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Abstract
Mesenchymal stem cell (MSC) therapy is entering a 
challenging phase after completion of many preclini-
cal and clinical trials. Among the major hurdles en-
countered in MSC therapy are inconsistent stem cell 
potency, poor cell engraftment and survival, and age/
disease-related host tissue impairment. The recogni-
tion that MSCs primarily mediate therapeutic benefits 
through paracrine mechanisms independent of cell 
differentiation provides a promising framework for en-
hancing stem cell potency and therapeutic benefits. 
Several MSC priming approaches are highlighted, which 
will likely allow us to harness the full potential of adult 
stem cells for their future routine clinical use. 
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INTRODUCTION
Human bone marrow mesenchymal stem cells (MSCs) 
are currently being investigated in clinical trials for im-
mune, cardiovascular, neurodegenerative, gastrointes-
tinal, bone/cartilage and blood disorders (http://clini-
caltrials.gov). The clinical utility of  MSCs is in part due 
to their lack of  significant immunogenicity, permitting 
safe allogeneic cell transplantation without the need for 
immunosuppression. However, these clinical trials have 
thus far demonstrated moderate and at times inconsis-
tent benefits, indicating an urgent need to optimize the 
therapeutic platform and enhance stem cell potency[1-3]. 
Along this line, parallel preclinical studies have identi-
fied several potentially useful and logistically feasible 
strategies that may be employed to achieve more robust 
clinical efficacy of  MSC therapy. On the other hand, risk 
factors associated with MSC therapy cannot be over-
looked because long-term safety data remain lacking and 
unanticipated side effects may appear much later. Poten-
tial risks related to disease transmission and activation 
of  latent viruses in allogeneic cell transplantation also 
highlight the importance of  continued surveillance post 
MSC therapy. Thus, future success of  MSC therapy will 
lie in rational optimization of  therapeutic strategies in 
conjunction with an adequate assessment of  benefit and 
risk factors. 

TROPHIC ACTION OF MSCS
While early preclinical MSC studies suggested therapeu-
tic mechanisms mediated by MSC trans-differentiation 
or fusion, these mechanisms do not occur in sufficiently 
high frequency to account for the observed functional 
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improvement after stem cell administration. Current evi-
dence indicates that although MSCs exhibit prominent 
multi-lineage differentiation potential, this cellular fea-
ture bears little relevance to their therapeutic effects. In-
stead, production of  multiple paracrine factors by MSCs 
provides the underlying regenerative mechanism[4-6]. 
Therapeutically, the MSC-derived soluble mediators, 
which include many cytokines and growth factors, are 
functionally redundant and synergistic, contributing to 
cytoprotection, angiogenesis, tissue repair, normalization 
of  extracellular matrix (ECM) and alleviation of  inflam-
mation. Preclinical studies have indeed highlighted the 
central role of  MSC-derived interleukin (IL)-6-type cy-
tokines, vascular endothelial growth factor (VEGF) and 
hepatocyte growth factor (HGF) in the treatment for 
heart failure and multiple sclerosis[6-8]. MSCs also interact 
with cells of  both the innate and adaptive immune sys-
tems, leading to functionally relevant immunomodula-
tion[9]. Of  note, MSCs are widely present in vivo and their 
perivascular origin in multiple organs have been demon-
strated[5,10]. This apparent in vivo “drug store” function of  
MSCs constitutes the primary therapeutic underpinning 
of  MSC therapy. 

