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Abstract
Alzheimer disease (AD) is the primary form of dementia that occurs 
spontaneously in older adults. Interestingly, the epigenetic profile of the cells 
forming the central nervous system changes during aging and may contribute to 
the progression of some neurodegenerative diseases such as AD. In this review, 
we present general insights into relevant epigenetic mechanisms and their 
relationship with aging and AD. The data suggest that some epigenetic changes 
during aging could be utilized as biomarkers and target molecules for the 
prevention and control of AD.
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Core Tip: The deregulation of non-coding ribonucleic acids and epigenetic modifications 
have been described in Alzheimer disease (AD). These changes have been observed in 
different brain regions related to learning and memory, processes that are affected in AD. 
The epigenetic basics in the progression of AD were integrated into this review.
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INTRODUCTION
Alzheimer disease (AD) is the most common form of neurodegenerative dementia. AD 
is characterized by memory loss and rapidly progresses to symptoms such as 
personality changes and language problems, leading to a loss of the ability to perform 
routine activities and eventual death of the individual. Diagnosed AD progresses over 
approximately 8-10 years, but the first events of this disease can occur up to 20 years 
beforehand. Of all AD cases, more than 95% occur sporadically in adults aged 65 years 
or older, defined as late-onset AD. Multiple factors, such as environmental, biological, 
and genetic susceptibility, are associated with the development of AD. Less than 1% of 
AD cases are related to genetic mutations; these cases generally occur in younger 
adults (approximately 45 years old). Furthermore, some polymorphisms have been 
implicated in the development of AD; for instance, the apolipoprotein E 4 (APOE4) 
variant is associated with an increase of risk to develop AD, while APOE2 variant 
seems to decrease this risk[1-4].

The development and progression of AD are linked to the dysfunction and death of 
neurons, which generally appear to originate in the hippocampus, frontal and 
temporal lobes, and the limbic system, extending to neocortex regions as the disease 
progresses. In turn, these events are linked to the detection of two neuropathological 
structures: β-amyloid plaques and neurofibrillary tangles (NFTs) (Figure 1).

The primary component of β-amyloid plaques is the β-amyloid peptide, which is 
generated and secreted via proteolysis of the β-amyloid precursor protein (APP) by 
enzyme complexes known as β-secretases (BACE) and γ-secretases, which contain 
presenilin 1 (PS1, encoded by PSEN1) and PS2 (encoded by PSEN2) as subunits[5]. β-
amyloid peptides have lengths ranging from 38 to 43 amino acids and are generated in 
neurons and released in the extracellular space[6]. Although their function is unclear, 
they may play a role in synaptic plasticity. Under normal conditions, β-amyloid 
peptide is eliminated via several mechanisms such as: (1) Ubiquitin-proteasome 
system; (2) Autophagy-lysosome system; (3) Proteases; (4) Microglial or astrocytic 
phagocytosis; and (5) Blood circulatory clearance[1,7]. Additionally, it has been 
suggested that APOE expression improves β-amyloid clearance[8]. However, these 
mechanisms may deteriorate upon aging and may thus contribute to the accumulation 
of β-amyloid peptides, forming neurotoxic plaques. These amyloidogenic plaques are 
surrounded by glial cells and are associated with dystrophic neurites (random neuron 
prolongations caused by the accumulation of abnormal filaments); therefore, these 
plaques lead to fibrillar degeneration in nerve cells. The degree of AD is apparently 
correlated with the proportion of β-amyloid plaques leading to neurodegeneration[9-11].

