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Abstract
The prevalence of colorectal cancer (CRC) and type 2 diabetes mellitus (T2DM) is 
increasing globally. It is rarely noticed that the incidence of CRC is higher in 
patients with T2DM. What needs to be mentioned is that metformin, a commonly 
used clinical drug for T2DM, attracts scholars’ attention because of its benefits in 
lowering the risk of developing CRC. Hence, we try to find the common grounds 
of initiation of T2DM and CRC and the reason why metformin reduces the risk of 
CRC in patients with T2DM. We noticed consistent changes of gut microbiota, 
such as elevated Bacteroides, Prevotella and Bifidobacterium and depressed 
Firmicutes and Lactobacillus. Furthermore, many studies in recent years have 
proved that the efficacy of metformin, such as improving blood glucose, depends 
on the gut microbiota. Coincidentally, the progression of CRC is inseparable from 
the contributions of gut microbiota. Therefore, we first proposed the concept of 
the metformin-gut microbiota–CRC (in T2DM) axis to explain the effect of 
metformin in reducing CRC in patients with T2DM. In this review, we elaborated 
the new concept and its potential clinical application value.

Key Words: Metformin; Colorectal cancer; Gut microbiota; Type 2 diabetes mellitus

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Metformin has been found to reduce colorectal cancer in patients with type 2 
diabetes, but the mechanism is unknown. Studies have confirmed that gut microbiota is 
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not only closely related to type 2 diabetes and colorectal cancer, but also mediates the 
effects of metformin. Therefore, we proposed the concept of the metformin-gut 
microbiota-colorectal cancer axis in type 2 diabetes mellitus. The concept also provides 
new ideas for clinical drug use, clinical cancer treatment, and clinical application of gut 
microbiota.

Citation: Huang QY, Yao F, Zhou CR, Huang XY, Wang Q, Long H, Wu QM. Role of gut 
microbiome in regulating the effectiveness of metformin in reducing colorectal cancer in type 2 
diabetes. World J Clin Cases 2020; 8(24): 6213-6228
URL: https://www.wjgnet.com/2307-8960/full/v8/i24/6213.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i24.6213

INTRODUCTION
Several decades ago, colorectal cancer (CRC) was rarely diagnosed. To date, it has 
become the fourth deadliest cancer in the world, killing an average of 90000 people 
every year. The accumulation of environmental and genetic factors leading to genetic 
mutations and epigenetic changes are the factors in the carcinogenesis of intestinal 
epithelial cells[1]. Nevertheless, recent studies have shown that the occurrence of CRC 
is closely related to the gut microbiota, and the alterations of gut microbiota are 
inconsistent at different stages[2,3]. Table 1 summarizes the main alterations of gut 
microbiota in human studies related to CRC from 2014 to 2019.

There are more than 547 million patients with diabetes mellitus in the world, of 
which 373 million have been diagnosed. The number of young patients aged 20-39 
exceeded 60 million in 2013[4]. Recent studies have shown that type 2 diabetes mellitus 
(T2DM) is also closely related to changes in gut microbiota. Table 2 summarizes the 
main alterations of gut microbiota in patients with T2DM. Interestingly, metformin 
(systematic name: 1-carbamimidamido-N,N-dimethylmethanimidamide, C4H11N5), as 
one of the most well-known drugs to treat T2DM, has been shown to have a positive 
pharmacological effect on restraining CRC in T2DM patients. Moreover, more and 
more studies have proved that its pharmacological function is mediated by gut 
microbiota.

Epidemiological evidence suggests that CRC is predisposed in patients with 
T2DM[5]. However, after comparing and analyzing the data of current research, the 
consistent changes of some gut microbiota were observed in patients with T2DM and 
patients with CRC. Table 2 summarizes the similarities in changing gut microbiota in 
patients with T2DM and patients with CRC. Therefore, based on the facts above, we 
set up a new concept called the metformin-gut microbiota-CRC axis (in T2DM) to 
explain that metformin reduces the incidence of CRC in patients with T2DM. More 
importantly, the new concept can be extended to be the drug-gut microbiota-diseases 
axis. If this theory is proven to be effective, it will provide new ideas for the use of 
clinical drugs and the application of gut microbiota for the treatment of clinical 
diseases.