“COMPETENCE FACTORS” IN MSC 
THERAPY
Current clinical trial data do not yet support routine use 
of  MSC therapy for the prevention and treatment of  
organ dysfunction or tissue degeneration. Robust cell 
therapy is likely dictated by at least two key competence 
factors affecting both the transplanted stem cells and the 
treated host tissue. This view necessitates a complete un-
derstanding of  the cell-tissue crosstalk mechanism and 
the adoption of  an integrative approach in maximizing 
therapeutic efficacy regardless of  the organ system being 
targeted. Since the mechanisms of  action of  MSCs in 
tissue regeneration are likely multifaceted, cell competen-
cy can be dictated by the abilities of  the injected MSCs 
to migrate, engraft, survive, differentiate and produce 
functional paracrine mediators. Tissue competency re-
flects the ability of  the host tissues to favorably respond 
to the injected MSCs and MSC-derived paracrine factors, 
resulting in activation of  the endogenous regenerative 
machinery[11]. While the exogenous repair mechanism 
is imparted by the implanted MSCs and is often short-
lived, the endogenous repair mechanism conferred by 
the host stem/progenitor cell niches can exert a power-
ful and long-lasting regenerative benefit. Integration of  
the exogenous and endogenous repair mechanisms in 
clinical trial design will prove instrumental in transition-
ing toward future routine clinical use of  adult stem cells. 
In considering the strategies for boosting the compe-
tency factors in MSC therapy, we will focus primarily on 
non-genetically based methods because genetically modi-
fied MSCs will likely pose some concerns and safety 
issues for clinical application. Given that MSC therapy 

is being used to target a wide spectrum of  diseases in di-
verse patient populations, the logistical aspects of  MSC 
therapy will also be considered.

SOURCE OF COMPETENT MSCS
MSCs from different donors may exhibit different de-
grees of  competence due to varying factors such as 
gender, disease status and age[12,13]. Limited information 
indicates that female stem cells may possess a more pro-
nounced regenerative potential than male stem cells[14], 
which is in line with the finding that female patients typi-
cally exhibit certain cardioprotective phenomenon from 
acute myocardial infarction and better outcome after 
the incidence compared to male patients[15]. Although 
the gender influence is thought to be mediated through 
differential sex hormone receptor signaling, a recent 
study shows that female rodent MSCs produce a higher 
level of  VEGF than male rodent MSC in response to 
hypoxia[13]. Given the critical role of  paracrine factors in 
MSC therapy, additional study is warranted to determine 
whether female MSCs are indeed more robust in produc-
tion of  multiple paracrine factors and should be selected 
for the use of  allogeneic MSCs. 

Aside from the gender effect, studies have further 
revealed disease- and age-associated functional impair-
ment of  various types of  adult stem cells[16,17]. While the 
basal hematopoietic capacity is maintained throughout 
life, the ability of  hematopoietic stem cells (HSCs) to 
respond to stress and differentiation cues appears to de-
crease with age[18,19]. The use of  autologous MSCs is not 
always desirable or feasible because patients can exhibit 
declined stem cell quality and/or quantity[20-22]. For in-
stance, diabetes can negatively impact MSCs by reducing 
angiogenic capacity and therapeutic potential[23]. Certain 
disease-causing genotypes may preclude therapeutic 
use of  autologous MSCs due to the inherent genetic 
defects[24,25]. Even chemotherapy can induce MSC dam-
age and reduce cell yields in patients with hematological 
malignancy[26]. Thus, the use of  allogeneic MSCs from 
healthy donors is gaining acceptance. The use of  alloge-
neic MSCs isolated from healthy donors offers a major 
advantage because these adult stem cells can be thor-
oughly tested and formulated into off-the-shelf  medi-
cine in advance. MSCs are particularly well suited for this 
application due to their immune privileged status.

