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Abstract
The past decade has seen significant advances in endoscopic imaging and optical 
enhancements to aid early diagnosis. There is still a treatment gap due to the 
underdiagnosis of lesions of the oesophagus. Computer aided diagnosis may play 
an important role in the coming years in providing an adjunct to endoscopists in 
the early detection and diagnosis of early oesophageal cancers, therefore curative 
endoscopic therapy can be offered. Research in this area of artificial intelligence is 
expanding and the future looks promising. In this review article we will review 
current advances in artificial intelligence in the oesophagus and future directions 
for development.

Key Words: Artificial intelligence; Oesophageal neoplasia; Barrett's oesophagus; 
Squamous dysplasia; Computer aided diagnosis; Deep learning
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Core Tip: Computer aided diagnosis of oesophageal pathology may potentially be an 
adjunct for the endoscopist which will improve the detection of early neoplasia in Barrett’s 
oesophagus and early squamous neoplasia such that curative endoscopic therapy can be 
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offered. There are significant miss rates of oesophageal cancers despite advances in 
endoscopic imaging modalities and an artificial intelligence (AI) tool will off-set human 
factors associated with some miss rates. To fulfil the potential of this exciting area of AI 
certain criteria need to be met which we will expand upon. Once implemented this will 
have a significant impact on this field of endoscopy.

Citation: Hussein M, González-Bueno Puyal J, Mountney P, Lovat LB, Haidry R. Role of 
artificial intelligence in the diagnosis of oesophageal neoplasia: 2020 an endoscopic odyssey. 
World J Gastroenterol 2020; 26(38): 5784-5796
URL: https://www.wjgnet.com/1007-9327/full/v26/i38/5784.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i38.5784

INTRODUCTION
The past decade has seen significant advances in endoscopic imaging and optical 
enhancements to aid early diagnosis. Oesophageal cancer (adenocarcinoma and 
squamous cell carcinoma) is associated with significant mortality[1]. As of 2018 
oesophageal cancer was ranked seventh in the world in terms of cancer incidence and 
mortality, with 572000 new cases[2]. Oesophageal squamous cell carcinoma accounts 
for more than 90% of oesophageal cancers in china with an overall 5-year survival rate 
less than 20%[3].

Despite the technological advances there is still a treatment gap due to the 
underdiagnosis of lesions of the oesophagus[4]. A metanalysis of 24 studies showed 
that missed oesophageal cancers are found within a year of index endoscopy in a 
quarter of patients undergoing surveillance for Barrett’s oesophagus (BE)[5]. A large 
multicentre retrospective study of 123395 upper gastrointestinal (GI) endoscopies 
showed an overall missed oesophageal cancer rate of 6.4%. The interval between a 
negative endoscopy and the diagnosis was less than 2 years in most cases[6]. 
Multivariate analysis showed that one of the factors associated with the miss rate is a 
less experienced endoscopist.

Efforts are necessary to improve the detection of early neoplasia secondary to BE 
and early squamous cell neoplasia (ESCN) such that curative minimally invasive 
endoscopic therapy can be offered to patients. Computer aided diagnosis may play an 
important role in the coming years in providing an adjunct to endoscopists in the early 
detection and diagnosis of early oesophageal cancers.

In this review article we will review current advances in artificial intelligence in the 
oesophagus and future directions for development.

DEFINITIONS
Machine learning is the use of mathematical models to capture structure in data[7]. The 
algorithms improve automatically through experience and do not need to be explicitly 
programmed[8]. The final trained models can be used to make prediction of 
oesophageal diagnosis. Machine learning is classified into supervised and 
unsupervised learning. During supervised learning, the model is trained with data 
containing pairs of inputs and outputs. It learns how to map the inputs and outputs 
and applies this to unseen data. In unsupervised learning the algorithm is given data 
inputs which are not directly linked to the outputs and therefore has to formulate its 
own structure and set of patterns from the inputs[9].

