± SD. 
1t value. 
2χ2 value. 
3“Biopsy” includes patients who underwent biopsy only, patients who underwent biopsy before surgery were calculated in “Surgery”, and tumor size was 
evaluated in greatest dimension. 
4Tumor size was mainly evaluated by the gross surgical specimen, for patient who only underwent biopsy, the tumor size was calculated by computed 
tomography image.

Table 3 Performance of the binary classifiers

Plain scan Arterial phase Venous phase χ2 value P value

Accuracy 0.954747 0.957580 0.951549 0.346 0.841

Specificity 0.982710 0.975695 0.978692 0.149 0.928

Sensitivity 0.915758 0.940808 0.922756 0.914 0.633

Table 4 Diagnostic accuracy of the binary classifiers in plain scan: Convolutional neural network vs gastroenterologists and trainees

Doctors
CNN

Gastroenterologists Trainees Total

No. of doctors 10 15 25

Accuracy 0.954747 0.922 0.736 0.815

Specificity 0.982710 0.923 0.725 0.847

Sensitivity 0.915758 0.921 0.792 0.809

CNN: Convolutional neural network.

DISCUSSION
In this study, we developed an efficient pancreatic ductal adenocarcinoma classifier 
using a CNN trained on medium-sized datasets of CT images. We evaluated our 
approach on the datasets in terms of both binary and ternary classifications, with the 
purposes of detecting and localizing masses. In the binary classifiers, the performance 
of plain, arterial and venous phase had no difference, its accuracy on plain scan was 
95.47%, sensitivity 91.58%, and specificity 98.27%. In the ternary classifier, the arterial 
phase had the highest sensitivity in detecting cancer in the head of the pancreas among 
three phases, but it achieved only moderate performances.

Artificial intelligence has made great strides in bridging the gap between human 
and machine capabilities. Among the available deep learning architecture, the CNN is 
the most commonly applied algorithm for analyzing visual images; it can receive an 
input image, assign weights to various aspects of the image and distinguish one type 
of image content from another[17]. A CNN includes input, an output layer, and multiple 
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Table 5 Performance of the ternary classifiers

Dataset Plain scan Arterial phase Venous phase χ2 value P value

Accuracy 0.820568 0.790633 0.788076 1.074 0.585

Specificity 0.985721 0.984770 0.990305 0.577 0.749

Sensitivity (cancer at the tail/body of pancreas) 0.520122 0.411098 0.360272 1.841 0.398

Sensitivity (cancer at the head/neck of pancreas) 0.462148 0.852390 0.728743 16.651 < 0.001

Figure 3  Receiver operating characteristic curves and AUC values for the binary classification of the plain scan using the convolutional 
neural network model. Each trainee’s prediction is represented by a single green point. The blue point is the average prediction of them. Each 
gastroenterologist’s prediction is represented by a single brown point. The red point is the average prediction of them. ROC: Receiver operating characteristic.

hidden layers. The hidden CNN layers typically consist of convolutional layers, a BN 
layer, a ReLU layer, pooling layers, and fully connected layers[14]. The CNN acts like a 
black box, and it can make judgments independent of prior experience or the human 
effort involved in creating manual features, which is a major advantage. Previous 
studies showed that CT had a sensitivity of 76%-92%, and an accuracy of 85%-95% for 
diagnosing pancreatic cancer according to the ability of doctors[18,19]. Our results 
indicate that our computer-aided diagnostic systems have same detection 
performance.

The primary goal for a CNN classifier is to detect pancreatic cancer effectively, thus, 
the model needs to consider sensitivity as a priority over specificity. In the constructed 
binary classifier, all three phases had high levels of accuracy and sensitivity, with no 
significant differences among the three phases. This indicates the potential ability of 
plain scan in tumor screening. Relatively same performance of sensitivity on plain 
phase can be explained by the size of tumor in our study and redundant information 
given by arterial or venous phase. In the current study, most tumors were larger than 
two centimeters, allowing plain scan easier to assess tumor morphology and size. In 
addition, there are less noisy and unrelated information in the images of the plain scan 
phase. Thus, it is relatively easy for our CNN model to distill pancreatic-cancer-related 
features from such images. Currently, the accuracy of the binary classifier on plain 
scan was 95.47%, its sensitivity 91.58%, and its specificity 98.27%. When compared 
with the judgments of gastroenterologists and trainees on the plain phase, the CNN 
model achieved good performance. The accuracy of the CNN and board-certified 
gastroenterologists was higher than that of the trainees; however, the difference 
between CNN and gastroenterologists was not significant. We executed our model 
using a Nvidia GeForce GTX 1080 GPU when performing classifications; its response 
time was approximately 0.02 seconds per image. Compared with the 10 s average 
reaction time required by physicians, although our CNN model cannot stably 
outperform gastroenterologists, the CNN model can process images much faster and is 
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less prone to fatigue. Thus, binary classifiers might be suitable for screening purposes 
in pancreatic cancer detection.

