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Abstract
BACKGROUND 
Identifying genetic mutations in cancer patients have been increasingly important 
because distinctive mutational patterns can be very informative to determine the 
optimal therapeutic strategy. Recent studies have shown that deep learning-based 
molecular cancer subtyping can be performed directly from the standard 
hematoxylin and eosin (H&E) sections in diverse tumors including colorectal 
cancers (CRCs). Since H&E-stained tissue slides are ubiquitously available, 
mutation prediction with the pathology images from cancers can be a time- and 
cost-effective complementary method for personalized treatment.

AIM 
To predict the frequently occurring actionable mutations from the H&E-stained 
CRC whole-slide images (WSIs) with deep learning-based classifiers.

METHODS 
A total of 629 CRC patients from The Cancer Genome Atlas (TCGA-COAD and 
TCGA-READ) and 142 CRC patients from Seoul St. Mary Hospital (SMH) were 
included. Based on the mutation frequency in TCGA and SMH datasets, we chose 
APC, KRAS, PIK3CA, SMAD4, and TP53 genes for the study. The classifiers were 
trained with 360 × 360 pixel patches of tissue images. The receiver operating 
characteristic (ROC) curves and area under the curves (AUCs) for all the 
classifiers were presented.

RESULTS 
The AUCs for ROC curves ranged from 0.693 to 0.809 for the TCGA frozen WSIs 
and from 0.645 to 0.783 for the TCGA formalin-fixed paraffin-embedded WSIs. 
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The prediction performance can be enhanced with the expansion of datasets. 
When the classifiers were trained with both TCGA and SMH data, the prediction 
performance was improved.

CONCLUSION 
APC, KRAS, PIK3CA, SMAD4, and TP53 mutations can be predicted from H&E 
pathology images using deep learning-based classifiers, demonstrating the 
potential for deep learning-based mutation prediction in the CRC tissue slides.

Key Words: Colorectal cancer; Mutation; Deep learning; Computational pathology; 
Computer-aided diagnosis; Digital pathology

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Identifying genetic mutations in cancer patients have been increasingly 
important because distinctive mutational patterns can be very informative to determine 
the optimal therapy. This study aimed to investigate the feasibility of mutation 
prediction for the frequently occurring actionable mutations with colorectal cancer 
(CRC) whole-slide images. The area under the curves for receiver operating 
characteristic curves ranged from 0.693 to 0.809 for APC, KRAS, PIK3CA, SMAD4, 
and TP53, showing the potential for deep learning-based mutation prediction in the 
CRC pathology images. Furthermore, the prediction performance can be enhanced with 
the expansion of datasets.

Citation: Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of clinically actionable genetic 
alterations from colorectal cancer histopathology images using deep learning. World J 
Gastroenterol 2020; 26(40): 6207-6223
URL: https://www.wjgnet.com/1007-9327/full/v26/i40/6207.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i40.6207

INTRODUCTION
Identifying genetic mutations in cancer patients has been increasingly important 
because mutational status can be very informative to determine the optimal 
therapeutic strategy[1]. However, molecular analysis is not performed routinely in 
every cancer patient, since it is not time and cost effective[2]. Thus, cost-effective 
alternatives for current molecular tests can be helpful in making appropriate treatment 
decisions. It has long been recognized that the histologic phenotypes reflect the genetic 
alterations in cancer tissues[3]. Since hematoxylin and eosin (H&E)-stained tissue slides 
are produced for almost every cancer patient, mutation prediction from the tissue 
slides can be a time- and cost-effective alternative method for individualized 
treatment. Thus, researchers attempted to examine the genotype–phenotype 
relationship in the H&E-stained tissue slides, and some gross tissue patterns related to 
specific molecular aberrations have been reported[4-9]. However, it remains largely 
unknown how specific molecular abnormalities are related to the specific 
histomorphologic findings, as it is not easy to capture the subtle features underlying 
the specific molecular alterations with the naked eye. To overcome the limitation of 
visual inspection of tissue structures by pathologists, various image analysis 
techniques have been applied for many decades to detect the subvisual characteristics 
of tissue patterns, not discernible to the unaided eyes[1]. Particularly, deep learning has 
been successfully applied to perform tasks considered too challenging for conventional 
image analysis techniques because it learns discriminative features directly from the 
large training dataset for any given task[10]. Therefore, deep learning is increasingly 
applied for tissue analysis tasks[11]. With the approval to use the digitized whole-slide 
images (WSIs) for diagnostic purposes, the digitization of tissue slides has been 
explosively increasing, providing huge digitized tissue data[12]. Combining the routine 
digitization of tissue slides with deep learning, the computer-aided analysis of WSIs 
could be adopted to support the evaluation of molecular alterations in H&E-stained 
cancer tissues in the near future. Although deep learning-based tissue analysis is still 
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in its early phase, few promising results have been published. For example, a recent 
study reported that deep learning-based molecular cancer subtyping can be performed 
directly from the standard H&E sections obtained from patients with colorectal 
cancers (CRCs)[13]. Microsatellite instability can also be predicted from the tissue 
slides[14]. Furthermore, positive results for the mutation prediction of specific genes 
from histopathologic images have been reported in patients with various cancer 
types[3,15-17].

