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Abstract
Lung cancer is the most common cause of cancer death in the world. Early 
diagnosis, screening and precise individualized treatment can significantly reduce 
the death rate of lung cancer. Artificial intelligence (AI) has been shown to be able 
to help clinicians make more accurate judgments and decisions in many ways. It 
has been involved in the screening of lung cancer, the judgment of benign and 
malignant degree of pulmonary nodules, the classification of histological cancer, 
the differentiation of histological subtypes, the identification of genomics, the 
judgment of the effectiveness of treatment and even the prognosis. AI has shown 
that it can be an excellent assistant for clinicians. This paper reviews the 
application of AI in the field of non-small cell lung cancer and describes the 
relevant progress. Although most of the studies to evaluate the clinical application 
of AI in non-small cell lung cancer have not been repeatable and generalizable, the 
research results highlight the efforts to promote the clinical application of AI 
technology and influence the future treatment direction.

Key words: Artificial intelligence; Machine learning; Non-small cell lung cancer; 
Diagnosis; Prognosis; Therapy
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Core tip: Artificial intelligence has been shown to help clinicians make more accurate 
judgments and decisions in non-small cell lung cancer screening and preliminary 
evaluation of lung nodules, histological differentiation and diagnosis, genomic 
identification, decision-making of therapy, prognosis of overall survival, metastasis or 
recurrence. Electronic medical records could be used as a source of artificial intelligence 
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to help clinicians. This manuscript reviews the state of art artificial intelligence 
applications in clinical non-small cell lung cancer for those who will be interested in this 
field.
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INTRODUCTION
The global tumor statistics report released in 2018 shows that lung cancer is the 
malignant tumor with the highest morbidity and mortality in the world. The incidence 
of lung cancer accounts for 11.6% of the incidence of all tumors, and the mortality rate 
accounts for 18.4% of the deaths of all tumors[1]. Due to the late onset of clinical 
symptoms and limited screening procedures, a large number of patients are diagnosed 
as advanced[2]. Histologically, about 85% of new lung cancer cases are classified as 
non-small cell lung cancer (NSCLC), 10% are small cell lung cancer, and 5% are other 
variants[3]. Most NSCLC can be divided into three categories: squamous cell carcinoma, 
adenocarcinoma and large cell carcinoma[4]. Patients need the most accurate 
personalized treatment from doctors. Therefore, doctors need to obtain genomics, 
proteomics, immunohistochemistry and imaging data, in addition to histological, 
clinical and demographic information in order to develop precise treatment plans for 
patients. There are many factors, such as high cost of testing and treatment 
discontinuity, which will limit the timely access to data. This has aroused people’s 
interest in developing artificial intelligence.

Artificial intelligence (AI) is an important product of the rapid development of 
computer technology. It has a profound impact on the development of human society 
and the progress of science and technology through communication and cooperation 
with multidisciplinary and multifield, especially the organic combination with 
medicine, which is one of the most promising fields. John McCarthy first proposed the 
concept of AI: To develop machine software with human thinking mode, so that 
computers can think like humans[5]. Machine learning (ML) is a method to realize AI, 
which belongs to a subfield of AI. It analyzes and interprets data through machine 
algorithms, learns from it, and then makes decisions or predictions about something. 
Therefore, unlike manually writing software routines to complete specific tasks with a 
specific set of instructions, machines use a large number of data and algorithms to 
“train”, which give machines the ability to learn how to perform tasks. ML comes 
directly from the idea of the early artificial intelligence crowd. For many years, 
algorithm methods include decision tree learning, inductive logic programming, 
clustering, reinforcement learning and Bayesian network, etc. These algorithms allow 
information to be classified, predicted and segmented to provide insights that are 
difficult to obtain by the human eye or cognitive system.