METFORMIN-GUT MICROBIOTA–CRC AXIS IN T2DM
Metformin suppresses CRC in T2DM
To date, epidemiological evidence suggests that T2DM is one of the risk factors for 
CRC. However, the latest meta-analysis of observational studies displayed insulin 
therapy significantly increased the risk of CRC [risk ratio (95% confidence interval 
(CI)): 1.69 (1.25, 2.27)][6]. Compared to this, the latest meta-analysis from observational 
studies demonstrated that metformin therapy was associated with a significantly 
lower overall survival [pooled risk ratio = 0.75, 95%CI: 0.66-0.86][7], lower CRC-specific 
survival [hazard ratio (95%CI): 0.66 (0.50-0.87)][8], and a lower risk of colorectal 
neoplasm [risk ratio (95%CI): 0.63 (0.50-0.79)] in patients with T2DM[9]. In vivo, 
Tomimoto et al[10] suggested administration of metformin significantly reduced the 
number of tumors larger than 2 mm in diameter in Apc (Min/+) mice. Subsequent 
studies have shown that metformin suppressed colorectal aberrant crypt foci in 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Summary of the alteration of gut microbiota in patients with colorectal cancer from 2014 to 2019

Tumor 
types Status      Alteration of gut microbiota

Adenomas Increased1 Families: Ruminococcaceae, Porphyromonadaceae

Genera: Clostridium, Pseudomonas

Species: Fusobacterium nucleatum, Atopobium parvulum, Actinomyces odontolyticus

Decreased1 Order: Clostridiales

Family: Lachnospiraceae

Genera: Bacteroides, Clostridium

Species: Bifidobactium animalis, Streptococcus thermophilus

Carcinoma Increased1 Classes: Bacilli, Gammaproteobacteria

Order: Enterobacteriales

Genera: Bacteroides, Parabacteroides, Fusobacterium, Alistipes, Escherichia, Parvimonas, Bilophila. Porphyromonas, Actinomyces, 
Streptococcus

Species: Alistipes putredinis, Bilophila wadsworthia, Lachnospiraceae bacterium, Enterobacteriaceae. Fusobacterium nucleatum spp., 
Actinomyces odontolyticus, Atopobium parvulum

Decreased1 Classes: Erysipelotrichi, Clostridia

Order: Clostridiales

Families: Lachnospiraceae, Ruminococcaceae, Clostridiaceae

Genera: Bacteroides

Species: Bifidobactium animalis, Streptococcus thermophilus

CRC Increased1 Phyla: Firmicutes, Fusobacteria, Bacteroidetes

Families: Erysipelotrichaceae, Prevotellaceae, Coriobacteriaceae

Genus: Peptostreptococcus

Species: Colinsella aerofaciens, Dorea longicatena, Porphyromonas uenonis, Selenomonas sputigena, Streptococcus anginosus, 
Desulfovibrio vietnamensis, Bilophila wadsworthia, Fusobacterium nucleatum, Parvimonas micra, Peptostreptococcus anaerobius, 
Solobacterium moorei, Eubacterium ventriosum, Clostridium hathewayi, Bacteroides clarus, Roseburia intestinalis

Others: clbA+ bacteria, Clostridium symbiosum

Decreased1 Genus: Bifidobacterium

Species: Lachnospira multipara, Eubacterium eligens

1Compared with healthy subjects. A simultaneous increase or decrease of a certain bacteria in the same stage of colorectal cancer means that the current 
research on this bacteria is still controversial. CRC: Colorectal cancer.

humans[11,12] and an azoxymethane-induced animal mode of CRC[13]. In patients with 
T2DM, it has been reported that metformin has a positive prophylactic effect on 
colorectal adenomas[14] and CRC[15]. In a multicenter double-blind, placebo-controlled, 
randomized phase 3 trial, Higurashi et al[16] proved the administration of low-dose 
metformin for 1 year to patients was safe and reduced the prevalence and number of 
metachronous adenomas or polyps after polypectomy.

At the cellular level, the effect of metformin is mainly manifested in inhibiting the 
proliferation of CRC cells as a result of AMPK activation and increased reactive 
oxygen species production[17,18] on the one hand and accelerating the apoptosis of CRC 
cells induced by immune cells and cytokines on the other hand[19]. Complementarily, 
metformin may go through a variety of pathways or mechanisms, such as by alteration 
of cellular responses to oxidative stress, protection of mitochondrial structures via 
suppressing reactive oxygen species production and NF-kB activity[20-22], and 
repression of epithelial-mesenchymal transition induced by IL-6 or TGF-β[19,23]. At the 
genetic level, it has been shown that the upregulation of adenosine A1 receptor[24], 
blocking of encoding DNA replication proteins and protooncogene protein 
synthesis[25,26], and regulation of the SNAIL/miR-34:ZEB/miR-200 system[27] are the 
targets of metformin. In addition, key sites for metformin action have been shown in 
multiple signaling pathways, such as attenuation of cell stemness via inhibiting the 
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Table 2 Summary of the alteration of gut microbiota in patients with type 2 diabetes mellitus and the common alteration with both type 
2 diabetes mellitus and colorectal cancer from 2012 to 2019

Status     Classification T2DM T2DM and CRC

Increased1 Phyla Verrucomicrobia, Proteobacteria, Actinobacteria, Euryarchaeota, Firmicutes Firmicutes

Order Lactobacillales, Bacteroidales

Families Lachnospiraceae, Erysipelotrichaceae Lachnospiraceae, Erysipelotrichaceae