Motivated by these recent studies, we tried to predict the frequently occurring and 
clinically meaningful mutations from the H&E-stained CRC tissue WSIs with deep 
learning-based classifiers. Based on the frequency of mutation and prognostic values 
of the genes, we chose APC, KRAS, PIK3CA, SMAD4, and TP53 genes for the current 
study. The area under the curves (AUCs) for the receiver operating characteristic 
(ROC) curves ranged from 0.645 to 0.809 for The Cancer Genome Atlas (TCGA) 
datasets, showing the potential for deep learning-based mutation prediction in the 
CRC tissue slides. By combining two different datasets for training, the prediction 
performance can be enhanced with the expansion of datasets.

MATERIALS AND METHODS
Tests with TCGA WSI dataset
TCGA program offers the opportunity to reveal the genotype-phenotype relationship 
because it provides extensive archives of digital pathology slides with multi-omics test 
results[18]. Both frozen section tissue slides and formalin-fixed paraffin-embedded 
(FFPE) diagnostic slides were provided by the program. The WSIs from the TCGA-
COAD (colon cancer) and TCGA-READ (rectal cancer) projects were combined in this 
study because colonic and rectal adenocarcinoma share similar molecular and 
histological features[18]. After removing the WSIs with poor quality, 629 patients were 
included in the present study. We chose to include the genetic alteration including 
frame shift insertion and deletion, missense mutations, and nonsense mutation. For 
APC, KRAS, PIK3CA, SMAD4, and TP53 genes, 436, 249, 133, 74, and 340 patients were 
confirmed to have the mutations, respectively. Deep learning did not perform 
optimally when there was a huge imbalance between classes[19]. In a previous study, 
we failed to obtain the balanced performance in tissue classification tasks unless the 
dataset itself was forced to have similar numbers between the classes[20]. Thus, we 
limited the difference in patient numbers between the mutation group and wild-type 
group by less than 1.4 fold through a random sampling. To match this limitation, we 
selected 263 patients with APC mutation as there were only 188 patients with the APC 
wild-type gene in the cohorts. The final patient IDs with their respective mutations are 
listed in Supplementary Table 1.

Various artifacts including air bubbles, compression artifacts, out-of-focus blur, pen 
markings, tissue folding, and white background are unavoidable in the WSIs. To make 
the prediction process fully automated, these artifacts should be automatically 
removed. Because it is impractical to analyze a WSI as a whole, small image patches 
are often sliced from a WSI and used for the analysis. Thus, we built a deep learning-
based tissue/non-tissue classifier for 360 × 360 pixel image patches at 20 × 
magnification to remove all of these artifacts at once (Figure 1A). The classifier was a 
simple convolutional neural network (CNN) with 12 (5 × 5), 24 (5 × 5), and 24 (5 × 5) 
convolutional filters, each followed by a (2 × 2) max pooling layer. The tissue/non-
tissue classifier could filter out more than 99.9% of improper patches. Next, tumor 
tissues should be delineated to predict the mutational status of cancer cells. Because of 
the freezing process for frozen tissue preparation, the frozen and FFPE tissue WSIs can 
differ in their morphologic features. Thus, we built separate normal/tumor classifiers 
for the frozen and FFPE WSIs based on the 360 × 360 pixel tissue image patches using 
the Inception-v3 model, a widely used CNN architecture. To train the wild-
type/mutation classifiers for each gene, frozen and FFPE tissue patches with tumor 
probability higher than 0.9 by each tumor classifier were collected (Figure 1B). We 
arbitrarily chose the tumor probability as 0.9 because we decided to only include 
tissues with prominent tumor features. Although each slide may contain mixed 
regions of wild-type and mutated tissues considering the tumor heterogeneity, we 
assigned the same label for all tumor tissue patches in a WSI based on the mutational 
status of the patients. This labeling strategy was inevitable since we had no methods to 
delineate the wild-type and mutated regions before the classifiers could be built. The 
classifiers for the five genes were separately trained and validated with a patient-level 
ten-fold cross-validation scheme for frozen and FFPE WSIs. The slide-level mutation 
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Figure 1 Fully automated prediction of mutation with three consecutive classifiers. A: Proper tissue patches can be selected by the tissue/non-tissue 
classifier. The four insets in the middle panel demonstrated the tissue patches representing pen marking, blurry scanned area, background rich region, and tissue 
folding, clockwise from top left, all removed by the tissue/non-tissue classifiers. Then, the normal/tumor classifier delineates the tumor patches among the proper 
tissue patches; B: The wild-type/mutation classifiers are applied only for patches with tumor probability higher than 0.9. The patch-level probabilities of mutation are 
averaged to yield the slide-level probability.