CELL DOSE AND THERAPEUTIC 
POTENCY
Lessons learned from HSC therapy following myeloab-
lation have revealed that administration of  sufficient 
HSCs promotes faster cell recovery and reduces hospi-
talizations[27]. Clinical trials of  stem cell therapy for re-
generative repair have also demonstrated the importance 
of  administering a sufficient cell dose[28,29]. Using the 
hamster heart failure model, we evaluated the relation-
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ship between the injected MSC doses [(0.1-40) × 106 
cells/kg body weight] and cardiac therapeutic benefits 
as determined by echocardiography, morphometry, gene 
expression analysis and histochemistry[30,31]. The series of  
pharmacodynamic studies established the minimal cell 
dose, i.e., about 1 × 106 cells/kg (Table 1), which is nec-
essary for achieving quantifiable but weak benefits for 
the failing hamster heart. The studies also revealed that 
the most prominent therapeutic benefits were achieved 
by about 40 × 106 cells/kg, which however approximates 
2.8 billion cells per 70-kg human! Notably, published 
clinical trials of  MSC therapy have largely relied on in-
jections of  about 1 × 106 cells/kg[32-36], which appears 
suboptimal based on our cell dose study. Since the effec-
tive treatment dose is influenced by the body size, bio-
distribution of  the MSC-induced paracrine factors in the 
human body is likely much less efficient than in the small 
rodent. Given the large body weight difference between 
rodents and humans, obtaining sufficient MSCs neces-
sary for mounting a prominent therapeutic response in 
humans constitutes a daunting challenge. In particular, 
obtaining sufficient MSCs to achieve maximum clinical 
benefits may not be economically viable as elaborated in 
Table 1.

CONUNDRUM OF EX VIVO MSC 
EXPANSION
Normal mitotic somatic cells gradually cease division 
after continuous expansion in culture and enter a state 
referred to as replicative aging or senescence, exhibiting 
a Hayflick limit of  50 population doublings[37,38]. Embry-
onic stem cells (ESCs) however proliferate indefinitely 
in culture, which correlates with their high telomerase 
activity and long telomeres[39]. MSCs constitute a minor 
population of  the nucleated cells (0.01%-0.001%) in the 
adult human bone marrow. Unlike hematopoietic stem 
cell transplantation, which is a well-established therapeu-
tic regimen for hematological disorders[40], it is necessary 
to amplify MSCs in culture to generate sufficient cells 
required for therapeutic applications. This ex vivo cell am-
plification step unavoidably creates many issues that can 
confound MSC therapeutics. Long-term in vitro passaging 
alters bone marrow and adipose MSCs[41]. Prolonged cul-
turing of  MSCs from several species causes senescence 
and prominent changes in gene expression[42,43]. Down-
regulation of  genes involved in DNA repair during MSC 

senescence[44] can potentially cause genomic instability. 
Our study of  porcine MSCs shows that late-passage 
MSCs exhibit significantly reduced expression of  many 
paracrine factors compared to early-passage MSCs (Fig-
ure 1). Since cellular aging is a rapid and continuous pro-
cess in culture, the use of  ex vivo amplified MSCs, even 
those derived from early-passages, can generate inconsis-
tent therapeutic effects.

TLR3 SIGNALING AND MSC 
COMPETENCE
Our MSC and growth factor therapy for hamster heart 
failure have revealed several major factors critical for 
tissue repair such as IL-6-type cytokines, VEGF and 
HGF[6,7,30,31,45]. We show that MSC therapy increases the 
levels of  paracrine factors present in the serum and mul-
tiple organs, suggesting a systemic distribution mode for 
the soluble mediators at least in the rodent. We further 
sought to engineer an MSC phenotype exhibiting en-
hanced expression of  paracrine factors, aiming to lower 
the effective treatment cell dose. We turned our attention 
to the pattern recognition receptor (PRR) pathway of  
the innate immune system, which is capable of  overpro-
ducing many immunomodulatory cytokines, most nota-
bly IL-6, upon activation[46,47]. Distinct immune cell PRRs 
initiate the cytokine cascade through interacting with a 
variety of  molecular patterns conserved among micro-
bial pathogens. The Toll-like receptor (TLR) pathway is 
the best characterized PRR system and engagement of  
TLRs stimulates production of  many immunomodula-
tory cytokines from antigen-presenting cells. TLR3 in 
particular recognizes double-stranded (ds) RNA, and is 
activated by the dsRNA mimetic polyinosinic-polycyt-
idylic acid or poly(I:C)[48,49]. MSCs also express several 
members of  the TLR family[50], including TLR3, which is 
an endolysosomal receptor protein. 