Deep learning is a technology to realize ML. There are two key aspects in the 
description of advanced definition of deep learning: (1) A model composed of 
multilayer or multistage nonlinear information processing; and (2) A supervised or 
unsupervised learning method for feature representation at a higher and more abstract 
level[6]. There are many kinds of network learning models for deep learning, such as 
convolutional neural networks (CNN), recurrent neural networks, bi-directional long-
term and short-term memory cyclic neural networks, multilayer neural networks, etc. 
Among them, the CNN is one of the representative algorithms of deep learning, which 
is a kind of feed forward neural networks with deep structure and convolution 
calculation. It consists of a series of layers. Each layer performs specific operations, 
such as convolution, pooling, loss calculation, etc. Each middle layer receives the 
output of the previous layer as its input and finally extracts the high-level abstraction 
through the fully connected layer. In the process of back propagation in the training 
stage, the weights of neural connection and kernel are optimized continuously. A 
CNN has the ability of representation learning, which can classify input information 
according to its hierarchical structure. Therefore, it is also called “translation invariant 
artificial neural network (ANN)”.

There are two main methods of data processing in ML: Supervised learning and 

https://www.wjgnet.com/2644-3228/full/v1/i1/19.htm
https://dx.doi.org/10.35713/aic.v1.i1.19


Liu Y. Application of AI in clinical NSCLC

AIC https://www.wjgnet.com 21 June 28, 2020 Volume 1 Issue 1

unsupervised learning. Supervised learning specifically refers to the use of labeled 
data learning process to assist, so as to achieve learning objectives. The advantage is 
that the generalization ability of the machine itself can be given full play, and 
problems such as classification and regression can be effectively solved. Unsupervised 
learning does not need to be marked, and it explores the similarity between instances 
according to specific indicators and methods or the value relationship among features. 
The algorithms commonly used in unsupervised learning are as follows: Deep 
confidence network, automatic encoder, etc. The most important research problems of 
unsupervised learning include clustering, correlation analysis and dimension 
reduction. Other learning methods include reinforcement learning, which optimizes 
the model to get the best decision by giving different feedback to different choices in 
the iterative process, semisupervised learning that mixes supervised and unsupervised 
learning and transfer learning with models as an experiential training.

AI can improve patients’ treatment results, ameliorate patients’ treatment process 
and even mend medical management[7]. In view of the increasing application of AI in 
lung cancer treatment (Figure 1), this paper will review the AI applications being 
developed for NSCLC detection and treatment as well as the challenges facing clinical 
adaptability.

APPLICATION OF AI IN SCREENING AND PRELIMINARY EVALUATION 
OF NSCLC
Pulmonary nodules are the early signs of lung cancer, which are of great significance 
for the diagnosis of early lung cancer. Early detection, early diagnosis and early 
treatment can improve the survival rate and prolong the survival time of patients. The 
national lung screening test showed that low-dose computed tomography (LDCT) 
screening was associated with a significant 20% reduction in overall mortality among 
current and previous high-risk smokers[8]. While conducting LDCT screening to detect 
patients with early-stage lung cancer, the number of health checkups, disease 
screenings and follow-up examinations is increasing. As a result, the workload of 
radiologists has multiplied. The increasing workload aggravates the fatigue of doctors, 
affects the quality of reading images and the accuracy of diagnosis results. The 
emergence of AI is just like a drop of sweet dew in a long drought for radiologists. AI 
can carry out self-learning and self-evolution under semi-supervision. At the same 
time as improving the accuracy of diagnosis, the time for doctors to read the images is 
greatly shortened, which solves the clinical needs well[9].

Most uncertain lung nodules were discovered by accident[10]. Every year, more than 
1.5 million Americans are diagnosed with accidental detection of lung nodules[11]. Most 
of these nodules are benign granuloma and about 12% may be malignant[12]. Another 
potential hazard of lung cancer screening is the over diagnosis of slow-growing, 
inactive cancers. If left untreated, these cancers may not pose a threat. Therefore, over 
diagnosis must be identified and significantly reduced. Identifying the nature of 
pulmonary nodules by AI can effectively reduce the clinical work pressure as well as 
the long-term follow-up workload and ameliorate the psychological pressure of 
pulmonary nodule owners. In the field of cancer imaging, AI has found tremendous 
utility in three main clinical tasks: Detection, characterization and monitoring. In 
current clinical practice, imaging methods used to assess the presence of lung cancer 
include chest X-ray, computed tomography (CT) and positron emission 
tomography/computed tomography (PET/CT).