NFTs are formed by paired helical filaments comprising dense accumulations of 
insoluble polymers, with the hyperphosphorylated tau protein as the primary 
component. The tau protein is a 50-64 kDa thermostable protein associated with 
tubulin. Tau promotes the assembly of microtubules in the neuron cytoskeleton, and 
the tau-phosphorylation regulates this function. NFTs are formed in the perinuclear 
region of hippocampal neurons, and according to analyses of postmortem samples 
from individuals with AD, the quantity of NFTs correlates with the severity of AD. It 
has been proposed that β-amyloid plaques can also promote intracellular tau 
aggregation. Additionally, the release of tau damages other cells. Thus, AD is 
characterized by the presence of extracellular plaques containing insoluble β-amyloid 
filament accumulations, NFTs formed by hyperphosphorylated tau, and 
neuroinflammation. These elements are critical markers of AD and contribute to the 
neurotoxicity of this disease[9,12].

Currently, AD can be diagnosed in living patients by positron emission tomography 
(PET) and cerebrospinal fluid (CSF) techniques. In PET, a radionuclide as florbetapir 
(18F) is used as a marker for β-amyloid, which crosses the blood–brain barrier and 
binds to β-amyloid fibrillar plaques with high affinity, enabling in vivo computerized 
imaging of β-amyloid plaques. Some studies have shown that deposition of these 
plaques begins decades before dementia, cognitive decline, and brain atrophy. To 
detect AD by CSF, a lumbar puncture is performed, and β-amyloid 1-42, T-tau (total), 
and P-tau (phosphorylated, for example, pThr181) are assessed as biomarkers. A 
positive β-amyloid PET and CSF detection of low levels of β-amyloid 1-42 and high 
levels of T-tau or P-tau are criteria for the diagnosis of AD[1,6].

FOUNDATIONS OF EPIGENETICS
Chromatin consists of deoxyribonucleic acid (DNA) mainly associated with histone 
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Figure 1  Epigenetics modifications associated with Alzheimer disease. Acetylation and de-acetylation of histones (left), deoxyribonucleic acid 
methylation status (middle, bottom) and the expression of non-coding ribonucleic acid (RNA) [short (miRNAs) and long (lncRNAs)] (right) are altered in Alzheimer 
disease. HDAC: Histone deacetyltransferase; DNA: Deoxyribonucleic acid; RNA: Ribonucleic acid; mRNA: Messenger RNA; miRNA: MicroRNA; lncRNA: Long non-
coding RNAs.

proteins; an octamer of histones surrounded by 147 base pairs of DNA forms the 
nucleosome, which is the basic unit of chromatin. Epigenetics refers to chromatin 
structure changes that affect gene expression. The conformation of chromatin is highly 
dynamic, oscillating from an open, lax, or relaxed state to a compact, non-relaxed, and 
closed state and vice versa. A compact chromatin structure inhibits transcription, 
while the relaxed form of chromatin promotes this process. Conformational changes in 
chromatin are orchestrated by the action of co-regulatory proteins, which are divided 
into co-repressors and co-activators. Co-regulators are proteins that do not bind to 
DNA directly, but through their interaction with transcription factors. Importantly, co-
regulators may have an enzymatic activity to modify chromatin and/or recruit other 
co-regulatory proteins with the catalytic ability to produce these changes in chromatin 
structure[13,14].

It has been demonstrated that epigenetic regulatory events involve histone 
acetyltransferase and histone deacetyltransferase (HDAC) enzymes. For example, 
some co-activator complexes exhibit histone acetyltransferase activity, in which an 
acetyl group is added to the lysines at the N-terminus of histones to neutralize their 
positive charge, thus weakening their strong interaction with DNA and relaxing the 
chromatin to promote gene expression. In contrast, co-repressor complexes with 
HDAC activity remove the acetyl group and promote chromatin compaction to inhibit 
gene expression[13]. In addition to acetylation/deacetylation, histones also undergo 
other modifications by adding or removing other functional groups (e.g., methylation 
or phosphorylation) or small proteins (e.g., ubiquitination or sumoylation), which 
affects the chromatin conformation. It has been suggested that the combination of 
modifications generates a histone code for chromatin restructuring, which regulates 
gene expression[13,15].