We initially treated MSCs with three different con-
centrations of  poly(I:C) for 24 h to examine the down-
stream effect on expression of  trophic factors[31]. Gene 
expression assays revealed a prominent induction of  
IL-6 and IL-6-type cytokines by 0.8-20 g/mL poly(I:C). 
For instance, a 10 fold increase in IL-6 mRNA and 40 
fold increase in secreted IL-6 were observed. A less than 
2 fold induction of  IL-11 mRNA and ~4 fold induction 
of  secreted IL-11 were also observed. Leukemia inhibi-
tory factor (LIF), another member of  the IL-6-type cy-
tokines, was also induced. SDF1, VEGF and HGF, all of  
which are activated by IL-6/JAK/STAT3 signaling, were 
significantly induced by poly(I:C). Interestingly, the anti-
inflammatory cytokine IL-10 was significantly induced. 
The inflammatory cytokines interleukin-1β (IL-1β) and 
tumor necrosis factor-α (TNF-α) were only induced 
by the highest poly(I:C) concentration (20 g/mL). This 
finding prompted us to adopt an MSC-boosting proto-
col based on 4 g/mL poly(I:C) for 24 h, which induced 
IL-6, IL-10, IL-11, LIF, VEGF, SDF1 and HGF without 

84 April 26, 2014|Volume 6|Issue 2|WJSC|www.wjgnet.com

Table 1  Therapeutic benefits in relation to the number of 
administered mesenchymal stem cells

Cell number/
animal 

Cell number
/kg 

Cardiac 
repair 

Cell number
/70-kg human

0.01 × 106 0.1 × 106 - (no)       7 × 106

0.1 × 106   1 × 106 + (weak)     70 × 106

1 × 106 10 × 106  ++ (moderate)   700 × 106

4 × 106 40 × 106 +++ (robust) 2800 × 106
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IL-6 and a host of  other cytokines similar to the anti-
viral response mediated by dsRNA-sensing PRRs[46]. 
Given the prominent roles of  IL-6 in stem cell mainte-
nance and cardiac regeneration[6,54-56], transient low-dose 
priming of  MSC TLR2/4 may also represent a physi-
ologically significant mechanism for tissue repair. It has 
indeed been shown recently that TLR2/6-dependent 
stimulation of  MSCs promotes angiogenesis in vitro and 
in vivo in bone tissue engineering[57]. TLR2 forms func-
tional heterodimers with TLR1 and TLR6, and is activat-
ed by peptidoglycan. Immune TLR4 upon activation by 
lipopolysaccharide (LPS) causes elevated levels of  IL-6, 
IL-8, IL-10, IL-12, IL-15, TNFα, IL-1 and TGFβ. Po-
tential effects of  TLR2 and TLR4 engagement on MSC 
paracrine profiles can therefore be tested by treating cells 
with low-dose peptidoglycan and LPS (1-20 g/mL each). 
However, since TLR2 and TLR4 are also known to be 
involved in tissue inflammation triggered by ischemia/
reperfusion injury[58], it is unclear whether transient low-
dose priming of  MSC TLR2/4 may favorably impact the 
failing heart as demonstrated for MSC TLR3. 

Unlike TLR3, TLR2 and TLR4 are present on 
the plasma membrane, recruiting the adaptor protein 
MyD88 for signal transduction. Since TLR activation in 
the absence of  MyD88 generally results in delayed ki-
netics[59], the difference in the paracrine cascades can be 
expected to influence MSC therapeutics. Notably, MSCs 
have been found to be differentially primed by TLR4 
and TLR3 ligands to adopt a pro-inflammatory (MSC1) 
and anti-inflammatory (MSC2) status, respectively[60]. 
The MSC1 and MSC2 phenotypes were further found to 
attenuate and promote tumor growth/metastasis, respec-
tively[61]. These studies thus indicate that the cytokine 
secretion profile of  MSCs plays a decisive role in dictat-
ing the therapeutic potency and treatment outcome, and 
warrants special consideration in the design of  stem cell 
therapy. 

induction of  the inflammatory cytokines. Longer treat-
ment of  MSCs with poly(I:C), e.g., 2 d, was found to be 
cytotoxic.