Chest X-ray is one of the most commonly used methods. The covering of the chest 
ribs on the lung field often affects the radiologists’ reading of the film and increases 
the missed diagnosis rate of the lung nodule shadow. von Berg et al[13] used a dual 
energy subtraction technology based on ANN to reduce the bone density shadow in 
the X-ray film, expose the lung nodule covered by the bone structure and improve the 
sensitivity and specificity of the radiologist in the diagnosis of lung nodules. Nam 
et al[14] recently developed an algorithm for detecting malignant pulmonary nodules on 
chest X-ray films based on deep learning and compared its performance with that of 
physicians, half of whom were radiologists. They used 43292 cases of chest X-ray data. 
The ratio of normal to pathological changes was 3.67. Using external validation data 
sets, they found that the area under the curve (AUC) of the developed algorithm was 
higher than 17 of the 18 doctors. When all doctors used this algorithm as the second 
reader, they found the improvement of nodule detection.

For lung cancer screening, the sensitivity and specificity of LDCT are much higher 
than that of general chest X-ray[15]. More than 200 thin-layer images can be 



Liu Y. Application of AI in clinical NSCLC

AIC https://www.wjgnet.com 22 June 28, 2020 Volume 1 Issue 1

Figure 1  The application of artificial intelligence involved in clinical non-small cell lung cancer. Learning process and application of AI in different 
fields are indicated by those two-way arrows. AI: Artificial intelligence; ANN: Artificial neural network; CNN: Convolutional neural networks; DL: Deep learning; EMR: 
Electronic medical record; ML: Machine learning; NSCLC: Non-small cell lung cancer; OS: Overall survival time; TME: Tumor microenvironment; WSI: Whole slide 
image.

reconstructed after high-resolution CT scanning or spiral CT scanning, which results in 
excessive reading of radiologists. Pulmonary nodules < 3 mm are more time-
consuming and laborious. This has caused a considerable workload for radiologists in 
the traditional mode. Pulmonary nodule AI detection software is most sensitive to 
pulmonary nodules of 3-6 mm followed by nodules above 6 mm. Nodules of 3-6 mm 
are the most easily missed diagnosis by human vision[16]. After the application of AI, 
the daily working time can be halved without changing the inspection amount, and 
there will be no missed diagnosis due to excessive fatigue[17,18]. Detection refers to the 
positioning of objects of interest in X-rays or CTs and is collectively referred to as 
computer-aided detection[19]. In the early 2000s, methods of computer-aided detection 
for automatically detecting lung nodules on CT were based on traditional ML 
methods, such as support vector machines[20]. Computer-aided detection is used as an 
assistant in LDCT screening to find missed cancers and to detect brain metastases on 
MRI to improve radiological interpretation time while maintaining high detection 
sensitivity[21]. The computer-aided detection x system has been used for the diagnosis 
of pulmonary nodules by thin-layer CT[22].

Due to the simplicity of clinical implementation, size-based measurements such as 
the longest tumor diameter are widely used for staging and response assessment. 
However, size-based features and disease stages have limitations such as imprecise 
diagnosis. A preliminary work shows that AI can automatically quantify the 
radiographic characteristics of tumor phenotype, which has a significant prognosis for 
many types of cancer, including lung cancer[23]. Liu et al[24] combined a model of four 
semantic features (minor axis diameter, contour, concavity and texture) of quantitative 
scores. The accuracy of distinguishing malignant and benign nodules in lung cancer 
screening environment was 74.3%. In a separate study[25], semantic features were 
identified from small lung nodules (less than 6 mm) to predict the incidence of lung 
cancer in the context of lung cancer screening. The AUC of the final model was 0.930 
based on the total score of emphysema, vascular attachment, nodal location, border 
definition and concavity. Paul et al[26] used a kind of pre-trained CNN after large-scale 
data training to detect lung cancer by extracting the features of CT images. They 
combined the extracted deep neural network features with the traditional quantitative 
features and obtained 90% accuracy (AUC: 0.935) by using the five best corrected 
linear unit features and five best traditional features extracted by vgg-f pre-trained 
CNN.