Deep learning is a subtype of machine learning in which the model, a neural 
network, is composed of several layers of neurons, similar to the human brain. This 
enables automatic learning of features, which is particularly useful in endoscopy 
where images and videos lack structure and are not easily processed into specific 
features[9]. A convolutional neural network (CNN) is a subtype of deep learning which 
can take an input endoscopic image and learn specific features (e.g., colour, size, pit 
pattern), process the complex information through many different layers and produce 
an output prediction (e.g., oesophageal dysplasia or no dysplasia) (Figure 1).

To develop a machine learning model, data needs to be split into 3 independent 
groups-training set, validation set and testing set. The training set is used to build a 
model using the oesophageal labels (e.g., dysplasia or no dysplasia). The validation set 
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Figure 1  A deep learning model. Features of an endoscopic image processed through multiple neural layers to produce a predicted diagnosis of oesophageal 
cancer or no oesophageal cancer present on the image.

provides an unbiased evaluation of the model’s skill whilst tuning the hyper-
parameters of the model, for example, the number of layers in the neural network. It is 
used to ensure that the model is not overfitting to the training data. Overfitting means 
that the model will perform well on the training data but not on the unseen testing 
data. The test set is used to evaluate the performance of the predictive final model[7] 
(Figure 2).

ADVANCES IN ENDOSCOPIC IMAGING
Endoscopic imaging has advanced into a new era with the development of high 
definition digital technology. A charge coupled device chip in standard white light 
endoscopy produces an image signal of 10000 to 400000 pixels displayed in a standard 
definition format. The chips in a high definition white light endoscope produce image 
signals of 850000 to 1.3 million pixels displayed in high definition[10]. This has 
improved our ability to pick up the most subtle oesophageal mucosal abnormalities by 
assessing mucosal pit patterns and vascularity to allow a timely diagnosis of dysplasia 
or early cancer.

There have been further advances in optical technology in the endoscope with 
chromoendoscopy such as narrow-band imaging (NBI), i-scan (Pentax, Hoya) and blue 
laser imaging (Fujinon), which have further improved early neoplasia detection and 
diagnosis in the oesophagus. Table 1 summarises some of the studies investigating the 
accuracy of these imaging modalities in detecting BE dysplasia by formulating 
classification systems based on mucosal pit pattern, colour and vascular architecture.

In squamous epithelium the microvascular vascular patterns of intrapapillary 
capillary loops (IPCL) is used to aid in the diagnosis of early squamous cell cancer 
(Figure 3)[14]. The classification systems that are currently used are based on 
magnification endoscopy assessment of IPCL patterns[15].

The disordered and distorted mucosal and vascular patterns used to define the 
above classifications can be used to train the CNN to detect early cancer in the 
oesophagus.

BE AND EARLY CANCER
BE is the only identifiable premalignant condition associated with invasive 
oesophageal adenocarcinoma. There is a linear progression from non-dysplastic BE, to 
low grade and high-grade dysplasia. Early neoplasia which is confined to the mucosa 
have significant eradication rates of > 80%[16].

The standard of care for endoscopic surveillance for patients with BE are random 
biopsies taken as part of the Seattle protocol where four-quadrant biopsies are taken 
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Table 1 Studies showing accuracy in the detection of Barrett’s oesophagus dysplasia for each endoscopic modality

I-scan optical enhancement NBI BLI

Ref. Everson et al[11] Sharma et al[12] Subramaniam et al[13]

Features assessed Mucosal pit pattern, vessels Mucosal pit pattern, vessels Colour, mucosal pit patterns, vessels

Accuracy Experts = 84%, non-experts = 76% 85% Experts = 95.2%, non-experts = 88.3%

Sensitivity Experts = 77%, non-experts = 81% 80% Experts = 96%, non-experts = 95.7%

Specificity Experts = 92%, non-experts = 70% 88% Experts = 94.4%, non-experts = 80.8%

NBI: Narrow-band imaging; BLI: Blue laser imaging.