Genera Ruminococcus, Enterobacteriaceae, Eggerthella, Desulfovibrio, Escherichia, 
Haemophilus, Clostridium, Eubacterium, Subdoligranulum, Bacteroides, 
Parabacteroides, Bifidobacterium spp., Lactobacillus

Enterobacteriaceae, Desulfovibrio, Escherichia, 
Clostridium, Eubacterium, Bacteroides, Parabacteroides, 
Bifidobacterium spp.Species: Alistipes,

Species Akkermansia, Alistipes, Parabacteroides

Decreased1 Phyla Tenericutes, Fusobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, 
Proteobacteria, Elusimicrobia

Families Lachnospiraceae, Peptostreptococcaceae, Flavobacteriaceae, Clostridiaceae Lachnospiraceae, Clostridiaceae

Genera Bacteroides, Anaerostipes, Roseburia, Faecalibacterium, Bifidobacterium Bacteroides, Bifidobacterium

Species A. muciniphila, F. prausnitzii

1Compared with healthy volunteers. A simultaneous increase or decrease of a certain bacteria means that the current research on this bacteria is still 
controversial. CRC: Colorectal cancer; T2DM: Type 2 diabetes mellitus.

Wnt3a/β-catenin[28] and AMPK/PI3K/Akt pathways[29].
To sum up, in both humans and animals or at both the individual and cellular level, 

metformin has shown an effect of inhibiting the development of CRC. However, as a 
treatment for T2DM, the underlying mechanism has not been fully elucidated.

Metformin’s action depends on gut microbiota
The changes of gut microbiota have been investigated to be associated with metformin 
administration, contributing to the beneficial therapeutic effects[30,31]. Decreased profiles 
of Intestinibacter spp. and Clostridium spp. were observed upon administration of 
metformin to health young men with a corresponding increase of Escherichia/Shigella 
spp. and Bilophila wadsworthia[32]. To date, there are many studies focusing on the role of 
the gut microbiota that mediate the effect of metformin in regard to improving the 
metabolic phenotype.

In diet-induced obese mice, an increase in the population of Akkermansia, a mucin 
degradation bacteria, induced the improved glucose homeostasis in the cases of 
metformin administration[33]. Subsequent work focused on the effects of improving 
metabolism and delaying T2DM progression in animal models[34,35]. The study 
addressed by Forslund et al[36] supported the opinion from the perspective of the 
human gut genome that metformin could reduce the consumption of short-chain fatty 
acid-producing groups in T2DM and improve the transfer of functional microbial 
groups. Through the implementation of 16S rRNA gene sequencing, it was observed 
that the participating microbiota were mainly Akkermansia muciniphila and short-chain 
fatty acid-producing bacteria, including Butyrivibrio, Bifidobacterium bifidum, 
Megasphaera, and Prevotella after the metformin intervention[37,38].

Overall, at the phylum level, the main shifts by metformin in patients with T2DM 
are reflected in the increase of Bacteroidetes, Actinobacteria, and Proteobacteria with a 
corresponding decrease of Firmicutes and Verrucomicrobia. At the genus level, the 
increased bacteria were mainly Bacteroides, Streptococcus, Collinsella, Escherichia, 
Clostridium, and Subdoligranulum, while the decreased bacteria were Faecalibacterium 
and Ruminococcus[39,40]. Finally, through a comparative analysis of currently available 
data, we found that the alteration of gut microbiota involved in the inhibition of CRC 
by metformin in T2DM may be mainly the increase of Firmicutes and decrease of 
Bacteroidetes, Fusobacteria, and Bacteroidetes at the phyla levels. At the genus level, it is 
mainly manifested as the increase of Bifidobacterium and decrease of Fusobacterium (F.) 
nucleatum.

In addition, Bauer et al[41], Sun et al[42], and Pryor et al[43] confirmed that metformin 
improved metabolic dysfunction, such as hyperglycemia, via the glucose-SGLT1-
sensing glucoregulatory pathway, B. fragilis–GUDCA–intestinal FXR axis, and the 
model of host-microbe-drug-nutrient interactions, respectively. These three new 
findings are profound to help understand how metformin and gut bacteria together 
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affect disease progression. Table 3 lists their details and the involved types of gut 
microbiota. Not only that, with the participation of gut microbiota, other fields have 
gradually revealed the role of metformin, including anti-inflammatory effects, 
downregulation of interleukin expression, and ameliorating polycystic ovary 
syndrome in an animal model[44]. Moreover, metformin accelerated fatty acid oxidation 
by regulating host metabolism and longevity under the action of regulating a 
multipressure metabolic system[43].

Therefore, it can be confidently said that the gut microbiota, such as Akkermansia, B. 
fragilis and E. coli, mediate the pharmacological effects of metformin in different fields 
separately.