In recent years, the number of pure ground glass nodules (pGGN) has increased 
significantly. Judging its nature and making the treatment plan is very important. Qi 
et al[27] retrospectively analyzed the clinical follow-up data of 573 CT scans belonging to 
110 patients with pGGNs from January 2007 to October 2018. The Dr. Wise system 
based on CNN was used to segment the initial CT scan and all subsequent CT scans 
automatically. Then, the diameter, density, volume, mass, volume doubling time and 
mass doubling time of pGGNs were calculated. Kaplan-Meier analyses with the log-
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rank test and Cox proportional hazards regression analysis were used to analyze the 
cumulative percentages of pGGN growth and identify risk factors for growth. It was 
found that persistent pGGNs showed a slow course. The 12-mo, 24.7-mo and 60.8-mo 
cumulative percentages of pGGN growth were 10%, 25.5% and 51.1%, respectively. 
Deep learning helps to clarify the natural history of pGGNs accurately. Those pGGNs 
with lobulated sign and larger initial diameter, volume and mass are more likely to 
grow up. Ardila et al[28] trained a deep learning algorithm on the NLST dataset, which 
came from 14851 patients and 578 of those patients developed lung cancer the 
following year. They tested the model on the first test data set of 6716 patients, and the 
AUC reached 94.4%. A part of 507 patients was compared with six radiologists. When 
a single CT is analyzed, the performance of the model was the same or higher than 
that of all radiologists.

The diagnosis of simultaneous or metachronous multiple pulmonary nodules is a 
new challenge for clinicians. In a retrospective study[29], a total of 53 patients with 
multiple pulmonary nodules, simultaneously or metachronously, were included. The 
coincidence rate of AI diagnosis and postoperative pathology to benign and malignant 
lesions was 88.8%. AI may represent a relevant diagnostic aid that can display more 
accurate and objective results when diagnosing multiple lung nodules. It may reduce 
the interpretation of results by displaying visual information directly to doctors and 
patients and the clinical status of multiple primary lung cancer patients. The time 
required and a reasonable follow-up and treatment plan may be more beneficial to the 
patient.

PET/CT using 18F-fluorodeoxyglucose (FDG) has been established as a great 
imaging method for the staging of patients with lung cancer[30]. Schwyzer et al[31] 
assessed whether machine learning would help detect lung cancer in FDG-PET 
imaging against the background of ultra-low-dose PET scans. The ANN was used to 
identify 3936 PET images, including images of lung tumors visible to the naked eye 
and image slices of patients without lung cancer. Based on clinical standard radiation 
dose PET images (PET 100%), 10% dose and 3.3% radiation dose (approximately 0.11 
mSv), the diagnostic performance of the artificial neural network was evaluated. Their 
results indicated that even at very low effective radiation doses of 0.11 mSv, machine 
learning algorithms may contribute to fully automated lung cancer detection.

More and more new PET and single-photon emission computerized tomography 
tracers are used to explore various aspects of tumor biology, and hybrid multimodal 
imaging is increasingly used to provide multiparameter measurements. AI is needed 
to deal with the huge workload. According to reports[32], texture and color analysis of 
human FDG-PET images can be used to judge heterogeneity within tumors, thereby 
distinguishing NSCLC subtypes. Using support vector machine algorithm to extract 
texture and color features from FDG-PET images to differentiate histopathological 
tumor subtypes (squamous cell carcinoma and adenocarcinoma), the area under the 
receiver operating characteristic curve was 0.89. The use of the least absolute shrinkage 
and selection operator method[33] to derive radiographic descriptors of metastatic 
lymph nodes from FDG-PET images of patients with NSCLC has been found relate 
better with overall survival (OS) than the radiological data extracted from the primary 
tumor. Wang et al[34] made a comparison of ML methods for classifying NSCLC 
mediastinal lymph node metastasis from PET/CT images. A CNN and four ML 
methods (random forest, support vector machine, adaptive boosting and artificial 
neural networks) were used to classify mediastinal lymph node metastases of NSCLC. 
PET/CT images of 1397 lymph nodes were collected from 168 patients and were 
evaluated by the five methods with corresponding pathology analysis results as gold 
standard. The accuracy of CNN is 86%, which is not significantly different from the 
best ML method that uses standard diagnostic features or a combination of diagnostic 
features and texture features. CNN is more accurate than ML methods that simply use 
texture features.