Figure 2  Three independent data sets are required to create a machine learning model that can predict an oesophageal cancer 
diagnosis.

every 2 cm of BE[17]. This method is not perfect and is associated with sampling error. 
The area of a 2 cm segment of BE is approximately 14 cm2, a single biopsy sample is 
approximately 0.125 cm2. Therefore, Seattle protocol biopsies will only cover 0.5 cm2 of 
the oesophageal mucosa which is 3.5% of the BE segment[18]. Dysplasia can often be 
focal and therefore easily missed. Studies have also shown that compliance with this 
protocol is poor and is worse on longer segments of BE[19].

The American Society for Gastrointestinal Endoscopy preservation and 
incorporation of valuable endoscopic innovations (PIVI) initiative was developed to 
direct endoscopic technology development. Any imaging technology with targeted 
biopsies in BE would need to achieve a threshold per patient sensitivity of at least 90% 
for the detection of high-grade dysplasia and intramucosal cancer. It would require a 
specificity of at least 80% in BE in order to eliminate the requirement for random 
mucosal biopsies during BE endoscopic surveillance. This would improve the cost and 
effectiveness of a surveillance programme. This is the minimum target an AI 
technology would need to meet in order to be able to be ready for prime time and a 
possible adjunct during a BE surveillance endoscopy[20].

An early study tested a computer algorithm developed based on 100 images from 44 
patients with BE. It was trained using colour and texture filters. The algorithm 
diagnosed neoplastic lesions on a per image level with a sensitivity and specificity of 
0.83. At the patient level a sensitivity and specificity of 0.86 and 0.87 was achieved 
respectively. This was the first study where a detection algorithm was developed for 
detecting BE lesions and compared with expert annotations[21].

A recent study developed a hybrid ResNet-UNet model computer aided diagnosis 
system which classified images as containing neoplastic or non-dysplastic BE with a 
sensitivity and specificity of 90% and 88% respectively. It achieved higher accuracy 
than non-expert endoscopists[22].

De Groof et al[23] performed one of the first studies to assess the accuracy of a 
computer-aided detection (CAD) system during live endoscopic procedures of 10 
patients with BE Dysplasia and 10 patients without BE dysplasia. Three images were 
evaluated every 2 cm of BE by the CAD system. Sensitivity and specificity of the CAD 
system in per level analysis was 91% and 89% respectively (Figure 4).
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Figure 3  Intrapapillary capillary loops patterns during magnification endoscopy to assess for early squamous cell neoplasia and depth 
of invasion. M1, M2, M3 = invasion of epithelium, lamina propria and muscularis propria respectively. SM1= superficial submucosal invasion. Citation: Inoue H, 
Kaga M, Ikeda H, Sato C, Sato H, Minami H, Santi EG, Hayee B, Eleftheriadis N. Magnification endoscopy in esophageal squamous cell carcinoma: a review of the 
intrapapillary capillary loop classification. Ann Gastroenterol 2015; 28: 41-48. Copyright© The Authors 2015. Published by Hellenic Society of Gastroenterology.

Hussein et al[24] developed a CNN trained using a balanced data set of 73266 frames 
from BE videos of 39 patients. On an independent validation set of 189436 frames from 
19 patients the CNN could detect dysplasia with a sensitivity of 88.3% and specificity 
of 80%. The annotations were created from and tested on frames from whole videos 
minimising selection bias.

Volumetric laser endomicroscopy (VLE) is a wide field imaging technology used to 
aid endoscopists in the detection of dysplasia in BE. An infrared light produces a 
circumferential scan of 6cm segments of BE up to a depth of 3 mm allowing the 
oesophageal layer and submucosal layer with its associated vascular networks to be 
visualized[25]. The issue is there is large volumes of complex data which the 
endoscopist needs to interpret. An Artificial intelligence system called intelligent real-
time image segmentation has been used to interpret the data produced from VLE. This 
software identifies 3 VLE features associated with histological evidence of dysplasia 
and displays the output with colour schemes. A hyper reflective surface (pink colour) 
suggests that there is increased surface maturation, cellular crowding and increased 
nuclear-to-cytoplasmic ratio. Hyporeflective structures (blue colour) suggests 
abnormal morphology of BE epithelial glands. A lack of layered architecture (orange 
colour) differentiates squamous epithelium from BE (Figure 5)[26]. A recent study 
analysed ex-vivo images from 29 BE patients with and without early cancer 
retrospectively. A CAD system which analysed multiple neighbouring VLE frames 
showed improved neoplasia detection in BE relative to single frame analysis with an 
AUC of 0.91[27].