Gut microbiota affects the occurrence and development of CRC
At present, many studies have confirmed that gut microbiota affect the occurrence and 
development of CRC. In humans, Yachida et al[2] used metagenomics analysis 
techniques to analyze the changes of gut microbiota in different stages of CRC on 
samples from a large cohort of 616 participants. They found the relative abundance of 
Fusobacterium nucleatum spp. was significantly elevated continuously from 
intramucosal carcinoma to more advanced stages. In addition, Atopobium parvulum and 
Actinomyces odontolyticus, which co-occurred in intramucosal carcinomas, were 
significantly increased only in multiple polypoid adenomas and/or intramucosal 
carcinomas. Moreover, Yu et al[45] has shown that F. nucleatum was abundant in CRC 
tissues in patients with recurrence post chemotherapy. F. nucleatum promoted CRC 
resistance to chemotherapy by targeting TLR4 and MYD88 innate immune signaling 
and specific microRNAs to activate the autophagy pathway. By 16S rRNA gene 
sequencing of stool samples in taxon-based analysis, stool of conventional adenoma 
patients was depleted in a network of Clostridia operational taxonomic units from 
families Ruminococcaceae, Clostridiaceae, and Lachnospiraceae and enriched in the classes 
Bacilli and Gammaproteobacteria, order Enterobacteriales, and genera Actinomyces and 
Streptococcus[46].

In animal models through fecal bacteria transplantation, the intestinal microbiota of 
CRC patients promoted the progression of intestinal adenomas in Apcmin/+ mice[47]. 
Donohoe et al[48] proved that dietary fiber protects against colorectal tumorigenesis in a 
microbiota- and butyrate-dependent manner by a gnotobiotic mouse model. Zhu 
et al[49] found that editing of the gut microbiota reduced carcinogenesis in colitis-
associated CRC. Qin et al[50] suggested that the gut microbiome, under specific dietary 
exposures, stimulates a reprogramming of the enhancer landscape in the colon with 
downstream effects on transcription factors, which may be associated with CRC 
development. In addition, the immune system plays an important role in the effect of 
gut microbiota on CRC. Cremonesi et al[51] demonstrated that gut microbiota 
modulated T cell trafficking in human CRC. Wang et al[52] has shown that a purified 
membrane protein from Akkermansia muciniphila or pasteurized bacterium blunts 
colitis-associated tumorigenesis by modulation of CD8+ T cells. Meanwhile, Long 
et al[53] has also shown that Peptostreptococcus anaerobius promoted the occurrence of 
CRC and regulated tumor-related immunity. At the cellular level, Belcheva et al[54] 
demonstrated that gut microbial metabolism drives transformation of MSH2-deficient 
colon epithelial cells.

To sum up, in both humans and animals, gut microbiota is closely related to CRC, 
and this relationship refers to the immune system. In humans, studies have elaborated 
changes in the types of gut microbiota, and animal and cell experiments have further 
elaborated the possible mechanisms by which gut microbiota affects CRC. In Wong 
et al[55]’s review, the gut microbiota is thought to influence colorectal carcinogenesis via 
microbial-derived factors such as metabolites or genotoxins, promotion of cancer, or 
proliferating as opportunistic microorganisms in the tumor-associated micro-
environment and the activation of procarcinogenic signaling pathways.

Changes in different gut microbiota by metformin at different stages of CRC
As we described before, the changes in the gut microbiota are inconsistent at different 
stages of development of CRC. According to the interaction between metformin and 
gut microbiota, does metformin mediate the changes of different gut microbiota at 
different stages of the development of CRC?

Based on the eighth Union for International Cancer Control Tumor Node Metastasis 
Classification of Malignant Tumors, at the phylum level in stage 0/pTis, the enriched 
bacteria are mainly Actinobacteria accompanied by a certain amount of Proteobacteria, 
Firmicutes, and Fusobacteria. In stage SI/II, the bacteria that are enriched are 
Proteobacteri, Firmicutes, Fusobacteria, and Bacteroidetes, and they show roughly the same 
abundance. In the stage SIII/IV, the enrichment of Firmicutes and Bacteroidetes is more 
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Table 3 Summary of alteration of gut microbiota by metformin in patients with type 2 diabetes mellitus that may affect colorectal cancer from 2014 to 2020

CRC-related
Status     Classification Metformin-related Multiple 

polypoid Stage 0/pTis Stage SI/II Stage SIII/IV

Increased1 Phyla Bacteroidetes, Actinobacteria, 
Proteobacteria

Proteobacteria Firmicutes, Fusobacteria Bacteroidetes Firmicutes, Fusobacteria Bacteroidetes Firmicutes, Fusobacteria Bacteroidetes

Genus Bacteroides, Streptococcus, 
Collinsella, Escherichia,  
Clostridium, Subdoligranulum

F. nucleatum F. nucleatum F. nucleatum

Species Escherichia spp., Anaerostipes, 
Blautia, Akkermansia muciniphila

Atopobium 
parvulum

Solobacterium moorei, Lactobacillus sanfranciscensis, 
Gemella morbillorum, Actinomyces odontolyticus, 
Desulfovibrio longreachensis, Phascolarctobacterium 
succinatutens