APPLICATION OF AI IN HISTOPATHOLOGY OF NSCLC
In the differential diagnosis of lung cancer, it is necessary to classify the types or 
subtypes accurately. Because the hematoxylin-eosin (HE) stained full-scale whole slide 
image (WSI) is usually at the megapixel level, the much smaller image blocks (about 
300 × 300 pixels) extracted from it are often used as training input. For example, Wang 
et al[35] trained a CNN model; each 300 × 300 pixel image block of lung adenocarcinoma 
WSIs stained by HE was classified as malignant or nonmalignant. The overall 
classification accuracy (malignant and nonmalignant) of the test set was 89.8%. This 



Liu Y. Application of AI in clinical NSCLC

AIC https://www.wjgnet.com 24 June 28, 2020 Volume 1 Issue 1

method can detect tumor rapidly when the tumor area is very small, which will 
greatly help pathologists in future clinical diagnoses. In the study reported by 
Teramoto et al[36], a deep CNN (DCNN) was developed for an automatic lung cancer 
classification scheme, which is a major deep learning technology. In the evaluation 
experiment, they used original database, including fine needle aspirate cytology 
images and HE stained WSIs and a graphics processing unit to train DCNN. First, the 
micro images were cropped and resampled to obtain the image with a resolution of 
256 × 256 pixels. In order to prevent over fitting, the collected images were enhanced 
by rotation, flipping and filtering. The probability of three types of cancer was 
evaluated using the developed scheme, and its classification accuracy was evaluated 
using triple cross validation. In the results obtained, about 71% of the images were 
correctly classified, which is equivalent to the accuracy of cell technicians and 
pathologists.

The identification of early lung adenocarcinoma before operation, especially in the 
case of subcentimeter cancer, can provide important guidance for clinical decision 
making. Zhao et al[37] developed a 3D deep learning system based on 3D CNN and 
multitask learning. The deep learning system had better classification performance 
than radiologists. In terms of three-level weighted average F1 score, the model reached 
63.3%, while the four radiologists reached 55.6%, 56.6%, 54.3% and 51.0%, respectively.

With tumor microenvironment increasingly considered as an important factor 
affecting tumor progression and immunotherapy response, tumor microenvironment 
for lung cancer has been studied in depth. Saltz et al[38] developed a CNN model to 
distinguish lymphocytes from necrotic or other tissues at the image spot level in 
multiple cancer types, including adenocarcinoma and small cell carcinoma of the lung. 
Then, by quantifying the spatial organization of lymphoid image plaques detected in 
WSIs, they reported the relationship between the distribution pattern, prognosis and 
lymphoid components of tumor infiltrated lymphocytes.

Lung cancer patients usually present with advanced, inoperable disease. Because 
the whole tumor specimen cannot be obtained, the size of the biopsy specimen 
obtained is usually very limited. It is difficult to distinguish squamous cell carcinoma 
and adenocarcinoma especially in poorly differentiated tumors because of their 
obscure histological features. ML in immunohistochemistry[39] was applied to establish 
a comprehensive and automatic diagnosis strategy for NSCLC biopsy specimen 
subtypes, which successfully solved this problem. Koh et al[40] described a 
comprehensive diagnostic strategy using a reliable and minimal immuno-
histochemistry team for histopathological subtype analysis of NSCLC biopsy 
specimens. The team used two ML methods: Decision tree and support vector 
machines to learn from 30 small NSCLC biopsies with fuzzy morphology. The decision 
tree model showed that the highest accuracy of the combination of two markers (such 
as p63 and CK5/6) was about 72% except for three other markers (i.e. TTF-1, Napsin A 
and P40).