probability was calculated as the average of the probabilities of all the tumor patches 
in the WSI. For the training of the Inception-v3 models, we used a mini-batch size of 
128, and the cross entropy loss function was adopted as a loss function. Deep neural 
networks were implemented using the TensorFlow deep learning library (
http://tensorflow.org). To minimize overfitting, data augmentation techniques, 
including random rotations by 90°, random horizontal/vertical flipping, and random 
perturbation of the contrast and brightness, were applied to the tissue patches during 
training. In addition, 10% of the training slides were used as a validation dataset for 
the early stopping of the training. At least five separate classifiers were trained for 
each gene and tissue modality, and the classifier with the best AUC on the test dataset 
was included in the results.

Tests on the external cohorts
Patient cohort: A total of 142 patients with CRC who previously underwent surgical 
resection in Seoul St. Mary’s hospital between 2017 and 2019 were enrolled (SMH 
dataset). All cases were sporadic, without any familial history of CRCs. The 
clinicopathological parameters including age, sex, and tumor location were 
retrospectively reviewed from the medical records. The study was approved by the 
Institutional Review Board of the College of Medicine at the Catholic University of 
Korea, No. KC19SESI0787.

Mutation prediction on SMH dataset: For APC, KRAS, PIK3CA, SMAD4, and TP53 
genes, 66, 75, 31, 23, and 98 patients were confirmed to have the mutations, 
respectively. The sequencing methods are described in Supplementary Methods. 
Because the SMH dataset was originally collected to extra-validate the model trained 
on the TCGA datasets, we did not adjust the patient numbers between the classes. The 
normal/tumor classifier for TCGA FFPE tissues was also used to discriminate the 
tumor tissue patches of SMH WSIs. The normal/tumor classification accuracy was 
reviewed by Lee SH and Song IH and was confirmed to be valid. Again, patches with 
tumor probability higher than 0.9 were collected for mutational status classification. 
Then, the SMH data were split into ten folds, and each training fold was mixed with 
TCGA training fold to build new classifiers trained on both datasets. The classification 
results of the new classifiers on TCGA or SMH datasets were compared with the 
TCGA-based classifiers to investigate the effects of the expanded training dataset.

Statistical analysis
The ROC curves and their AUCs for all classifiers were presented to demonstrate the 
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performance of each classifier. We used a permutation test with 1000 iterations to 
compare the differences between the two paired or unpaired ROC curves when 
necessary[21]. A P value of < 0.05 was considered significant.

RESULTS
This study aimed to investigate the feasibility of mutation prediction for the frequently 
occurring mutations in the CRC tissue WSIs. Since only tumor tissues would be 
meaningful for the prediction of the mutational status in the tissue slides, three 
different tissue patch classifiers were sequentially applied to discriminate between 
tissue/non-tissue, normal/tumor, and wild-type/mutation in order (Figure 1). Only 
proper tissue patches with high tumor probabilities were used to determine the 
mutational status (Figure 1B). Patient-level ten-fold cross validation was applied for 
both frozen and FFPE datasets to fully evaluate the properties of the TCGA CRC WSIs.