Upon testing the potency of  the PRR-primed MSCs 
using the hamster heart failure model, we found that the 
super MSCs reduced the effective therapeutic cell dose 
by 40 fold (Table 1) through actively recruiting cardiac 
progenitor cells and decreasing myocardial inflammation, 
culminating in a 50% reduction in myocardial fibrosis, 
a 40% reduction in apoptosis and a 50% increase in 
ventricular function. This pioneering study of  engaging 
the MSC PRR axis for reducing cell dose requirement 
in heart failure therapy was recently featured in an AJP 
editorial[51]. Although the function of  immune cell PRRs 
has been well established, their role in stem cell function 
is just beginning to be unraveled. Prolonged TLR activa-
tion of  the immune system is invariably associated with 
chronic inflammation. Interestingly, Cole et al[52] dem-
onstrated an unexpected beneficial role for TLR3 in the 
arterial wall upon systemic administration of  poly(I:C). 
Further, Packard et al[53] found poly(I:C) administration 
to be protective against cerebral ischemia-reperfusion 
injury. Since MSCs are widely present in vivo and their 
perivascular origin in multiple human organs appears 
certain[5,10], it is possible that these prophylactic benefits 
of  poly(I:C) may be mediated through its trophic stimu-
latory effect on the endogenous MSC niches.

INFLUENCE OF OTHER PRR SYSTEMS
Recognition of  various pathogen-associated molecular 
patterns by immune PRRs leads to transcriptional activa-
tion of  distinct gene targets, and sets forth a diverse ar-
ray of  pathways that determine the magnitude, duration, 
and type of  the host inflammatory response. Immune 
cell TLR2 and TLR4 are major PRRs responding to 
bacterial invasion, and their activation leads to increased 
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HYPOXIA AND MSC COMPETENCE
Rapid loss of  the implanted MSCs has been frequently 
observed and may be caused in part by hypoxic stress, 
which triggers apoptosis[62-64]. The bone marrow environ-
ment contains oxygen tensions ranging from 1% to 7%. 
However, most in vitro cell culture work is performed at 
a pO2 level of  142 mmHg or 20% O2, which is much 
higher than that of  the in vivo environment[65]. The 
implanted MSCs are expected to experience reduced 
oxygen levels as they attempt to establish contacts with 
the ECM environment. Preconditioning MSCs by brief  
hypoxia prior to cell administration may thus allow the 
cells to better adapt to the lower pO2 tissue environment 
and promote cell engraftment. Typically, MSCs are cul-
tured in normoxia (95% air and 5% CO2) as control and 
in hypoxia (1% oxygen, 5% CO2, and 94% nitrogen) for 
2 d. Assay of  cultured MSCs for cell surface phosphati-
dylserine, which is a sensitive method for detecting early 
apoptosis, can be used to determine whether an increase 
in MSC apoptosis after hypoxic exposure may be in-
duced. 