Wang et al[41] explored the correlation between the morphological features of the 
WSIs stained with HE and the NSCLC epidermal growth factor receptor (EGFR) 
mutation to achieve the purpose of predicting the risk of gene mutation. The results 
showed that the AUC of the EGFR mutation risk prediction model proposed in this 
paper can reach 72.4% on the test set, and the accuracy rate was 70.8%, suggesting a 
close relationship between morphological characteristics and EGFR mutations of 
NSCLC. Coudray et al[42] trained a DCNN (inception V3) to accurately and 
automatically classify the WSIs obtained from The Cancer Genome Atlas. Its 
performance was comparable to that of the pathologist, and the average AUC was 
0.97. They trained the network to predict the ten most common mutations in lung 
adenocarcinoma and found that six genes (STK11, EGFR, FAT1, setbp1, KRAS and 
TP53) could be predicted by pathological images. In the nonexperimental population, 
AUC was 0.733-0.856. It suggested that deep learning models could help pathologists 
detect cancer subtypes or gene mutations.

APPLICATION OF AI IN GENOMIC CLASSIFICATION OF NSCLC
Various molecular abnormalities affecting oncogenes and tumor suppressor genes 
have been reported in NSCLC. It is so important to identify potential lung cancer 
genome subtypes that a specific targeted therapy was proposed. For example, 
mutations in EGFR or anaplastic lymphoma kinase (ALK) receptors are significant in 
NSCLC because they provide molecular targets for customized treatment regimens.

The gene expression profile of NSCLC subtype has been established by 
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microarray[43,44]. Microarray data used to identify NSCLC genetic subtypes can be used 
to train ML algorithms to better understand genomic pathways. Yamamoto et al[45] 
screened 24 CT image traits performed in a training set of 59 patients, followed by 
random forest variable selection incorporating 24 CT traits plus six clinical-pathologic 
covariates to identify a radiomic predictor of ALK+ status. This predictor was then 
validated in an independent cohort (n = 113). Tests for accuracy and subset analyses 
were performed. It was found that ALK+ NSCLC had distinct characteristics at CT 
imaging that when combined with clinical covariate discriminated ALK+ from non-
ALK tumors and could potentially identify patients with a shorter durable response to 
crizotinib.

With the commercialization of next generation sequencing technology and the 
improvement of the performance of these algorithms, clinicians will be able to better 
describe NSCLC based on genome data[46]. Duan et al[47] explored the application of the 
ANN model in the auxiliary diagnosis of lung cancer. They compared the effects of the 
back-propagation neural network with the Fisher discrimination model for lung cancer 
screening by combining the detection of four biomarkers, p16, RASSF1A and FHIT 
gene promoter methylation levels and the relative telomere length. The result of the 
back-propagation neural network AUC was higher than that of the Fisher 
discrimination analysis, which meant that the back-propagation neural network model 
for the prediction of lung cancer was better than Fisher discrimination analysis.

APPLICATION OF AI IN THERAPY OF NSCLC
Systemic treatment is needed in most stages of NSCLC; for example, those in stage II 
often need adjuvant radiotherapy and chemotherapy. The contour of organs at risk is 
an important but time-consuming part of radiotherapy treatment planning. Lustberg 
et al[48] analyzed the CT scan data of 20 patients with stage I-III NSCLC and compared 
the user adjusted contour and manual contour based on atlas and deep learning 
contour. It was found that the median time of manual contour drawing was 20 
minutes. When using atlas-based contour drawing, a total of 7.8 minutes was saved, 
while the deep learning contour drawing saved 10 minutes. It showed that it was a 
feasible strategy for users to adjust the contour generated by the software, which could 
reduce the contour time of organs at risk in lung radiotherapy. Compared with the 
existing programs, deep learning shows encouraging results.

At present, targeted therapies[49] such as EGFR tyrosine kinase inhibitors, ALK 
inhibitors or angiogenesis inhibitors are used depending on the patients’ molecular 
status. The prediction of targeted therapy response is mainly accomplished by biopsy 
to analyze the status of the targeted mutation. AI prediction models can complement 
this by identifying the imaging phenotypes associated with mutation status. Support 
for this approach comes from quantitative imaging studies of patients with NSCLC 
treated with gefitinib. The results[50] showed that the mutation state of EGFR could be 
predicted by radiology. AI analysis of quantitative imaging data can also improve the 
assessment of response to targeted therapy. Bevacizumab (a monoclonal antibody 
against vascular endothelial growth factor)-treated NSCLC tumors had reduced FDG 
uptake and were found to have more patients responding to treatment (73% than 
18%). In this study[51], both PET and CT were independent of OS (PET, P = 0.833; CT, P 
= 0.557).