Table 2 provides a summary of all the studies investigating the development of 
deep learning algorithms for the diagnosis of early neoplasia in BE.

ESCN
With advances in endoscopic therapy in recent years ESCN confined to the mucosal 
layer can be curatively resected endoscopically with a < 2% incidence of local lymph 
node metastasis. IPCL are the microvascular features which can be endoscopically 
used to help classify and identify ESCN and if there is a degree of invasion in the 
muscularis mucosa and submucosal tissue[16].

Lugols chromoendoscopy is a screening method for identifying ESCN during an 
upper GI endoscopy. However, despite a sensitivity of > 90%, it is associated with a 
low specificity of approximately 70%[32]. There is also a risk of allergic reaction with 
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Table 2 Summary of all the studies investigating the development of machine learning algorithms for the detection of dysplasia in Barrett’s oesophagus

Ref. Year Endoscopic 
processor Study design Study aim Algorithm used No. of 

patients
No. of BE 
images Sensitivity Specificity

Van der 
Sommen et al[21]

2016 WLE Fujinon Retrospective Assess feasibility of computer system to 
detect early neoplasia in BE

Machine learning, specific textures and colour 
filters

44 100 (60 
dysplasia, 40 
NDBE)

83% (per image), 
86% (per patient)

83% (per image), 
87% (per patient)

Sweger et al[28] 2017 VLE Retrospective Assess feasibility of computer algorithm to 
identify BE dysplasia on ex vivo VLE images

Several machine learning methods; discriminant 
analysis, support vector machine, AdaBoost, 
random forest, K-nearest neighbors

19 60 (30 dysplasia, 
30 NDBE)

90% 93%

Ebigbo et al[29] 2018 WLE, NBI, 
Olympus

Retrospective Detection of early oesophageal cancer Deep CNN with a residual net architecture 50 with early 
neoplasia

248 97% (WLE), 94% 
(NBI)

88% (WLE), 80% 
(NBI)

de Groof et al[30] 2019 WLE, Fujinon Prospective Develop CAD to detect early neoplasia in BE Supervised Machine learning. Trained on 
colour and texture features

60 60 (40 dysplasia, 
20 NDBE)

95% 85%

de Groof et al[22] 2020 WLE Fujinon, 
WLE Olympus

Retrospective, 
Prospective

Develop and validate deep learning CAD to 
improve detection of early neoplasia in BE

CNN pretrained on GastroNet. Hybrid 
ResNet/U-Net model

669 1704 (899 
dysplasia, 805 
NDBE)

90% 88%

Hashimoto 
et al[31]

2020 WLE, Olympus Retrospective Assess if CNN can aid in detecting early 
neoplasia in BE

CNN pretrained on image net and based on 
Xception architecture and YOLO v2

100 1832 (916 
dysplasia, 916 
NDBE)

96.4% 94.2%

de Groof et al[23] 2020 WLE, Fujinon Prospective Evaluate CAD assessment of early neoplasia 
during live endoscopy

CNN pretrained on GastroNet; hybrid 
ResNet/U-Net Model

20 - 91% 89%

Struyvenberg 
MR et al[27]

2020 VLE Prospective Evaluate feasibility of automatic data 
extraction followed by CAD using mutiframe 
approach to detect to dysplasia in BE

CAD multiframe analysis with principal 
component analysis

29 - - -

BE: Barrett’s oesophagus; WLE: White light endoscopy; NBI: Narrow band imaging; VLE: Volumetric laser endomicroscopy; CNN: Convolutional neural network; CAD: Computer-aided detection.

iodine staining. Advanced endoscopic imaging with NBI has a high accuracy for 
detecting ESCN however a randomised control trial showed its specificity was 
approximately 50%[33]. Computer assisted detection systems have been developed to 
try and overcome many of these issues which aid endoscopists in detecting early 
ESCN lesions.