Solobacterium moorei, Peptostreptococcus 
stomatis, Peptostreptococcus anaerobius, 
Parvimonas micra, Gemella morbillorum

Solobacterium moorei, Peptostreptococcus stomatis, 
Peptostreptococcus anaerobius, Lactobacillus 
sanfranciscensis, Parvimonas micra, Gemella 
morbillorum

Decreased1 Phyla Firmicutes, Verrucomicrobia

Genus Faecalibacterium, Ruminococcus Bifidobacterium

Species Intestinibacter spp., Intestinibacter 
bartlettii., Alistipes, Oscillibacter, 
un-Ruminococcaceae

Increased1 Lactobacillus (Glucose-SGLT1-Sensing Glucoregulatory Pathway)

E. coli, Proteobacteria (Host-GUDCA-intestinal FXR axis)

Other axes

Decreased1 Bacteroides fragilis (B. fragilis–GUDCA–intestinal FXR axis)

1Compared with metformin untreated. CRC: Colorectal cancer; T2DM: Type 2 diabetes mellitus.

obvious. Proteobacteri, Actinobacteria, and Fusobacteria are also present, but their 
abundance is not very high and is roughly equal[2].

In a nonblinded, one-armed intervention study, the relative abundance of 11 
bacterial genera significantly changed during metformin intervention but returned to 
baseline levels after treatment cessation[32], which demonstrated that the effects of 
metformin on the gut microbiota are transient. However, for patients with T2DM, this 
condition is nothing to worry about because they require long-term medication. 
Moreover, there was a significant decrease of the phylum Firmicutes and of the ratio of 
Firmicutes to Bacteroidetes after taking metformin[39,56]. The other result of the 
microbiome analyses indicated a shift in the bacterial distribution in fish exposed to 
metformin, leading to an increase of Proteobacteria and a reduction of Firmicutes and 
Actinobacteria[57]. Compared with the previous data, metformin use from intramucosal 
cancer to advanced stage is likely to mediate its anticancer effect by provoking 
different gut microbiota. In stage 0/pTis, Actinobacteria may be the main target of the 
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action of metformin, which is specifically manifested by attenuating its abundance. In 
stage SI/II and SIII/IV, the decrease of the phylum Firmicutes and of the ratio of 
Firmicutes to Bacteroidetes may be the main function of metformin. Of course, these 
processes may also be accompanied by the regulation of other flora. Table 3 details the 
changes. Therefore, the use of metformin to interfere with different types of gut 
microbiota at different stages of the development of CRC may be a means to improve 
the survival rate and prognosis of CRC in the future.

Therapeutic effectiveness of metformin and changes in gut microbiome in recurrent 
CRC
Patients with stage III colon cancer have a risk of recurrence ranging between 15% and 
50%[58]. Interestingly, the administration of metformin is associated with decreased 
recurrence of carcinoma[59], covering the colorectal adenoma (hazard ratio 0.572, 95%CI 
0.385-0.852) in diabetic patients with previous colorectal adenoma[60].

So, how does the gut microbiota influence CRC recurrence? A recent study showed 
that higher fear of cancer recurrence was associated with lower relative abundance of 
Firmicutes and higher relative abundance of Bacteroidetes at the phylum level and 
higher relative abundance of Bacteroides and lower relative abundance of 
Lachnospiraceae and Ruminococcus at the genus level. The chemotherapy-induced 
changes in gut microbiota influence the fear of cancer recurrence[61]. In addition, 
colorectal adenoma resection gave rise to a significant increase of Parabacteroides 
postoperatively. The microbiota signature of Parabacteroides, Streptococcus, and 
Ruminococcus showed an optimal discriminating performance of postoperative 
status[62]. These changes suggested that gut microbiota may be used in the future to 
prevent postoperative recurrence of CRC. Finally, it has been stressed that the 
intervention of metformin can directly affect the gut microbiota profile. In other 
words, metformin may inhibit the recurrence of CRC by changing the abundance 
structure of the corresponding gut microbiota.

The recurrence of CRC is resistant to routine chemotherapy and thought to be due 
to the enrichment of cancer stem cells. It has been reported that long term treatment of 
metformin impedes development of chemoresistance by regulating cancer stem cell 
differentiation in cancer cells[63]. Combination metformin with chemotherapeutics 
showed an overall modest but intriguing activity in patients with refractory CRC[64] 
and a synergistic inhibitory cytotoxicity in human CRC cells[65]. Moreover, metformin 
can act as an alternative radiosensitizing agent to 5-fluorouracil during neoadjuvant 
treatment for rectal cancer[66]. In addition, a large number of studies have confirmed 
that metformin, as a cancer stem cell-targeting agent in ovarian cancer, has a direct 
inhibitory effect on cancer stem cells[63,67]. The metformin intervention reduced 
expression of cancer stem cell markers and stemness-related genes in primary oral 
cancer cells[68].