The level of PD-L1 expression detected by immunohistochemistry is a key 
biomarker to identify whether NSCLC patients respond to the treatment of PD-1/PD-
L1. The quantification of PD-L1 expression currently includes a pathologist’s visual 
estimate of the percentage of PD-L1 staining (tumor proportion score or TPS) in tumor 
cells. Kapil et al[52] proposed a new deep learning solution that can automatically and 
objectively grade PD-L1 expression for the first time in advanced NSCLC biopsy. 
Using a semisupervised approach and a standard full supervised approach, they 
integrated manual annotation for training and visual tumor proportion scores for 
quantitative evaluation by multiple pathologists. It was believed to be the first proof of 
concept study that showed that deep learning could accurately and automatically 
estimate the PD-L1 expression level and PD-L1 status of small biopsy samples.

Researchers have studied the use of ML in predicting treatment failure or death. For 
example, Jochems et al[53] studied ML methods for predicting early death in NSCLC 
patients after receiving therapeutic chemical radiation. Similarly, Zhou et al[54] used ML 
to predict the failure of stereotactic body radiotherapy in early NSCLC patients. Both 
groups used ML methods to establish the prognosis model of early mortality or 
treatment failure, which could be used to inform patients of treatment plan and 
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optimize treatment. Kureshi et al[55] studied the role of multiple factors in predicting 
tumor response to EGFR-TKI therapy (erlotinib or gefitinib) in patients with advanced 
NSCLC.

APPLICATION OF AI IN PROGNOSIS OF NSCLC
Accurate classification, clinical stage, molecular subtype and therapies of NSCLC are 
all important because prognosis is closely related to these factors. Hsia et al[56] 
incorporated the clinical detection indicators and gene polymorphism detection results 
and predicted the prognosis of 75 lung cancer patients without indications of surgical 
treatment through the ANN model and made treatment plans accordingly. The actual 
average survival time of the patients was 12.44 ± 7.95 mo, while the ANN prediction 
result was 13.16 ± 1.77 mo with an accuracy of 86.2%. Zhu et al[57] successfully used 
DCNN to directly predict the survival time of patients from lung cancer pathological 
images. Another lung cancer study[58] showed that the prognosis of OS can be 
improved by adding genomic and radiological information to clinical models, thereby 
increasing the 95% confidence index from 0.65 (Noether P = 0.001) to 0.73 (P = 2 × 10-9), 
and the inclusion of radiation data led to a significant improvement in performance (P 
= 0.01).

Wang et al[59] proposed a computational histomorphometric image classifier using 
nuclear direction, texture, shape and tumor structure to predict the recurrence of early 
NSCLC diseases from digital HE tissue microarray slides. The results showed that the 
combination of these four features could predict the early recurrence of NSCLC, but it 
had nothing to do with clinical parameters such as gender, cancer stage and 
histological subtype. Yu et al[60] reported that Zernike shape characteristics of the 
nucleus could predict the recurrence of NSCLC adenocarcinoma and stage I squamous 
cell carcinoma.

In an article published in 2018, Saltz et al[38] described the use of CNN combined 
with pathologist’s feedback to automatically detect the spatial tissue of tumor 
infiltrating lymphocytes (TIL) in the tissue slide image of The Cancer Genome Atlas 
and found that this feature predicted the prognosis of 13 different cancer subtypes. In 
a related study, Corredor et al[61] showed the spatial arrangement of TIL clusters in 
early NSCLC, which was found by calculating the adjacent TILs and the prognosis of 
cancer cell nuclear recurrence risk compared with TIL density alone. The accuracy of 
the model in predicting recurrence was 82% and 75%, respectively, which proved to be 
an independent prognostic factor.

Blanc-Durand et al[62] trained a CNN in 189 NSCLC patients who received PET/CT 
examination. The subcutaneous adipose tissue, visceral adipose tissue and muscle 
weight were automatically segmented from the low-dose CT images. After a quintuple 
cross validation of a subset of 35 patients, body surface area was standardized as the 
anthropometric index extracted by deep learning. Cox risk regression analysis showed 
that body surface area normalized visceral adipose tissue/subcutaneous adipose tissue 
ratio was an independent predictor of progression free survival and OS in NSCLC 
patients.