Everson et al[16] developed a CNN trained with 7046 sequential high definition 
magnification endoscopy with NBI. These were classified by experts using the IPCL 
patterns and based on the Japanese Endoscopic Society classification. The CNN was 
able to accurately classify abnormal IPCL patterns with a sensitivity and specificity of 
89% and 98% respectively. The diagnostic prediction times were between 26 and 37 ms 
(Figure 6).

Nakagawa et al[34] developed a deep learning-based AI algorithm using over 14000 
magnified and non-magnified endoscopic images from 804 patients. This was able to 
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Figure 4  The computer-aided detection system providing real time feedback regarding absence of dysplasia (top row) or presence of 
dysplasia (bottom row). Citation: de Groof AJ, Struyvenberg MR, Fockens KN, van der Putten J, van der Sommen F, Boers TG, Zinger S, Bisschops R, de With 
PH, Pouw RE, Curvers WL, Schoon EJ, Bergman JJGHM. Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic 
procedures: a pilot study (with video). Gastrointest Endosc 2020; 91: 1242-1250. Copyright© The Authors 2020. Published by Elsevier.

predict the depth of invasion of ESCN with a sensitivity of 90.1% and specificity of 
95.8% (Figure 7).

Guo et al[3] trained a CAD system using 6473 NBI images for real time automated 
diagnosis of ESCN. The deep learning model was able to detect early ESCN on still 
NBI images with a sensitivity of 98% and specificity of 95%. On analysis of videos the 
per frame sensitivity was 60.8% on non-magnified images and 96.1% on magnified 
images. The per lesion sensitivity was 100%. This model had high sensitivity and 
specificity in both still images and real time video setting the scene for the 
development of better models for real time detection of early ESCN.

Endocytoscopy uses a high-power fixed-focus objective lens attached to the 
endoscope to give ultra-high magnification images. The area of interest is stained to 
allow identification of cellular structures like in standard histopathology techniques. 
This allows the endoscopist to characterise ESCN and make a real time histological 
diagnosis[35].

Kumagai et al[36] developed a CNN trained using more than 4000 endocytoscopic 
images of the oesophagus (malignant and non-malignant). The AI was able to 
diagnose esophageal squamous cell carcinoma with a sensitivity of 92.6%. This 
provides a potential AI tool which can aid the endoscopist by making an in vivo 
histological diagnosis. This would allow endoscopists to make a clinical decision in the 
same endoscopic session regarding resection of the early oesophageal cancer which 
would potentially save on costs by replacing the need for protocol biopsies

Table 3 provides a summary of all the studies investigating the development of 
deep learning algorithms for the diagnosis of ESCN.

AI AND HISTOLOGY ANALYSIS IN OESOPHAGEAL CANCER
In digital pathology tissue slides are scanned as high-resolution images as each slide 
contains a large volume of cells. The cellular structure needs be visible to the 
histopathologist in order to identify areas of abnormality[43]. Histopathological analysis 
often requires a lot of time, high costs and often manual annotation of areas of interest 
by the histopathologists. There is also a possible miss rate of areas of early oesophageal 
dysplasia as the area can be focal. There is also suboptimal interobserver agreement 
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Table 3 Summary of all the studies investigating the development of machine learning algorithms for the detection of early squamous cell neoplasia

Ref. Year Endoscopic processor Study 
design Study aim Algorithm used No. of 

patients No. of images Sensitivity Specificity

Shin et al[37] 2015 High resolution micro-
endoscopy

Retrospective Differentiate neoplastic and non-
neoplastic squamous oesophageal 
mucosa