In addition to induction of  many angiogenic growth 
factors, hypoxia is known to induce SDF-1 and its cog-
nate receptor CXCR4[66,67]. Indeed, low oxygen has been 
shown to increase expression of  CXCR4 and CX3CR1 
and promote MSC engraftment[68,69]. A hypoxia-regulated 
heme oxygenase-1 vector modification of  MSCs was 
found to enhance the tolerance of  engrafted MSCs to 
hypoxic injury and improves their viability in ischemic 
hearts[70]. Note however that although hypoxia promoted 
MSC proliferation in vitro, it unexpectedly attenuated 
MSC osteogenic potential[71], suggesting that the utility 
of  hypoxia preconditioning may be application specific. 
Additional relevant preconditioning strategies intended 
to enhance MSC survival have been based on the use 
of  unique compounds such as prolyl hydroxylase in-
hibitor[62], lysophosphatidic acid[72], HMG-CoA reduc-
tase inhibitor[73,74], eNOS enhancer[75] and sphingosine-
1-phosphate[76]. Whether this pharmacological approach 
may also reduce the effective MSC dose as observed for 
TLR3-activated MSCs remains to be determined. These 
pharmacological strategies may also find their application 
in tackling the issues of  host tissue deficiency related to 
aging and disease (see below). This is because the func-
tion and competence of  the endogenous host tissue pro-
genitor cell niche also dictates the therapeutic outcome. 

CYTOKINE PRECONDITIONING AND MSC 
COMPETENCE
Rapid loss of  the injected cells is perceived as a major 
hurdle in stem cell therapy[63,64,77] and may be caused in 
part by inadequate ECM engagement. Expression of  
chemokines and their receptors is known to be regulated 
by cytokines and this phenomenon has been explored to 
facilitate MSC engraftment after cell implantation[78,79]. 

Intervention through the use of  growth factors and/
or cytokines is appealing because the trophic factor 
network is typically marked by cross-talk mechanisms 
enabling mutual induction of  gene expression. Priming 
MSCs with a cocktail of  growth factors and cytokines 
has indeed been found to enhance the cardiac therapeu-
tic efficacy[80]. In this study, a cocktail of  growth factors 
containing 50 ng/mL FGF-2, 2 ng/mL IGF-1 and 10 
ng/mL BMP-2 was used for MSC pretreatment and 
its effect on the viability under hypoxia and paracrine 
profiles of  MSCs were evaluated. The growth factor pre-
treatment was found to enhance expression of  cardiac 
transcription factors and promote cell viability under 
hypoxia. Transplantation of  the pretreated MSCs re-
sulted in smaller infarct size and better cardiac function 
than transplantation of  untreated MSCs. This cytokine 
preconditioning approach is particularly relevant because 
MSCs are adherent cells and depend on adequate ECM 
engagement for growth and survival. Anoikis is initi-
ated when trypsinized MSCs are forced into suspension 
for injections[81]. Along this line, plasminogen activator 
inhibitor-1 (PAI-1) has been found to promote anoikis, 
and PAI-1 null MSCs exhibit enhanced in vivo survival 
after implantation[64]. 

Many cytokines are known to exhibit cell adhesion-
promoting activities including HGF, IGF-1, SDF-1, 
TGF-β and VEGF and interestingly these trophic fac-
tors are also produced by MSCs, suggesting that MSCs 
can be regulated by diverse autocrine mechanisms. These 
cytokines act in part by affecting the integrin and matrix 
metalloproteinase (MMP) systems. In particular, EGF 
can promote activation of  MMP-2 and cell migration[82]. 
TGF-1 can stimulate MMP-9-mediated cell migration[83]. 
SDF-1 can increase V 3 integrin expression, cell migra-
tion, and therapeutic potentials of  EPCs[84,85]. We also 
demonstrated that human MSCs overexpressing VEGF 
exhibited significantly enhanced cardiac repair capacity[7]. 

Since no cell retention and survival enhancement strate-
gies have translated to the clinic, strategies aimed at pro-
moting long-term maintenance of  the injected cells are 
worth pursuing, which may ultimately lead to the pro-
duction of  more potent stem cells that can be delivered 
in lesser quantity.