Interestingly, microbiota also have a substantial role in the effectiveness of 
chemotherapy, chemoresistance, and related side effects[69]. For instance, the presence 
of specific bacterial species such as Slackia and Blautia obeum may act as microbial 
markers associated with drug resistance monitoring[70]. The inhibition of the growth of 
F. nucleatum significantly augments the efficiency of first-line chemotherapy 
treatments of CRC[71]. In addition, chemotherapy-induced changes in gut microbiota 
impact chemotherapy via influencing fear of cancer recurrence[61]. Moreover, in terms 
of cancer stem cells, gut microbiota regulate tumor metastasis via impacting circular 
RNA expression to regulate levels of corresponding miRNAs[72].

All in all, in the recurrence of CRC due to both the chemoresistance and the 
enrichment of cancer stem cells the gut microbiota plays a vital role, which may be one 
of the reasons why metformin can inhibit the recurrence of CRC in T2DM patients.

Metformin-gut microbiota-CRC (in T2DM) axis
Metformin, known as a “magic drug”, reduces the incidence of CRC in people with 
T2DM. Moreover, the gut microbiota has been shown to mediate the pharmacological 
effects of metformin and the progression of CRC. Finally, the shift of gut microbiota 
has similarity in the occurrence and development of T2DM and CRC. Therefore, a 
network of metformin-gut microbiota-CRC (in type 2 diabetes) axis could be assumed. 
In the network, the gut microbiota plays a key role as a bridge that affects not only the 
pharmacological effects of metformin but also the occurrence of CRC in T2DM 
patients.

We have hypothesized the potential mechanism of action of this axis around the gut 
microbiota. On the one hand, these mechanisms will pave the way for us to 
understand how gut microbiota can participate in drug therapy. On the other hand, 
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they will provide ideas for the prospective clinical application and transformation of 
gut microbiota. More importantly, this axis can be expanded into a profound network 
of gut microbiota-drug-disease to explain the crosstalk relationship between gut 
microbiota, drugs, and diseases.

UNDERLYING INVOLVED MECHANISMS
The above narrations provide an elaborate explanation about the metformin-gut 
microbiota-CRC axis (in T2DM), but we need to know more details about its 
underlying mechanisms. Figure 1 provides an exhaustive overview. There are two 
aspects: (1) Metformin may change the gut microbiota after entering the intestine. The 
changed gut microbiota has several cascade reactions to affect tumorigenesis, 
including reduction of inflammation, production of metabolites, and regulation of 
immunity; and (2) Metformin may play a pharmacological role to influence cancer-
related systems in colorectal epithelial cells in the presence of gut microbiota.

Metformin entering the intestine changes the composition of the gut microbiota 
leading to the cascade anticancer effects
Noticeably, before oral drugs are absorbed into our bloodstream, they must pass 
through our intestines for catabolism. In this process, the drugs are likely to first react 
with the intestinal microorganisms colonized in the intestinal epithelium, one of which 
is gut microbiota. Therefore, the drug may cause a cascade-like reaction related to gut 
microbiota by changing the composition and abundance of the gut microbiota. The 
drug may also be metabolized into other secondary products under the action of gut 
microbiota to exert subsequent efficacy. But the causation and deep interaction 
mechanism still remain exclusive. We have mentioned above that the gut microbiota 
involved in the inhibition of CRC by metformin in T2DM may be mainly Bacteroides, 
Ruminococcus, Clostridium, Firmicute, Lactobacillus, and E. coli. After these gut micro-
biota are changed, it may cause subsequent cancer suppression via regulation of 
inflammation and immunity and reduction of the production of genotoxic metabolites, 
etc.

Intestinal inflammation and related pathways are closely related to the initiation of 
CRC. In terms of regulating inflammation, after the mice were treated with metformin, 
the level of inflammatory markers TNF-α, IL-6, and IL-17α in plasma was reduced 
with a corresponding increase of the level of IL-10, which was accompanied by a 
reduction in Helicobacter pylori. Lee et al[44] suggested that fecal microbiota tran-
splantation using metformin-treated mouse fecal material can upregulate the 
expression of GLP-1 and pattern recognition receptors TLR1 and TLR4. It has been 
shown that CRC-enriched genotoxic polyketide synthase (pks) + E. coli, E. faecalis, and 
A. finegoldii and TLR2 and/or TLR4 pathway-related bacteria, such as F. nucleatum and 
Peptostreptococcus anaerobius, are related closely to intestinal inflammation[55]. In our 
previous discussion, these bacteria are likely to be the targets of metformin, which 
provides a theoretical basis for our conjecture.

In terms of innate immune response, it has been proven that metformin specifically 
affects the accumulation of IFN-γ producing NK cells, IL-4, and IL-17 producing NKT 
cells and IL-12 producing macrophages/dendritic cells in the intestine in animal 
models[73]. In addition, the latest studies have shown that metformin could upregulate 
protein molecules involved in the classical immune pathway such as PMK-
1/p38MAPK[74], RAGE ligands[75], and TLRs[76]. It should be mentioned that this process 
is likely to be mediated by gut microbiota. F. nucleatum has been shown to activate 
autophagy via the TLR4 and MYD88 pathways closely related to innate immunity[45].