From Figures 2 to 6, the classification results for APC, KRAS, PIK3CA, SMAD4, and 
TP53 genes are presented for both frozen (upper panels) and FFPE (lower panels) 
TCGA WSIs. In A and C of every figure, the representative binary heatmaps 
demonstrating the distribution of tissue patches classified as wild-type or mutation are 
presented. From left to right, WSIs with gene mutation correctly classified as mutation, 
with wild-type gene correctly classified as wild type, with gene mutation falsely 
classified as wild-type, and with wild-type gene falsely classified as mutation are 
presented, which were determined by the probability threshold set to 0.5. The 
sensitivity and specificity of a classifier can be much improved by setting the threshold 
appropriately. However, we set the threshold to 0.5 in the figures for simplicity 
because every classifier for different folds had different optimal thresholds. To 
demonstrate the differences in the performance between folds, slide-level ROC curves 
for folds with the lowest and highest AUCs were presented (left and middle ROC 
curves in the figures). Finally, the overall performance was inferred based on the slide-
level ROC curves drawn for the concatenated results from all ten folds (right ROC 
curves). For the APC gene (Figure 2), the AUCs per fold ranged from 0.648 to 0.819 for 
the frozen tissues and from 0.655 to 0.880 for the FFPE tissues. The concatenated AUCs 
were 0.771 and 0.742 for the frozen and FFPE tissues, respectively. For the KRAS gene 
(Figure 3), the performance was much better for the frozen tissues than for the FFPE 
tissues with a per fold AUC for the frozen tissues of 0.675-0.937 and a concatenated 
AUC of 0.778. For the FFPE tissues, the concatenated AUC was only 0.645, while the 
per fold AUCs ranged from 0.594 to 0.736. With regard to the PIK3CA gene (Figure 4), 
the lowest and highest AUCs per fold were 0.669 and 0.775 for the frozen tissues and 
0.597 and 0.857 for the FFPE tissues. The concatenated AUCs were 0.713 and 0.690, 
respectively. For the SMAD4 gene (Figure 5), AUCs per fold ranged from 0.619 to 0.849 
for the frozen tissues and from 0.587 to 0.926 for the FFPE tissues, while the 
concatenated AUCs were 0.693 and 0.763, respectively. With regard to the TP53 gene 
(Figure 6), the lowest and highest AUCs per fold were 0.707 and 0.963 for the frozen 
tissues and 0.737 and 0.805 for the FFPE tissues. The concatenated AUCs were 0.809 
and 0.783, respectively. Overall, the wild-type/mutation classifiers for the TP53 gene 
yielded the highest AUCs for both frozen and FFPE tissues of the TCGA datasets. 
Between the ROC curves of the frozen and FFPE tissues, classifiers for the frozen 
tissues yielded better results for the APC and KRAS genes (P < 0.05, P < 0.001, P = 
0.068, P = 0.057, and P = 0.115 between the frozen and FFPE classifiers for APC, KRAS, 
PIK3CA, SMAD4, and TP53 genes, respectively, by Venkatraman’s permutation test for 
unpaired ROC curves).

The generalizability of a deep learning model for the external dataset is an 
important issue to be validated. Thus, we collected our own CRC FFPE WSIs with 
information on genetic mutation. The normal/tumor classifier for the TCGA FFPE 
tissues was applied to collect the tissue patches with high tumor probabilities. Then, 
the mutation classifiers for each gene trained on the TCGA FFPE tissues were applied 
to the tumor patches. The slide-level ROC curves for the five genes are presented in 
Supplementary Figure 1. The AUCs were 0.654, 0.581, 0.570, 0.652, and 0.775 for APC, 
KRAS, PIK3CA, SMAD4, and TP53 genes, respectively. For the APC, KRAS, and 
PIK3CA genes, the performance of the TCGA-based mutation classifiers on the SMH 
dataset were worse than that on the TCGA dataset (P < 0.01, P < 0.05, P < 0.05, P = 
0.107, and P = 0.263 for APC, KRAS, PIK3CA, SMAD4, and TP53 genes, respectively, by 
Venkatraman’s permutation test for unpaired ROC curves). These results indicated 
that the mutation classifiers did not have an excellent generalizability when they were 
trained only with the TCGA WSI datasets. It remains unclear whether the performance 
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Figure 2 Classifiers to predict APC gene mutation for the Cancer Genome Atlas colorectal cancer tissue slides. A: Representative whole slide 
images (WSIs) of the frozen slides with APC gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene mutation 
falsely classified as wild-type, and with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold with 
lowest area under the curve (AUC), for the fold with highest AUC, and for the concatenated results of all ten folds, from left to right, obtained with the classifiers 
trained with the frozen tissues; C and D: Same as A and B, but the results were for the formalin-fixed paraffin-embedded WSIs. APC-M: APC mutated; APC-W: APC 
wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

could be improved when more data are used for the training. Thus, we combined the 
TCGA and SMH datasets to train new sets of mutation classifiers. Patient-level ten-
fold cross validation schemes were also used for the mixed dataset. The performance 
of the SMH dataset showed an obvious improvement, since the SMH data were 
included in the training data in this setting. The AUCs for APC and KRAS genes 
increased to 0.812 and 0.832 (Figure 7, P < 0.01 and P < 0.001 compared with the 
TCGA-trained classifiers by Venkatraman’s permutation test for paired ROC curves). 
Improved results were also obtained for PIK3CA, SMAD4, and TP53 with AUCs of 
0.769, 0.782, and 0.845, respectively (Figure 8, P < 0.05, P < 0.01, and P < 0.05 by 
Venkatraman’s permutation test for paired ROC curves). More importantly, the 
performance of the TCGA data was also generally improved by the classifiers trained 
on both datasets (Supplementary Figure 2). The AUCs were 0.766, 0.694, 0.708, 0.791, 
and 0.822 for the APC, KRAS, PIK3CA, SMAD4, and TP53 genes, respectively (P = 
0.072, P < 0.01, P = 0.091, P = 0.074, and P < 0.05 compared with the TCGA-trained 
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Figure 3 Classifiers to predict KRAS gene mutation for the Cancer Genome Atlas colorectal cancer tissue slides. A: Representative whole 
slide images (WSIs) of the frozen slides with KRAS gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene 
mutation falsely classified as wild-type, and with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold 
with lowest area under the curve (AUC), for the fold with highest AUC, and for the concatenated results of all ten folds, from left to right, obtained with the classifiers 
trained with the frozen tissues; C and D: Same as A and B, but the results were for the formalin-fixed paraffin-embedded WSIs. KRAS-M: KRAS mutated; KRAS-W: 
KRAS wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