Another epigenetic modification occurs in the cytosine residues of the CpG 
dinucleotide of DNA through the addition of a methyl group by DNA 
methyltransferases. This modification affects the binding of transcription factors to 
consensus sites, and recruits methylated DNA-binding proteins that bind to co-
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repressors and HDACs, compacting the chromatin and inhibiting gene expression[16]. 
Active DNA demethylation is mediated by the methylcytosine dioxygenase enzyme 
known as ten-eleven translocation, which oxidizes 5-methylcytosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC), followed by DNA repair to generate an unmodified 
cytosine. Therefore, DNA methylation is detected by 5-mC marks and is associated 
with transcriptional repression, while DNA with 5-hmC marks is related to co-
activator recruitment and transcriptional activity[17,18]. Moreover, ATP-dependent 
chromatin remodelers displace DNA and reposition it within nucleosomes, creating 
areas of DNA with access to transcriptional machinery. It is worth noting that 
epigenetic modifications are linked, as there are proteins that modify chromatin and 
others that can read these modifications, generating a dynamic system coordinated by 
several marks and regulatory complexes that modulate gene expression[14].

Other molecules involved in epigenetics include non-coding ribonucleic acids 
(RNAs), which can be small [less than 200 nucleotides (nt) or long (more than 200 
nt)[19,20]. MicroRNAs (miRNAs) are small non-coding RNAs with a 19-25 nt hairpin 
structure that can imperfectly match (partial complementarity with 6-8 nt) to the 
sequence of messenger RNA (mRNA), resulting in inhibition of its translation or 
mRNA degradation[21]. Genes located in active chromatin regions appear to be more 
commonly regulated by miRNAs[22]. In contrast, long non-coding RNAs (lncRNA) 
regulate the chromatin structure by interacting with proteins, RNA, and DNA[23-25]. 
Therefore, lncRNAs can act as hooks for proteins or miRNAs, competitive inhibitors of 
molecular interactions, scaffolding to bring proteins closer for interaction, guides for 
binding of protein complexes, and gene transcription activators by favoring 
promoter–enhancer interactions[23-25].

NEURODEGENERATIVE DISEASES, AGING, AND EPIGENETICS
Neurodegenerative diseases are caused by the degeneration, dysfunction, and 
irreversible death of neurons in specific regions of the central nervous system. In this 
system, glial cells that include astrocytes, microglia, and oligodendrocytes, are 
important for the support and proper functioning of neural connections, and these are 
also affected in neurodegenerative diseases[26]. AD (which affects memory), 
Parkinson’s disease, and amyotrophic lateral sclerosis (which affects motor activities) 
are some examples of neurodegenerative diseases[27]. These diseases frequently 
manifest in older adults; thus, the first risk factor for their development is aging, which 
has been associated with processes of cellular senescence. Senescence is a viable and 
metabolically active state of cells, but it is also a non-proliferative state accompanied 
by pro-inflammatory secretory activity. Senescence is a mechanism for controlling 
damaged cells, but the accumulation of senescent cells during aging competes with 
normal cells, blocking the capacity for tissue regeneration and releasing factors that 
stimulate chronic inflammation and contribute to neuronal degeneration[27-29].

During senescence, epigenetic changes are detected, such as the formation of 
senescence-associated heterochromatic foci, i.e., compacted chromatin linked to a 
reduced expression of histone-encoding genes. However, senescent cells also show a 
lower number of repressive heterochromatin marks such as DNA methylation and 
histone methylation (H3K9me3, H3K27me3, and H4K20me3), suggesting an increased 
expression of many other genes[30,31]. Taken together, epigenetic modifications lead to 
drastic changes in the pattern of gene deactivation and activation in cellular 
senescence, which, when enriched in cells of the nervous system during aging, may 
lead to the development of neurodegeneration[30,31].