In terms of adaptive immune response, it has been mentioned that metformin 
regulates adaptive immune cell infiltration[77,78], the expression of related immune 
factors, such as IFN-γ[79], IL-2[80], and IL-6[23,81,82], and T cell metabolic reprogramming in 
tumor tissues[83]. Nevertheless, it must be pointed out that these effects may also be 
manifested in the presence of gut microbiota. Cremonesi et al[51] proved that gut 
microbiota modulated T cell trafficking into human CRC including CCL5, CXCL9, and 
CXCL10 for cytotoxic T lymphocytes and T helper (Th) 1 cells, CCL17, CCL22, and 
CXCL12 for Th1 and regulatory T cells, CXCl3 for follicular Th cells, and CCL20 and 
CCL17 for IL-17-producing Th cells. Sethi et al[84] showed that gut microbiota depletion 
significantly reduced tumor burden in subcutaneous and liver metastasis models of 
pancreatic cancer, colon cancer, and melanoma. However, the effect was counteracted 
in Rag1-knockout mice that lacked mature T and B cells. In fact, gut microbiota is 
likely more complicated in the mechanisms of drug-mediated immunity affecting the 
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Figure 1 The potential metformin-gut microbiota-colorectal cancer axis in type 2 diabetes mellitus. (1) Metformin may change the gut microbiota 
after entering the intestine. The changed gut microbiota has cascade reactions to affect tumorigenesis, including reducing inflammation, regulating immunity, and 
producing metabolites, such as bile acid and genetic toxins. (2) Metformin may play a pharmacological role to influence cancer-related systems in colorectal epithelial 
cells in the presence of gut microbiota. CDT: Cytolethal distending toxin; SCFAs: Short-chain fatty acids.

development of CRC. A lot of work needs to be done to supplement this field.
In addition, it should be mentioned that after metformin changes the abundance of 

gut microbiota, the metabolites of the gut microbiota such as carcinogenic-related 
metabolites and genotoxicity will also change accordingly. Some of these metabolites 
are cancer-promoting, such as products of protein fermentation, hydrogen sulfide, bile 
acid metabolism, and ethanol, but some show protective effects. For example, short-
chain fatty acids (butyrate and propionate) are anti-inflammatory molecules. Butyrate 
can inhibit histone deacetylase in colon epithelial cells and immune cells to 
downregulate proinflammatory cytokines and induce apoptosis in CRC cell lines. 
Therefore, the reduction of gut microbiota that produces procarcinogenic metabolites 
and the increase of gut microbiota that produces anti-inflammatory metabolites are 
likely to be the reason of metformin’s action. Similarly, metformin can directly slow 
down the abundance of E. coli, restraining to the intestinal bacteria’s carcinogenic 
effects. On the other hand, metformin may also promote some floras that are beneficial 
for anticancer effects to become a dominant flora. This is consistent with the changes in 
gut microbiota caused by the metformin intervention mentioned in Table 3.

Role of polyamine metabolism system in the inhibition of CRC by metformin in the 
presence of gut microbiota
Polyamines are a class of compounds containing two or more amino groups. The raw 
materials for their synthesis are ornithine and arginine. The key enzymes are ornithine 
decarboxylase and arginine decarboxylase. It has been proven that they can regulate 
cell proliferation and apoptosis, and their biosynthesis is closely related to the 
formation and metastasis of cancer[85]. There is a correlation between the expression of 
ornithine decarboxylase and the prediction of cancer risk and treatment response in 
certain epithelial cancers. However, it must be pointed out that the function of the 
polyamine system is affected by metformin in the presence of several pathogens, 
including Shigella flexneri, Streptococcus pneumoniae, Salmonella enterica subsp., enterica 
serovar Typhimurium, and Helicobacter pylori[86]. Therefore, metformin may inhibit the 
development of CRC by regulating the polyamine system under the action of certain 
gut microbiota.

Agmatine, a biogenic amine, is a polyamine that is converted from arginine by the 
action of arginine decarboxylase on the mitochondrial membrane of cells, and it has 
vasomotor implication and regulation of anti-inflammation[87]. Interestingly, the ability 
of bacteria to produce agmatine was enhanced under the administration of metformin 
in T2DM in a nutrient-dependent manner[43]. In addition, it must be emphasized that 
agmatine has a directly inhibitory effect on the proliferation of tumor cells with the 
corresponding acceleration of apoptosis[88]. As for CRC, agmatine has been confirmed 
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to inhibit the proliferation of six types of human intestinal tumor cell lines in a 
concentration-dependent manner[89]. It is able to arrest proliferation in cell lines by 
depleting intracellular polyamine levels and enter mammalian cells via the polyamine 
transport system.