classifiers). These results indicated that the deep learning-based classifiers for 
mutation prediction in tissue slides can yield better performance when more data are 
collected from various sources.

DISCUSSION
In the present study, we selected the APC, KRAS, PIK3CA, SMAD4, and TP53 genes 
because they were frequently occurring in both TCGA and SMH CRC datasets and 
had prognostic values. APC is an important tumor suppressor known to play a role in 
CRC development. Deactivating APC leads to the constitutive activation of the Wnt 
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Figure 4 Classifiers to predict PIK3CA gene mutation for the Cancer Genome Atlas colorectal cancer tissue slides. A: Representative whole 
slide images (WSIs) of the frozen slides with PIK3CA gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene 
mutation falsely classified as wild-type, and with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold 
with lowest area under the curve (AUC), for the fold with highest AUC, and for the concatenated results of all ten folds, from left to right, obtained with the classifiers 
trained with the frozen tissues; C and D: Same as A and B, but the results were for the formalin-fixed paraffin-embedded WSIs. PIK3CA-M: PIK3CA mutated; PIK3CA
-W: PIK3CA wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

signaling pathway, which may contribute to tumor progression[22]. The frequency 
of APC mutations was 47% for the SMH dataset, which is a slightly higher mutational 
rate compared with that in previous studies (24.2%-44.8%). The RAS proto-oncogenes (
HRAS, KRAS, and NRAS) play a pivotal role in numerous basic cellular functions, such 
as control of cell growth, differentiation, and apoptosis, and regulate key signaling 
cascades including phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 
kinase (MAPK) pathways[23,24]. Mutations in RAS family members are found in 20% of 
all human cancers, of which KRAS mutations account for 85%[25]. KRAS mutated in 
30% to 50% of patients with CRCs[25]. In the SMH dataset, the frequency was 53%. 
KRAS is a critical oncogene involved in the MAPK signaling pathway, and KRAS 
mutations promote colorectal adenoma growth in the early phase of carcinogenesis[26]. 
The presence of activating KRAS and NRAS mutations is a predictor of resistance to 
epidermal growth factor receptor (EGFR) inhibitors, such as cetuximab or 
panitumumab[27,28]. The PIK3CA gene is responsible for coordinating various cellular 
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Figure 5 Classifiers to predict SMAD4 gene mutation for the Cancer Genome Atlas colorectal cancer tissue slides. A: Representative whole 
slide images (WSIs) of the frozen slides with SMAD4 gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene 
mutation falsely classified as wild-type, and with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold 
with lowest area under the curve (AUC), for the fold with highest AUC, and for the concatenated results of all ten folds, from left to right, obtained with the classifiers 
trained with the frozen tissues; C and D: Same as A and B, but the results were for the formalin-fixed paraffin-embedded WSIs. SMAD4-M: SMAD4 mutated; SMAD4-
W: SMAD4 wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

processes, including proliferation, migration, and survival. The PIK3CA mutation is 
associated with the activation of downstream PI3K/Akt signaling, which in turn 
deregulates other signaling pathways that contribute to oncogenic transformations[29]. 
The PIK3CA mutation occurs in 10%-30% of patients with CRCs[30]. In the present 
study, the frequency of the PIK3CA mutation was observed to be 22%. Recent studies 
have shown that PIK3CA mutations are associated with a worse clinical outcome and 
with a negative prediction for anti-EGFR targeted therapy[31]. SMAD4 is an essential 
intermediator in the TGFβ signaling pathway, exhibiting a pivotal role as a tumor 
suppressor gene in CRC[32]. SMAD4 mutations occur in 10%-20% of patients with 
CRC[32,33]. In the SMH dataset, the rate of the SMAD4 mutation was 16%. Recent studies 
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Figure 6 Classifiers to predict TP53 gene mutation for the Cancer Genome Atlas colorectal cancer tissue slides. A: Representative whole slide 
images (WSIs) of the frozen slides with TP53 gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene mutation 
falsely classified as wild-type, and with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold with 
lowest area under the curve (AUC), for the fold with highest AUC, and for the concatenated results of all ten folds, from left to right, obtained with the classifiers 
trained with the frozen tissues; C and D: Same as A and B, but the results were for the formalin-fixed paraffin-embedded WSIs. TP53-M: TP53 mutated; TP53-W: 
TP53 wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