HOST TISSUE COMPETENCE
Host tissue competence can greatly influence the out-
come of  MSC therapy because it is increasingly been 
recognized that aging and disease can adversely affect 
the tissue milieu into which MSCs are introduced[86]. The 
parabiosis study exposing old mice to factors present in 
young mouse serum[87] indicates that the age-related de-
cline of  muscle satellite cell activity is modulated by sys-
temic factors that change with age. This is because stem 
cell activity is profoundly influenced by the supporting 
ECM and cells in the immediate vicinity[88]. The pres-
ence of  ECM breakdown products and the extra lamina 
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caused by the deposition of  collagens in aged muscle 
tissue can potentially interfere with paracrine signaling. 
Aged muscle for instance exhibits increased Wnt signal-
ing and fibrosis[89,90], which can impinge unfavorably on 
the functional paracrine cascade initiated by the implant-
ed MSCs. Importantly, although the intrinsic regenera-
tive potential of  aged muscle appears to be largely intact, 
critical factors such as the Notch ligand Delta required 
for regeneration appear limiting[87,91,92]. 

Increasing age has been found to be associated with 
adverse prognosis in the setting of  ischemic injury, coro-
nary angioplasty, and cardiac surgery[93-97]. Although the 
adult heart contains resident cardiac stem cells capable 
of  supporting limited myocardial regeneration[98], age-
associated fibrotic remodeling and senescence of  cardiac 
stem cells lead to contractile dysfunction and gradual 
loss of  cardiomyocytes[99,100], and the aged heart exhibits 
significant structural deteriorations including fibrosis 
and poor angiogenic capacity[101,102]. Thus, the aged heart 
is more refractory to regenerative therapy[103,104]. The 
harmful host tissue milieu present in the aged tissue may 
interfere with the trophic actions of  MSCs. Several tissue 
proteases such as elastase, cathepsin and dipeptidylpepti-
dase (DPP) are known to cleave and inactivate cytokines. 
Elevated activities of  these proteases in the aged tissue 
may destabilize the trophic factors induced by MSC 
therapy, rendering the therapy ineffective. Therapeutic 
efficacy may thus be improved by optimizing tissue re-
tention and stability of  the delivered proteins[105-107]. For 
instance, administration of  Diprotin A, a pharmacologic 
inhibitor of  DPP, enhanced the stability of  SDF-1, 
which increased myocardial homing of  CXCR4+ progen-
itor cells and function[108,109]. Thus, a potential strategy 
to boost the trophic response of  the older tissue is to 
inject non-toxic protease inhibitor(s) into the host tissue 
prior to MSC administration. This tissue preconditioning 
strategy is aimed at promoting trophic factor stability by 
attenuating abnormally elevated local or systemic prote-
ase activities.

The bone marrow compartment harbors many 
populations of  primitive progenitor/stem cells that 
are mobilized by various chemokines. Of  note, a lack 
of  bone marrow support for cardiac repair in aged 
animals has been documented[110], indicating that the 
MSC-initiated healing process may be compromised by 
the impaired tissue cross-talk mechanism, leading to a 
greater susceptibility of  the old heart to ischemic injury 
and an inefficient response to protective interventions. 
IL-6 deficiency, for instance, affects bone marrow stro-
mal precursor cells, resulting in defective hematopoietic 
support[54]. This host tissue impairment represents a 
significant hurdle to regenerative medicine because most 
preclinical therapeutic studies are based on the use of  
young animals, but stem cell therapy typically targets 
the elderly. Development of  suitable preconditioning 
strategies targeting MSCs and aged host tissue is thus ex-
pected to lead to more efficacious regenerative treatment 
regimens. 

A RATIONAL DESIGN OF MSC 
ADMINISTRATION ROUTE
Routes of  drug administration are major considerations 
in pharmacokinetic and pharmacodynamics studies 
and applications. The choices are however fairly lim-
ited for cell-based medicine as cell viability needs to be 
preserved. Since diseased tissue is often associated with 
ischemia, inflammation, and fibrosis, which can impair 
cell survival, therapeutic delivery of  stem cells to areas 
away from the damaged tissue offers an advantage. In-
travenously (iv) infused MSCs are currently being ad-
opted for clinical trials of  neurodegenerative and heart 
diseases[36,111], highlighting the significance of  formulat-
ing a minimally invasive stem cell delivery approach for 
patient care. Although iv MSCs are largely distributed 
to the lungs, this systemic cell delivery method appears 
feasible with MSCs because their therapeutic benefits are 
largely mediated by paracrine mechanisms independent 
of  stemness[5,6]. Thus, intracoronary infusion of  MSCs 
for heart therapy, which retained only 1%-2% of  the 
infused cells in the porcine myocardium, was found to 
result in significant functional improvement in the hiber-
nating myocardium[112,113].