Quantitative image analysis. 
Two-class linear discriminant 
analysis to develop classifier

177 375 87% 97%

Quang 
et al[38]

2016 High resolution micro-
endoscopy

Retrospective Differentiate neoplastic and non-
neoplastic squamous oesophageal 
mucosa

Two-class linear discriminant 
analysis to develop classifier

3 - 95% 91%

Horie 
et al[39]

2018 WLE, NBI, Olympus Retrospective Ability of AI to detect oesophageal 
cancer

Deep CNN (Multibox detector 
architecture)

481 - 97% -

Everson 
et al[16]

2019 Magnified NBI, Olympus Retrospective Develop AI system to classify IPCL 
patterns as normal/abnormal in 
endoscopically resectable lesions real 
time

CNN, explicit class activation 
maps generated to depict area 
of interest for CNN

17 7046 89% 98%

Nakagawa 
et al[34]

2019 Magnified and non-
magnified, NBI, BLI, 
Olympus, Fujifilm

Retrospective Predict depth of invasion of ESCN Deep CNN (multibox detector 
architecture)

959 15,252 90.1% 95.8%

Kumagai 
et al[36]

2019 ECS Retrospective Deep learning AI to analyse ECS images 
as possible replacement of biopsy-based 
histology

CNN constructed based on 
GoogLeNet

- 6235 92.6% 89.3%

Zhao et al[40] 2019 ME NBI, Olympus Retrospective Classification of IPCLs to improve ESCN 
detection

A double-labeling fully 
convolutional network

219 - 87% 84.1%

Guo et al[3] 2020 ME and non-ME NBI, 
olympus

Retrospective Develop a CAD for real-time diagnosis 
of ESCN

Model based on SegNet 
architecture

2672 13144 images (4250 
malignant, 8894 non-
cancerous), 168865 video 
frames

Images = 98.04%, non-
magnified video = 60.8%, 
magnified video = 96.1%

Images = 95.03%, non-
magnified /magnified 
video = 99.9%

Tokai 
et al[41]

2020 WLE, NBI, Olympus Retrospective Ability of AI to measure squamous cell 
cancer depth

Deep CNN - 2044 84.1% 73.3%

Ohmori 
et al[42]

2020 Magnified and non-
magnified, WLE, NBI, 
BLI, Olympus, Fujifilm

Retrospective Detect Oesophageal squamous cell 
cancer

CNN - 11806 non- magnified 
images, 11483 magnified 
images

Non-ME WLE = 90%, non-
ME NBI/BLI = 100%, ME 
= 98%

Non-ME WLE = 76%, 
non-ME NBI/BLI = 
63%, ME = 56%

WLE: White light endoscopy; NBI: Narrow band imaging; AI: Artificial intelligence; CNN: Convolutional neural network; IPCL: Intrapapillary capillary loops; BLI: Blue laser imaging; ESCN: Early squamous cell neoplasia; ECS: 
Endocytoscopic system; ME: Magnification endoscopy.

among expert GI histopathologists in certain histological diagnosis such as low-grade 
dysplasia in BE[44].

A novel AI system to detect and delineate areas of early oesophageal cancer on 
histology slides could be a key adjunct to histopathologists and help improve 
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Figure 5  Volumetric laser endomicroscopy image showing area of overlap (yellow arrow) between the 3 features of dysplasia identified 
with the colour schemes. A: View looking down into the oesophagus; B: Close up of dysplastic area; C: Forward view of the dysplastic area. A-C: Citation: 
Trindade AJ, McKinley MJ, Fan C, Leggett CL, Kahn A, Pleskow DK. Endoscopic Surveillance of Barrett's Esophagus Using Volumetric Laser Endomicroscopy With 
Artificial Intelligence Image Enhancement. Gastroenterology 2019; 157: 303-305. Copyright© The Authors 2019. Published by Elsevier.

detection and delineation of early oesophageal cancer.
Tomita et al[43] developed a convolutional attention-based mechanism to classify 

microscopic images into normal oesophageal tissue, BE with no dysplasia, BE with 
dysplasia and oesophageal adenocarcinoma using 123 histological images. 
Classification accuracy of the model was 0.85 in the BE-no dysplasia group, 0.89 in the 
BE with dysplasia group, and 0.88 in the oesophageal adenocarcinoma group.