In our ternary classifier, the accuracy differences among the three phases were also 
not significant. Regarding sensitivity, the arterial phase had the highest sensitivity in 
finding malignant lesions among all malignancies in the pancreas head. As the typical 
appearance of an exocrine pancreatic cancer in CT is a hypoattenuating mass within 
the pancreas[20], the complex vascular structure around the head and neck of the 
pancreas could be an explanation for the better performance of CNN classifier in 
detecting pancreas head and neck lesions in the arterial phase. It is worth noting that 
unopacified superior mesenteric vein (SMV) at arterial phase may cause confusion in 
tumor detection. However, SMV has a relatively fixed position in CT image, 
accompanied by the superior mesenteric artery, which may help the classifier 
distinguish it from tumor. Further studies in pancreatic segmentation should be 
carried out to solve this problem. The reason why we also tested a ternary 
classification is that surgeons choose the surgical approach based on the location of the 
mass in the pancreas. The conventional operation for pancreatic cancer of the head or 
uncinate process is pancreaticoduodenectomy. Surgical resection of cancers located in 
the body or tail of the pancreas involves a distal subtotal pancreatectomy, usually 
combined with a splenectomy. Compared with gastroenterologists, the performance of 
the ternary classifier was not as good, because when the physicians judged that a mass 
existed, they also knew the location of the mass.

Many CNN applications to evaluate organs have been reported, including 
Helicobacter pylori infection, skin tumors, liver fibrosis, colon polyps, and lung 
nodules[12,13,21-23], as well as applications for segmenting prostates, kidney tumors, brain 
tumors, and livers[24-27]. A CNN also has potential applications for pancreatic cancer, 
mainly focusing on pancreas segmentation by CT[28,29]. Our work concentrates on the 
detection of pancreatic cancer, and the results demonstrated that on a medium-sized 
dataset, an affordable CNN model can achieve comparable performance on pancreatic 
cancer diagnosis and can be helpful as an assistant of the doctors. Another interesting 
work by Liu et al[30], adopted the faster R-CNN model, which is more complex and 
harder to train and tune, for pancreatic cancer diagnosis. Their model was mixed 
images with different phases with an AUC 0.9632, while we trained three classifiers for 
the plain scan, arterial phase, and venous phase, respectively. Our results indicate that 
the plain scan, which has easier access and lower radiation, is sufficient for the binary 
classifier, with an AUC 0.9653.

Our study has several limitations. First, we used only pancreatic cancer and normal 
pancreas images in this study; thus, our model was not tested with images showing 
inflammatory conditions of the pancreas, nor was it trained to assess vascular 
invasion, metastatic lesions and other neoplastic lesions, e.g., intraductal papillary 
mucinous neoplasm. In the future, we will investigate the performance of our deep 
learning models on detecting these diseases. Second, our dataset was created using a 
database with pancreatic cancer/normal pancreas ratio of approximately 1:1; thus, the 
risk of malignancy in our study cohort was much higher than the normal real-world 
rate, which made model calculations easier. Therefore, distribution bias might have 
influenced the entire study, and further studies are needed to clarify this issue. A third 
limitation is that although the binary classifier achieved the same accuracy as the 
gastroenterologists, the classifications were based on the information obtained from a 
single image. We speculate that if the physicians were given additional information, 
such as the clinical course or dynamic CT images, their classification of the condition 
would be more accurate. Further studies are needed to clarify this issue.

CONCLUSION
We developed a deep learning-based, computer-aided pancreatic ductal 
adenocarcinoma classifier trained on medium-sized CT images. The binary classifier 
may be suitable for disease detection in general medical practice. The ternary classifier 
could be adopted to localize the mass, with moderate performance. Further 
improvement in the performance of models would be required before it could be 
integrated into a clinical strategy.
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ARTICLE HIGHLIGHTS
Research background
Pancreatic cancer is a highly lethal malignancy with a very poor prognosis. With 
promising achievements in deep neural networks and increasing medical needs, 
computer-aided diagnosis systems have become a new research focus.

Research motivation
Efforts should be made to develop a deep-learning diagnosis system to distinguish 
pancreatic cancer from benign tissue due to the high morbidity of pancreatic cancer.

Research objectives
To identify pancreatic cancer in computed tomography (CT) images automatically by 
constructing a convolutional neural network (CNN) classifier.

Research methods
A CNN model was constructed using a dataset of 3494 CT images obtained from 222 
patients with pathologically confirmed pancreatic cancer and 3751 CT images from 190 
patients with normal pancreas from June 2017 to June 2018. We built three datasets 
from our images according to the image phases, evaluated our approach in terms of 
binary classification and ternary classification using 10-fold cross validation, and 
measured the effectiveness of the model with regard to the accuracy, sensitivity, and 
specificity.

Research results
In the binary classifiers, the performance of plain, arterial and venous phase showed 
no difference. Considering that plain phase had relatively same sensitivity, easier 
access, and lower radiation compared with arterial phase and venous phase, it is more 
sufficient for the binary classifier. Its accuracy on plain scans was 95.47%, sensitivity 
was 91.58%, and specificity was 98.27%. In the ternary classifier, the arterial phase had 
the highest sensitivity in detecting cancer in the head of the pancreas among three 
phases, but it achieved only moderate performances.

Research conclusions
In this study, we developed a deep learning-based, computer-aided pancreatic ductal 
adenocarcinoma classifier trained on medium-sized CT images. It was suitable for 
screening purposes in pancreatic cancer detection.

Research perspectives
Further improvement in the performance of models would be required before it could 
be integrated into a clinical strategy.
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