have demonstrated that somatic SMAD4 mutations are more common in patients with 
advanced stages, and a decrease in the level of SMAD4 expression is associated with 
worse recurrence-free and overall survival in patients with CRC[32]. The tumor 
suppressor gene TP53 regulates DNA repair mechanism and apoptosis. Loss of TP53 
function is one of the major events in the development of CRC, which is thought to 
occur in the later stages of colon cancer progression[34]. The TP53 mutation rate in the 
SMH dataset was 69%, which is consistent with the frequencies reported in various 
studies (45%-84%)[35].

In general, the APC mutation is thought to have no prognostic significance[36]. 
However, in a specific situation such as in a microsatellite stable proximal colon 
cancer, wild-type APC has been associated with poorer survival[37]. On the contrary, 



Jang HJ et al. Deep learning-based mutation prediction

WJG https://www.wjgnet.com 6217 October 28, 2020 Volume 26 Issue 40

Figure 7 Mutation prediction of APC and KRAS genes for the Seoul St. Mary Hospital colorectal cancer tissue slides by the classifiers 
trained with both The Cancer Genome Atlas and Seoul St. Mary Hospital data. A: Representative whole slide images of the slides with APC gene 
mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene mutation falsely classified as wild-type, and with wild-type 
gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold with lowest area under the curve (AUC), for the fold with 
highest AUC, and for the concatenated results of all ten folds, from left to right; C and D: Same as A and B, but the results were for the KRAS gene. SMH: Seoul St. 
Mary Hospital; APC-M: APC mutated; APC-W: APC wild-type; KRAS-M: KRAS mutated; KRAS-W: KRAS wild-type; AUC: Area under the curve; FFPE: Formalin-fixed 
paraffin-embedded.

KRAS, PIK3CA, SMAD4, and TP53 gene mutations were associated with poorer 
prognosis in CRCs[34,38-40]. Thus, information on the mutational status of these genes can 
be useful in making therapeutic decisions for CRC patients. On occasion, a specific 
gene mutation can be related to a specific visual characteristic in tissue histology. For 
example, the PIK3CA mutation often coincides with lymphovascular invasion, tumor 
budding, and a high number of poorly differentiated clusters in CRC tissues[39]. 
However, it is not always possible to discover the visually discernible features 
reflecting the mutation of a specific gene. Therefore, we adopted deep learning to 
predict the mutational status of the five genes because the discriminative features of 
the mutations can be automatically learned directly from the large training data of 
tissue images. To our knowledge, this is the first study to evaluate the mutation 
prediction capabilities of deep learning models for the frequently occurring mutations 
in the pathologic tissue slides of CRC patients.

In all the mutation classifiers applied to the TCGA frozen and FFPE tissues, the 
slide-level discrimination capabilities were much better against chance performance (P 
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Figure 8 Mutation prediction of PIK3CA, SMAD4, and TP53 genes for the Seoul St. Mary Hospital colorectal cancer tissue slides by the 
classifiers trained with both The Cancer Genome Atlas and Seoul St. Mary Hospital data. A: Representative whole slide images of the slides with 
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PIK3CA gene mutation correctly classified as mutation, with wild-type gene correctly classified as wild-type, with gene mutation falsely classified as wild-type, and 
with wild-type gene falsely classified as mutation, from left to right; B: Receiver operating characteristic curves for the fold with lowest area under the curve (AUC), for 
the fold with highest AUC, and for the concatenated results of all ten folds, from left to right; C and D: Same as A and B, but the results were for the SMAD4 gene; E 
and F: Same as A and B, but the results were for the TP53 gene. PIK3CA-M: PIK3CA mutated; PIK3CA-W: PIK3CA wild-type; SMAD4-M: SMAD4 mutated; SMAD4-
W: SMAD4 wild-type; TP53-M: TP53 mutated; TP53-W: TP53 wild-type; AUC: Area under the curve; FFPE: Formalin-fixed paraffin-embedded.