ROLE OF AI IN QUALITY CONTROL IN THE OESOPHAGUS
The inspection time of the oesophagus and clear mucosal views have an impact on the 
quality of an oesophagoscopy and the yield of early oesophageal neoplasia detection. 
Assessment should take place with the oesophagus partially insufflated between 
peristaltic waves. An overly insufflated oesophagus can flatten a lesion which can in 
turn be missed[45]. The British Society of Gastroenterology consensus guidelines on the 
Quality of upper GI endoscopy recommends adequate mucosal visualisation achieved 
by a combination of aspiration, adequate air insufflation and use of mucosal cleansing 
techniques. They recommend that the quality of mucosal visualisation and the 
inspection time during a Barrett’s surveillance endoscopy should be reported[46].

Chen et al[47] investigated their AI system, ENDOANGEL, which provides 
prompting of blind spots during upper GI endoscopy, informs the endoscopist of the 
inspection time and gives a grading score of the percentage of the mucosa that is 
visualised.

CONCLUSION
Computer aided diagnosis of oesophageal pathology may potentially be a key adjunct 
for the endoscopist which will improve the detection of early neoplasia in BE and 
ESCN such that curative endoscopic therapy can be offered. There are significant miss 
rates of oesophageal cancers despite advances in endoscopic imaging modalities and 
an AI tool will off-set the human factors associated with some of these miss rates.
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Figure 6  Input images on the left and corresponding heat maps on the right illustrating the features recognised by the convolutional 
neural network when classifying images by recognising the abnormal intrapapillary capillary loops patterns in early squamous cell 
neoplasia. Citation: Everson M, Herrera L, Li W, Luengo IM, Ahmad O, Banks M, Magee C, Alzoubaidi D, Hsu HM, Graham D, Vercauteren T, Lovat L, Ourselin S, 
Kashin S, Wang HP, Wang WL, Haidry RJ. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of 
early oesophageal squamous cell carcinoma: A proof-of-concept study. United European Gastroenterol J 2019; 7: 297-306. Copyright© The Authors 2019. Published 
by SAGE Journals.

Figure 7  Esophageal squamous cell cancer diagnosed by the artificial intelligence system as superficial cancer with SM2 invasion. A and 
B: Citation: Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, Shichijo S, Nishida T, Yamada T, Yamaguchi S, Ogiyama H, Egawa S, Kishida 
O, Tada T. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. 
Gastrointest Endosc 2019; 90: 407-414. Copyright© The Authors 2019. Published by Elsevier.
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At the same time its key that AI systems avoid ‘overfitting’ where it performs well 
on training data but underperforms when exposed to new data. It needs to be able to 
detect early oesophageal cancer in low- and high-quality frames during real time 
endoscopy. This requires high volumes of both low- and high-quality training data 
tested on low- and high-quality testing data to reflect the real world setting during an 
endoscopy.

Further research is required on the use of AI in quality control in the oesophagus in 
order to allow endoscopists to meet the quality indicators necessary during a 
surveillance endoscopy as set out in many of the international guidelines. This will 
ensure a minimum standard of endoscopy is met.

Research in this area of AI is expanding and the future looks promising. To fulfil 
this potential the following is required: (1) Further development is needed to improve 
the performance of AI technology in the oesophagus to detect early cancer/dysplasia 
in BE or ESCN during real time endoscopy; (2) High quality clinical evidence from 
randomised control trials; and (3) Guidelines from clinical bodies or national institutes. 
Once implemented this will have a significant impact on this field of endoscopy.
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