Another study[63] evaluated the ability of CT radiomic features in patients with lung 
adenocarcinoma to predict distant metastasis. The phenotype of the primary tumor 
was quantified with 635 radiomic features in the pre-treatment CT scan. Univariate 
and multivariate analyses were performed using the consistency index to evaluate the 
efficacy of radiotherapy. Thirty-five radiomic features were used as prognostic 
indicators for distant metastasis (consistency index > 0.60, FDR < 5%) and 12 
prognostic indicators. Notably, tumor volume was only a moderate prognostic 
indicator for distant metastasis in the discovery cohort (consistency index = 0.55, P = 
2.77 × 10-5). This study suggested that radiomic features that capture the details of the 
tumor phenotype can be used as prognostic biomarkers for clinical factors such as 
distant metastasis.

APPLICATION IN ELECTRONIC MEDICAL RECORDS OF NSCLC
Electronic medical records (EMR) can be used in clinical diagnosis and treatment, 
medical insurance and scientific research. EMR is rich in information that can provide 
evidence of clinical diagnosis, treatment and data source of clinical research 
phenotype. In Wang et al[64]’s study, multiobjective ensemble deep learning, a dynamic 
integrated deep learning and adaptive model selection method based on 
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multiobjective optimization, was developed. The information extracted from EMRs 
through analysis can better predict the treatment results than other conventional 
methods. According to accurate prognosis prediction, we can stratify the risk of 
treatment failure of lung cancer patients after radiotherapy. This method can help to 
design personalized treatment and follow-up plan and improve the survival rate of 
lung cancer patients after radiotherapy.

FUTURE CHALLENGES
It is one of the key directions of medical research in the information age to build a big 
database by collecting and integrating various biomics, clinical detection indicators 
and nonbiological environmental background data of patients. Effective analysis and 
interpretation of these data will be the top priority, and the integration and analysis of 
the existing massive information is precisely the biggest advantage of AI.

At present, the investment in AI in lung cancer and the entire medical field is huge, 
but there is still a certain distance from the actual clinical application. The lack of a 
high-quality standardized lung cancer clinical database is an important factor 
restricting AI’s use in lung cancer research. The deficiency of research sample size 
causes most prediction or diagnostic studies to not fully simulate the actual clinical 
environment, limiting the value of clinical applications. Studies[65] have pointed out 
that the current use of AI in the medical field, such as inadequacy of correct methods 
and evaluation criteria in ANN and the credibility of the results is questionable. In 
addition, in terms of social regulations, lack of common technical regulations on 
medical responsibility issues and information security issues exists.

In the future, major medical centers should take the lead to establish a multicenter 
standardized lung cancer clinical database as a world-class database in line with 
epidemiology and to develop an AI system that meets the clinical environment. 
Diagnosis, treatment and optimization of medical resources have positive significance. 
On the other hand, active promotion of AI-related system regulations, technical 
specification, audit systems to provide institutional support and corresponding 
constraints for the development of AI are needed. AI has promising prospects for lung 
cancer research in the future, but it is still full of challenges.

According to the accuracy stated, which is around 90%, misjudgment may happen 
in 10% of cases, which reflects a pitfall of AI. Therefore, in clinical work, AI must be 
placed in a subordinate position. It should exist as an assistant to clinicians and 
provide auxiliary information under the supervision of doctors to avoid mistakes as 
much as possible.

CONCLUSION
AI has become an indispensable method to solve complex problems in modern life. In 
this review, I introduced various attempts and applications of AI in clinical work of 
NSCLC patients. According to a large number of imaging, histology, genomics, EMR 
system and other data, doctors can accurately diagnose and treat NSCLC patients. It 
has been shown that AI is gradually becoming a powerful assistant for doctors. 
Oncologists, radiologists and surgeons should continue to integrate AI into the clinical 
treatment of NSCLC in order to provide more patients with accurate and personalized 
therapy. Over time, both patients and doctors will benefit from the combination of AI 
and clinical practice.
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