During aging, epigenetic changes related to acetylation processes can be detected; 
for example, the H4K16ac mark has been associated with a state of chromatin 
compaction, stress response, gene expression, and DNA repair. The H4K16ac mark is 
also enriched during normal aging in the temporal lobes of the human brain, as well as 
in senescent mammalian cells and aging models in yeast. Interestingly, the H4K16ac 
mark is reduced in AD. The correlation of H4K16ac levels with normal aging suggests 
that this modification may protect against neurodegenerative diseases and that 
changes in its levels may predispose individuals to the development of such diseases, 
primarily AD[32].

Interestingly, silencing transcription factor RE1 (REST), also known as the neuron 
restrictive silencer factor, is a specific transcription factor that binds to the RE-1/NRSE 
response elements and recruits a set of co-repressors to silence the transcription of 
neural genes. In this respect, REST is associated with HDAC1/2 enzymes, histones 
methyltransferase such as G9a (methyltransferase of H3K9), as well as CoREST, LSD1, 
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MeCP2, and C-terminal binding protein, which are related to transcriptional 
repression. REST is expressed at low levels in differentiated neurons[33]; therefore, 
REST represses genes that promote cell death and AD, induces stress response genes, 
and protects neurons against oxidative stress and β-amyloid toxicity. REST induction 
is a result of normal aging in human cortical and hippocampal neurons, and the 
involved signaling pathways include the Wnt signaling. However, the expression of 
REST is reduced in AD. In AD, REST is not detected in the cell nucleus but appears in 
autophagosomes along with misfolded pathological proteins[34]. Thus, the presence of 
REST during aging is correlated with preservation and longevity, suggesting that 
REST may generate neuroprotection in the aging of the brain while its decrease may 
lead to neurodegeneration[34].

MODELS TO STUDY AD EPIGENETICS
The importance of epigenetic mechanisms in AD has been demonstrated through 
studies using cell cultures, transgenic animal models for AD, and induction of AD by 
the injection of β-amyloid 1-42 in rats, as well as antemortem and postmortem studies 
of samples from AD patients. For example, antemortem and postmortem studies have 
been performed on monozygotic twins, in which one twin was diagnosed with AD, 
while the other twin did not present any type of dementia. The twin with AD was a 
chemical engineer who, due to his work, maintained constant contact with pesticides. 
This twin developed his first symptom of the disease at 60 years old, characterized by 
a progressive memory loss, with death at 76 years. His twin brother was also a 
chemical engineer, with the same education, but in a different work environment; this 
twin died at the age of 79 years of prostate cancer, but without cognitive damage. The 
presence or absence of AD was confirmed after death[35]. These studies highlight the 
importance of epigenetics in AD progression in individuals, even among those with 
identical genetics.

Although models of transgenic mice are a key component of AD studies, none of 
these models have been able to produce all characteristics of AD. There is still a need 
for an “ideal” model that develops all clinical and pathological features, ranging from 
cognitive and behavioral deficits to molecular aspects, including b-amyloid plaques, 
tau tangles, synaptic and neuronal loss, and neurodegeneration. Different transgenic 
mouse models have been generated with several modifications to promote the 
production and accumulation of β-amyloid and tau protein (Table 1).

EPIGENETIC MECHANISMS OF ALZHEIMER DISEASE
DNA methylation in AD
The methylation and demethylation processes of DNA are altered in AD. In one study, 
the levels and distribution of 5-mC and 5-hmC were evaluated in several regions of the 
brain during the aging of wild-type and triple transgenic (3xTG–AD). The researchers 
observed a global reduction in 5-mC and an increase in 5-hmC in the brain of aged 
3xTG–AD mice in comparison with the wild-type[36]. These data suggest an abnormal 
establishment of permissive chromatin, which may lead to an increase in several 
markers linked to AD[36] (Figure 1).