< 0.001 for all five genes by permutation test). These results indicated that the 
Inception-v3 model learned valid features to discriminate the mutated tissue 
phenotypes of each gene. In the case of APC and KRAS genes, the classifiers for the 
frozen tissues yielded better results compared with the FFPE tissues, although the 
frozen sections generally showed poorer tissue quality than did the FFPE sections. It 
can be explained by the fact that the frozen sections provided the best representation 
of the tissue contents on which the genomic signatures were tested[18]. Since the FFPE 
sections can be taken far from the frozen tissue sections, the mutational status can be 
different between them, considering the heterogeneity of large tumors. When we 
validated the classifiers trained with the TCGA FFPE tissues on the SMH WSIs, the 
performance was generally poorer (Supplementary Figure 1). Deep learning operates 
well under a condition where both the training and test datasets come from the same 
distribution[41]. For the H&E-stained tissue slides, the quality may vary because they 
undergo multiple processes for preparation including formalin fixation, paraffin 
embedding, sectioning, and staining, which can be slightly different between 
institutes[42]. Furthermore, the ethnic difference between the TCGA and SMH datasets 
may also contribute to the difference in the performance. Although the difference can 
be negligible to human eye, deep learning can be very sensitive to the subtle difference 
in tissue conditions. Therefore, many researchers insisted on the necessity of using 
large multi-national and multi-institutional datasets to enhance the generalizability of 
the deep learning model[2,12]. Thus, we combined the two datasets to build new 
classifiers trained on both TCGA and SMH datasets. Naturally, the performance for 
the SMH data was greatly enhanced because the tissue features of the data were 
exposed to the classifiers in this setting. More importantly, the performance of the 
TCGA data was also enhanced by adding the WSIs from the SMH dataset for training. 
These results clearly demonstrated that multi-national and multi-institutional datasets 
can improve the performance of the mutation classifiers. However, it remains unclear 
how far the performance can be improved if much more data are supplied.

When we scrutinized the binary heatmaps of falsely classified WSIs, we recognized 
that the wild-type and mutated patches were generally aggregated rather than 
dispersed. The patterns implied the possibility that the tumor tissues in a tissue slide 
may have different mutational statuses between different regions. Large tumors can be 
molecularly heterogeneous, and the tumor heterogeneity can contribute to the 
resistance to treatment[43]. Therefore, tumor heterogeneity has been an important issue 
for both researchers and clinicians. To elucidate the spatial heterogeneity of a tumor, 
molecular methods with high spatial specificity such as multi-region sequencing and 
single-cell sequencing can be applied to examine a tissue sample. However, a random 
sampling of tissues for these molecular tests would be very inefficient. If possible 
regions of molecular heterogeneity in a tissue slide could be identified before the tests, 
molecular testing can be more specific and efficient. Furthermore, there are 
possibilities of false negative molecular tests because of the imprecise delineation of 
target regions in a tissue block[12]. Therefore, it is very important to objectively 
discriminate the tumor regions for the molecular evaluation of the tumor tissues. Thus, 
both normal/tumor and wild-type/mutation classifiers can be used to delineate the 
appropriate target sites for various molecular tests in cancer tissues. For example, 
Supplementary Figure 3 presents the heatmaps for the mutational status of all five 
genes in a TCGA frozen tissue slide, demonstrating how different regions of a slide 
can have different mutational statuses. When an overlaid probability map of mutation 
was drawn, areas with low and high mutational statuses can be recognized. It may not 
be easy to obtain this kind of information without the help of deep learning. Hence, 
molecular tests with high spatial specificity can be targeted to specific regions 
depending on the purpose of the tests. Therefore, these classifiers can make the 
selection of lesional regions for relevant multi-omics testing fully automated in the 
near future[2].

Limitations also exist for the deep learning-based tissue classifiers. One of the 
limitations is the sensitive nature of deep learning to minute differences in the 
datasets. Because of the sensitive nature, classifiers applied to very subtly different 
conditions should be separately built. For example, classifiers for the frozen and FFPE 
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tissues should be separately trained for the same tasks. It requires additional data 
collection and training overload. In clinical practice, pathologists should take an 
additional step to determine the kind of classifiers that should be applied for a specific 
specimen. It is currently inevitable to separately build classifiers to support various 
real-world tasks in the pathology laboratories. Therefore, manual selection of 
appropriate classifiers for target tasks is a necessary step that can limit the fully 
automated adoption of deep learning-based classifiers in the pathology workflows.

In the current study, we used the high-throughput cancer panel to identify 
mutations in CRC tissues of the SMH dataset. This panel test approach makes it 
possible to identify diverse clinically actionable mutations in a single assay. However, 
it is quite expensive to prepare the equipment necessary to perform the test and to 
save a large number of data generated. This study demonstrated that a deep learning-
based method could be a useful and effective tool for the prediction of actionable 
mutations from CRC WSIs. However, the interpretation of decision made by the deep 
learning-based classifier is unclear because of the black box nature of deep learning 
and should be further studied. Besides this aspect, the advantages and disadvantages 
between the mutation panel test (molecular test) and deep learning method were 
described in Table 1.