The recognition that IL-6 and IL-6-type cytokines are 
abundantly produced by MSCs[6,55] and that skeletal mus-
cle actively induces IL-6 during exercise[56,114] prompted 
us to pioneer an intramuscular (im) MSC delivery route 
for cardiac repair[6,30,115]. This im MSC therapeutic strate-
gy is coupled to the inherent ability of  skeletal muscle to 
produce beneficial trophic factors in response to exercise 
and injury[116-118], and therefore represents an integrative 
physiological approach. The skeletal muscle is capable 
of  regeneration after injury, and this ability is coupled to 
its production of  many cardioprotective factors such as 
VEGF and HGF, which have been used in preclinical or 
clinical trials for cardiovascular therapy[119,120]. Although 
im MSCs are trapped in the local musculature, their tro-
phic actions promote increased growth factor levels in 
the quadriceps, liver, and brain, suggesting a possible 
global physiological effect[6,30]. We further demonstrated 
that blocking JAK/STAT3 signaling abrogated the 
therapeutic effects of  MSCs, indicating the functional 
relevance of  MSC IL-6-type cytokines in initiating the 
paracrine cascade[6]. 

As depicted in Figure 2, MSC-derived IL-6 and IL-
6-type cytokines activate the injected muscle through 
JAK/STAT3 signaling, inducing downstream trophic 
factor genes such as VEGF, HGF, SDF-1 and IGFs. 
These factors mediate mobilization of  bone marrow 
progenitor cells, cardioprotective signaling and activa-
tion of  cardiac progenitor cells, resulting in decreased 
myocardial fibrosis and inflammation and increased car-
diac regeneration and function. Notably, im MSCs also 
induce Suppressor of  Cytokine Signaling 3 (SOCS3), 
which functions in a negative feedback loop to termi-
nate cytokine signaling[6]. Since excessive and prolonged 
IL-6 activity can cause tissue inflammation, induction 
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of  SOCS3 by im MSCs reduces the risk of  this adverse 
reaction. The induced paracrine factors further enhance 
the expression of  myocardial growth factors, activating 
the pro-survival signaling pathways in the diseased heart. 
Given that exercise is known to increase production of  
several beneficial trophic factors from the contracting 
skeletal muscle[121-123], preventing coronary artery disease 
and cognitive decline[124,125], our findings illustrate an im 
MSC-mediated cardioprotective paracrine mechanism 
mimicking the trophic action of  exercise. 

CONCLUSION
MSC therapy is entering a new era shifting the focus 
from initial feasibility study to optimization of  thera-
peutic regimen and enhancement of  treatment potency. 
Since tissue degeneration is often complex in nature 
and likely entails a therapeutic intervention strategy 
targeting multiple pathogenic mechanisms, the multiple 
paracrine factors released by MSCs and the injected host 
tissue acting in synergy are well suited as a regenerative 
medicine. Complete identification and understanding of  
these trophic factors can eventually lead to the develop-
ment of  cell-free trophic factor cocktails ideal for the 
treatment of  tissue injury and degeneration, which may 
eliminate the concern associated with potential MSC 
transformation. Major challenges exist, however, regard-
ing suboptimal stem cell potency and age/disease-related 
host tissue impairment, which may dampen enthusiasm 
for translational application of  stem cells in general. The 
strategies outlined in this review offer a testable platform 
to launch innovative clinical trials based on rational de-
sign of  MSC therapy. 
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