Decreases in the DNA methylation of hippocampal and cerebral cortex cells have 
generally been observed in AD. For instance, in cortical neurons from postmortem AD 
brains, the 5-mC levels were lower than those of healthy controls. Similarly, low 5-mC 
levels have been reported in the hippocampus, cerebral cortex, and cerebellum of AD 
patients[37-39]. Furthermore, some methylation maintenance factors, such as DNA 
methyltransferase 1 and methylated DNA-binding 2, were found to be decreased in 
the AD hippocampus in contrast to healthy controls[39]. Interestingly, in the above-
mentioned study on monozygotic twins, 5-mC was found in the neurons, microglia, 
and astrocytes of the healthy twin, but not in the brain of the AD twin, demonstrating 
a reduction in DNA methylation in several cell types in the AD brain[35].

In contrast, the expression of several genes increases upon reduced DNA 
methylation (hypomethylation), although many of these reports have not been fully 
validated. Some examples include the APP gene, which encodes the APP. APP gene is 
silenced by methylation of its promoter region; however, during aging, this gene is 
demethylated, promoting its expression and consequently, the accumulation of β-
amyloid in the brain[40-43]. Nevertheless, some studies suggest no changes in the DNA 
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Table 1 Mouse models used for the study of Alzheimer disease

Strain Promoter 
used Proteins expressed Pathogeny Ref.

3xTG–AD Thy1 and 
mPS1

Mutant of APP (hAPP695, Swedish mutation), PS1 
(PSEN1, M146V) and tau (hTau-4R0N, P301L)

Mice containing these mutations develop β-amyloid plaques 
and NFTs resembling the brain with AD

[36,60,
96,97]

CK-p25 tetO (tet 
operator)

These mice overexpress the truncated form of p35, 
p25

p25 activates CDK5 (cyclin-dependent kinase 5), implicated in 
AD. CK-p25 mice develop neuronal loss, β-amyloid 
accumulation and loss of synaptic terminations in the 
hippocampus and cortex as well as memory deficits

[57,98,
99]

APPPS 1-21 /
HDAC6–/– 
crossbred

Thy1 Mutated APP (KM670/671NL) and the mutated 
presenilin 1 (L166P)

Mice develop β-amyloid plaques leading to cerebral 
amyloidosis, dystrophic synaptic boutons, hyper-
phosphorylated tau, inflammatory responses and the 
impairment of cognitive function

[64,
100,
101]

TgCRND8 Hamster PrP hAPP695 Swe/Ind The brain of mice contains plaques formed by depositions of 
β-amyloid, leading to inflammation and cognitive 
impairments. There is also neuronal loss, accumulation of 
NFTs, and neuritic changes similar to those observed in AD

[93,
102,
103]

Tg19959 Hamster PrP hAPP695 with two familial mutations (Swedish 
and Indiana mutations: K670N/M671L and 
V717F, respectively). (FVB X 129S6F1 background)

Mice overexpress β-amyloid 1-42 peptide and Bace1 forming 
plaques

[5,93,
102,
104]

Tg2576-APP
swe crossbred

Hamster PrP 
and Mouse 
PrP

The Swedish mutation (hAPP695) and 
m/hAPP6953 (extra and intracellular regions of 
mouse β-amyloid, a human β-amyloid sequence 
and the Swedish mutations of β-amyloid, 
K594N/M595L)

These mice develop β-amyloid plaques deposition and 
memory deficits

[94,
105,
106]

APP/PSI Thy Mutated APP (KM670/671 NL) and mutated 
presenilin 1 (L166P)

Mice show dystrophic synaptic, hyperphosphorylation of tau, 
gliosis, and neuronal loss in the dentate gyrus as well as 
impairment in reversal learning

[95,
101]

NFT: Neurofibrillary tangles; APP: β-amyloid precursor protein; PSEN: Presenilin; HDAC: Histone deacetyltransferase; 3xTG: Triple transgenic; AD: 
Alzheimer disease.