Despite the limitation, with the increasing digitization of tissue slides, various 
computer-assisted methods will be introduced for histopathologic interpretation and 
clinical care. In the present study, we demonstrated the potential of deep learning-
based classifiers to predict mutations in the CRC WSIs. Although the classifiers in this 
study are not yet enough to be used for predicting the genetic mutations in the clinic, 
deep learning-based methods have the potential to learn features for discriminating 
the wild-type tissues from the mutated tissues, which are not easily discernible to the 
human eye. Thus, deep learning will be increasingly adopted to discover new tissue-
based biomarkers, which provide fundamental information for personalized medicine. 
With the accumulation of large sets of WSI data, deep learning-based tissue analyses 
will play important roles in the better characterization of cancer patients and will be an 
essential part of digital pathology in the era of precision medicine.

CONCLUSION
In the present study, we demonstrated that the APC, KRAS, PIK3CA, SMAD4 and 
TP53 mutation can be predicted from H&E pathology images using the deep learning-
based classifiers. Furthermore, by combining the TCGA and our datasets for training, 
the prediction performance was enhanced. Therefore, with the accumulation of tissue 
image data for training, deep learning can be used to supplement current molecular 
testing methods in the near future.
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Table 1 The advantages and disadvantages between the mutation panel test and deep learning-based method

Mutation panel test Deep learning-based method

Advantages (1) High throughput method: Multiplex 
analysis of various genes; and (2) 
Quantitative and sensitive detection of 
genomic aberrations.

(1) More rapid turnaround time: Once trained, the predictions are fast (less than 5 min per gene) 
and fully automated; (2) Better picture of tumor heterogeneity: Heat map analysis provides 
insights into spatial distribution of mutations; and (3) Remote testing: It may be able to detect 
genetic mutation from pictures taken directly from the microscope at the remote institute.

Disadvantages (1) Longer turnaround time: Run lasts 
from 1 to 3 d; and (2) High complexity 
of workflow: Requires complex sample 
preparation.

(1) Requires separate classifier for each gene; (2) Requires large training dataset: Neural 
networks work best with more data; and (3) Deep learning method is a black box: It is not 
straightforward to understand how the decision is made.

ARTICLE HIGHLIGHTS
Research background
Identifying genetic mutations in cancer patients have been increasingly important 
because distinctive mutational patterns can be very informative to determine the 
optimal therapeutic strategy. In recent years, the digitization of pathology slide images 
has been explosively increasing, providing huge digitized tissue data. Combining the 
routine digitization of pathology whole-slide images (WSIs) with deep learning, 
computer-aided mutation prediction with the pathology images from cancers can be a 
time- and cost-effective complementary method for personalized treatment.

Research motivation
Recent studies have reported that deep learning-based molecular cancer subtyping 
and microsatellite instability prediction can be performed directly from the standard 
hematoxylin and eosin (H&E) sections in diverse cancers. Motivated by these recent 
studies, we tried to predict the frequently occurring and clinically meaningful 
mutations from the H&E-stained colorectal cancer (CRC) tissue WSIs with deep 
learning-based classifiers. Cost-effective alternatives for current molecular tests can be 
helpful to support the decision-making process for the management of patients with 
CRCs.

Research objectives
The present study aimed to investigate the feasibility of deep learning-based mutation 
prediction for the frequently occurring mutations in CRCs using H&E WSIs.

Research methods
We built and tested the classifiers for mutation prediction on the 629 The Cancer 
Genome Atlas (TCGA) CRC dataset and validated them with the 142 Seoul St. Mary 
Hospital (SMH) CRC dataset. Based on the frequency of mutations in both the TCGA 
and SMH datasets, we chose APC, KRAS, PIK3CA, SMAD4, and TP53 genes for the 
current study. The classifiers were trained with 360 × 360 pixel patches of tissue 
images. The receiver operating characteristic (ROC) curves and their area under the 
curves (AUCs) were presented for all the classifiers to demonstrate the performance of 
each classifier.

Research results
The AUCs for ROC curves ranged from 0.693 to 0.809 for the TCGA frozen WSIs and 
from 0.645 to 0.783 for the TCGA formalin-fixed paraffin-embedded WSIs. Moreover, 
the prediction performance can be enhanced with the expansion of datasets. The 
prediction performance was improved with the classifiers trained with both TCGA 
and SMH data.

Research conclusions
The present study demonstrated that the APC, KRAS, PIK3CA, SMAD4, and TP53 
mutations can be predicted from H&E pathology images using deep learning-based 
classifiers, showing the potential for deep learning-based mutation prediction in the 
CRC tissue slides.

Research perspectives
Although the classifiers in this study were not enough to be used for predicting the 
genetic mutations in the clinic, we can recognize the potential of deep learning-based 
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methods to learn features for discriminating the wild-type and mutated tissues, which 
are not easily discernible to the human eyes. Therefore, deep learning models can 
assist pathologists in the detection of cancer subtype or gene mutations.
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