methylation status of the APP gene for a healthy brain in comparison with AD[44,45]. 
Moreover, normal brain samples were compared with postmortem AD brain samples, 
and it was reported that the promoter of the BRCA1 gene, which encodes a DNA 
repair protein, is hypomethylated in the AD brain. Under these conditions, this gene 
has a high expression level, whereas the BRCA1 protein appears to be sequestered by 
tau aggregates. Thus, alterations in the expression and functions of BRCA1 may be 
involved in the deterioration of AD[46]. In addition, it has been reported that the 
hypomethylation of intron 1 of the triggering receptor expressed on myeloid cells 2 
gene, which is principally expressed in microglia, may induce inflammation pathways 
associated with AD development. Importantly, triggering receptor expressed on 
myeloid cells 2 expression is augmented in the hippocampus and leukocytes of AD 
patients, suggesting its potential as a biomarker for this disease[47-49].

However, studies have also reported augmented DNA methylation in regulatory 
regions for some genes involved in AD. For instance, methylation of an alternative 
promoter for the rare coding variant in the phospholipase D3 gene is increased in the 
AD hippocampus[50], affecting the function of rare coding variant in the phospholipase 
D3 protein in the processing of APP. Furthermore, increased methylation of the 
promotor for the brain-derived neurotrophic factor (BDNF) gene, which encodes a key 
protein implicated in the maintenance of adult cortical neurons and cognoscitive 
functions, has also been reported in the brain and peripheral blood of AD patients[51-53]. 
In contrast, it has been reported that methylation of the phosphatidylinositol binding 
clathrin assembly protein gene in blood cells from AD patients is most likely related to 
disrupted cognitive functions, as the phosphatidylinositol binding clathrin assembly 
protein is involved in modulating the production, transport, and abundance of β-
amyloid peptide[54]. Therefore, the DNA methylation status associated with the 
expression of several specific genes is altered in AD, occurring in the hippocampus, 
cerebral cortex, and some in peripheral blood cells, demonstrating their potential as 
putative biomarkers for this disease.

Histone acetylation and deacetylation in AD
With transgenic mice as an AD model, it has been determined that HDAC2 is 
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primarily expressed in the hippocampus and prefrontal cortex and reduces the density 
of dendritic spines, the number of synapses, synaptic plasticity, and memory 
formation in comparison with wild-type mice[55,56]. Additionally, by studying the 
neurodegeneration process in the brain of CK-p25 mice, researchers detected high 
levels of HDAC2 and reduced histone acetylation for genes related to learning and 
memory, as well as the inhibition of genes related to neuroplasticity[57]. HDAC1/2 
expression abated in microglia from AD transgenic mice reduced amyloid load, 
improving cognitive function[58]. Furthermore, in the study of monozygotic twins 
(previously mentioned), HDAC2, and HDAC9 expression levels in peripheral blood 
cells were higher in the AD twin than in the healthy twin[59]. Also, increased HDAC3 
expression is associated with a decreased memory in the brains of AD mouse models, 
whereas the loss of HDAC3 expression, experimentally induced in the dorsal 
hippocampus, appears to improve memory[60-62] (Figure 2).

In addition, HDAC6 is increased in the cortex and hippocampus of AD patients, and 
it colocalizes with the tau protein in the hippocampus, whereas a reduction in the 
levels of tau is observed when HDAC6 levels are decreased[63]. It was reported that 
reduced HDAC6 levels might improve cognitive activity in double transgenic mice 
(APPPS 1-21 /HDAC6–/–)[64]. In contrast, in one report that used HDAC4 knock-out 
mice suggested that the lack of HDAC4 reduces learning and memory. Thus, some 
HDACs are overexpressed in AD patients, whereas HDAC4 seems to decrease 
synaptic plasticity and memory formation[65].

The acetylation of tau promotes pathological tau aggregation, but SIRT1 can 
deacetylate tau. Nonetheless, SIRT1 expression levels are decreased in the cortex in 
AD[66-68]. Additionally, several AD mouse models have been treated with HDAC 
inhibitors such as sodium butyrate, trichostatin A, and valproic acid and have shown 
improvements in learning and memory, some of which result from reduced β-amyloid 
levels[69,70]. Some studies on histone modifications have also been reported. For 
example, a reduction in H3K18ac and H3K23ac has been identified in the AD 
brains[71]. Other potentially relevant modifications are H3K27me3 and H3K4me3 
modifications, which are enriched in DNA-hypermethylated regions and are 
associated with aging and AD[72].

Non-coding RNAs
Several non-coding RNAs are implicated in the differentiation, connections, and 
functions of the neurons, as well as in neurodegenerative processes, participating in 
proteostatic mechanisms, mitochondrial dysfunction, apoptosis, and neurotrophic 
factor reduction in the neurons and glial cells[73]. One study reported that 
intracerebroventricular injection of β-amyloid 1–42 resulted in an AD pattern and 
deregulation of non-coding RNAs in the hippocampus region[74] that included miRNAs 
and lncRNAs. Interestingly, it has been proposed a putative role as blood-based 
biomarkers for some miRNAs in AD[75]. For instance, the expression of several 
miRNAs such as miRNA-29a, miRNA-29b, and miRNA-29c was reduced with an 
increase in BACE1 (β-secretase 1) expression, which is essential for β-amyloid 
production (Figure 3). This deregulation has been detected in the brain and peripheral 
blood of AD patients[76-78]. In contrast, increased levels of miRNA-7, miRNA-9-1, 
miRNA-23a/miRNA-27a, miRNA-34a, miRNA-125b-1, miRNA-146a, and miRNA-155 
have been observed in postmortem AD neocortex samples in comparison with healthy 
controls[79]. Furthermore, increased miRNA-135a and miRNA-384 Levels and 
decreased miRNA-193b levels have been found in the serum of AD patients compared 
with healthy controls[80]. Moreover, the upregulation of miRNA-200b and miRNA-200c 
was detected in Tg2576 transgenic mice. However, the exogenous overexpression of 
miRNA-200b and miRNA-200c reduced β-amyloid secretion in in vivo and in vitro 
experiments[81]. Also, it has also been reported that miRNA-107, miRNA-125b, miRNA-
146a, miRNA-181c, miRNA-29b, and miRNA-342 Levels are lower in blood cells from 
AD patients than in blood from healthy patients[82].

Additionally, miRNA-206 is highly expressed in APP/PSEN1 transgenic mice, 
mainly in plasma, CSF, and hippocampal regions, correlating with a downregulation 
of BDNF, and this phenomenon has also been observed in AD patients[83-85]. In another 
AD model (Tg2576 AD), as well as the brain samples from AD patients, the miRNA-
206 expression is also increased and negatively regulates the expression of BDNF at 
the transcriptional level, which affects synaptic plasticity and memory[84,86]. Moreover, 
miRNA-206 can be detected in early dementia patients through biopsy of olfactory 
epithelia[83]. AM206, the antagomir of miRNA-206, prevented the pathogenic effect of 
β-amyloid 1-42 and increased the levels of BDNF, synaptic density, and neurogenesis 
after intranasal administration[86,87]. Hence, miRNA-20 is considered as a reliable 
biomarker for AD. Another of the more reliable biomarkers that have been proposed is 
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Figure 2  Epigenetics changes in Alzheimer disease. Alterations in epigenetic mark patterns are observed in the brain (primarily the hippocampus, cortex) 
and peripheral blood (1) under Alzheimer disease conditions in comparison to normal conditions. HDAC: Histone deacetyltransferase; DNA: Deoxyribonucleic acid; 
miRNA: MicroRNA; lncRNA: Long non-coding RNAs; 5-mC: 5-methylcytosine; 5-hmC: 5-hydroxymethylcytosine.

miRNA-455-3p since its expression is upregulated in serum samples and brain tissues 
from AD patients, and these results are also corroborated in transgenic mice and AD 
cell lines (skin fibroblasts and lymphoblast cells). Thereby, miRNA-455-3p is also 
suggested as a potential peripheral biomarker for this disease[88]. Thus, miRNAs 
appear to be relevant indicators of AD progression, and the detection of these miRNAs 
in the blood may be a powerful tool for this disease (Figure 3).

Similarly, microarrays and RNA-seq studies have found significant changes in 
lncRNA expression in the AD brain compared with control brain samples[89,90]. For 
instance, an increase in lncRNA-51A has been reported in AD; lncRNA-51A is known 
by modulating the splicing of sortilin-related receptor 1 (an important gene for traffic 
and recycling of the β-amyloid precursor), reducing the synthesis of sortilin-related 
receptor 1 variant A. Consequently, APP processing is altered, and β-amyloid 
production is increased, which promotes AD progression[91]. As another example, 
lncRNA-17A levels are also increased in AD and regulate the alternative splicing of the 
GABAB receptor; moreover, this lncRNA promotes β-amyloid secretion in response to 
inflammatory signals[92]. A previous study identified an antisense lncRNA for BACE1, 
which was termed lncRNA-BACE1-AS. Through in vivo and in vitro assays, lncRNA-
BACE1-AS was shown to confer stability to BACE1 mRNA, which increases β-amyloid 
production and AD development. Furthermore, β-amyloid 1-42 overexpression and 
stressing factors appear to increase lncRNA-BACE1-AS levels, resulting in amyloid 
protein aggregation. In both AD patients and a murine AD model (APP 695SWE/IND; 
TgCRND8 or Tg19959), lncRNA-BACE1-AS expression is augmented[93]. Moreover, it 
has been observed that lncRNA-BC1 is highly expressed in brains from Tg2576-
APPswe mice, another mouse model used to study AD. This lncRNA promotes the 
translation of APP mRNA, which increases the production and aggregation of β-
amyloid peptide[94]. Levels of lncRNA- early B cell factor 3 (EBF3)-AS, i.e., an antisense 
lncRNA for EBF3, are increased in the hippocampus of APP/PSI mouse model for AD. 
The authors of this study proposed that lncRNA-EBF3-AS may induce EBF3 
expression to stimulate neuronal apoptosis under AD conditions[95].

CONCLUSION
Despite the complexity involved in understanding and treating AD, epigenetic 
mechanisms have emerged as potential elements of this disease. To date, studies have 
reported several modifications in the epigenome of brain cells under AD conditions 
respect to normal conditions. Importantly, some of these changes have been detected 
in peripheral blood cells, rendering these changes as promising biomarkers for this 
disease. The application of HDAC inhibitors has demonstrated beneficial results for 
several AD mouse models[96-105], impacting β-amyloid levels, tau phosphorylation, and 
hippocampus dendritic spine restoration, improving learning and memory. Thus, the 
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Figure 3  Regulation of β-amyloid production pathway and its epigenetic alterations. The deregulation of some miRNAs and some epigenetic 
modifications increase the production, secretion, and accumulation of β-amyloid. Furthermore, some long non-coding RNAs (lncRNA), such as lncRNA-51A, lncRNA-
BC1, lncRNA-17A and lncRNA-BACE-AS are involved in the overproduction of β-amyloid. Pink and blue arrows indicate an increase and decrease of expression, 
respectively. AD: Alzheimer disease; APP: β-amyloid precursor protein; lncRNA: Long non-coding RNAs; miRNA: MicroRNA.

modulation of the epigenetic modifications in AD, and the identification of epigenetic 
determinants for healthy aging and those for pathological neurodegeneration requires 
to be deeply studied (Figure 4).
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Figure 4  Relevance of epigenetics in aging, neurodegeneration, and Alzheimer disease. Changes in the epigenomes are detected during aging, 
from young to older people, and in Alzheimer disease (AD) patients. The senescent cells are accumulated during aging. The expression of genes associated with 
neurodegeneration is increased, whereas the expression of genes associated with neuroprotection is decreased during aging. All these changes are increased in AD 
patients. A connection between these processes may be critical in aging and during the progression of AD.
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