To date, there are few reports on the use of agmatine metabolism as a direct 
therapeutic target in clinical research, but there are studies affirming that the agmatine 
metabolism system has the potential to treat tumors. The role of metformin and gut 
microbiota is like a fuse in the antitumor effect mediated by the agmatine metabolic 
system. Moreover, Pryor et al[43] suggested that the Escherichia, Bacteroides, Enterobacter, 
and Citrobacter genera produce the most agmatine in the intestine, and these bacteria 
were abundant in the gut of patients after metformin intervention. Furthermore, this 
inhibitory effect of agmatine on tumors was probably attributable to an interaction 
between agmatine and the intracellular polyamine metabolism system[90,91]. For 
example, agmatine regulates the functional gene delivery system of spermidine/ 
spermine acetyltransferase in cancer cell[90]. Therefore, the exploration of a metformin-
gut microbiota-cell polyamine metabolism system-cancer chain helps us to understand 
how metformin inhibits CRC by regulating the agmatine metabolism system in the 
presence of gut microbiota. From the perspective of drugs-gut microbiota-
pharmacological effects-diseases, this will be an interesting and profound finding.

To sum up, metformin may indirectly restrain clinical colorectal tumors by 
regulating the agmatine metabolism system in the presence of gut microbiota. In 
future studies, more attention should be attached to the drug’s interaction with gut 
microbiota to the intracellular polyamine system because the intervention of the 
polyamine system may be one of the important methods for clinical cancerous 
treatment.

FUTURE EXPECTATIONS
One clear goal moving forward is to explore how to better apply the gut microbiota in 
clinical treatment. Gut microbiota may directly induce metformin’s anti-CRC effect via 
the structure of its own composition, the production of secondary metabolites, and the 
regulation of the immune system after interplay with metformin. As a consequence, 
accumulated information has proven that metformin influences colorectal tissue 
carcinogenesis, and this effect is dependent on gut microbiota. Then we need to figure 
it out that what types of gut microbiota play key roles in this process.

Herein, we advocate to build a complete network of relationships of drugs-gut 
microbiota-diseases. This concept will provide a new treatment strategy for the 
diagnosis and treatment of clinical diseases by using gut microbiota. However, in 
order to achieve this goal, the relationship between changes in the structure and 
function of the gut microbiota and the pharmacological effects of drugs needs to be 
thoroughly explained. For example, composition of gut microbiota is a determinant for 
development of gastrointestinal adverse effects following metformin intake[32]. Wu 
et al[92] investigated the pharmacodynamic and pharmacokinetic effects of metformin 
mediated by the gut microbiota in vivo. The pharmacodynamic indexes were 
evaluated, and metformin concentrations were measured with a validated liquid 
chromatography-tandem mass spectrometry method after oral administration. They 
described the pharmacodynamic differences between metformin in sterile diabetic rats 
and conventional diabetic rats. Compared to conventional diabetic rats, fasting blood 
glucose and cmax in pseudosterile diabetic rats were significantly increased with a 
corresponding reduction in oral glucose and t1/2α. All of these elaborated that these 
differences in pharmacodynamics and pharmacokinetics may be due to the decrease in 
the expression of Oct1 in the liver, contributing to the changes in liver uptake of 
metformin[92]. Napolitano et al[93] suggested that metformin has complex effects that 
alter bile acid recycling and gut microbiota (positive correlation between the 
microbiota abundance of the phylum Firmicutes and changes in cholic acid and 
conjugates, negative correlation in Bacteroidetes) due to gut-based pharmacology, 
which might provide insights into novel therapeutic approaches to treat T2DM and 
associated metabolic diseases. But the explanation of these pharmacodynamics and 
pharmacokinetic mechanisms is not enough for the determination of clinical drugs. In 
addition, the current majority of research focuses on the relationship between the 
changes in the profiles of gut microbiota and the effects of drugs on diseases (e.g., 
metformin on CRC).

To date, the research in respect to the role of metformin to promote the formation of 
CRC in T2DM were mainly carried out in the observational studies of populations. In 
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future work, more experiments need to be conducted to explore deeper mechanisms in 
individuals and in animal models, which can also verify the effect of an anti-
hyperglycemia pharmaceutical for anticancer treatment. Furthermore, metformin, a 
biguanide derivative, has pleiotropic effects beyond glucose reduction, including 
antitumor, antihaze-induced pneumonia, and anti-aging. Other pharmacological 
effects and corresponding mechanisms of metformin need to be further discovered. 
For instance, we elaborated that metformin elicits its role in tumors via regulating the 
function of the immune system and how the effect is performed in the presence of gut 
microbiota based on the fact that the occurrence of tumors is closely related to the 
body’s immunity.

Overall, CRC is an urgent research topic undertaken by many researchers all over 
the world. Nevertheless, the diagnosis and treatment of CRC still has many 
unresolved issues, but the research on the gut microbiota has opened a new window. 
Through this window, we could see the emergence of gut microbiota as a novel way to 
fight tumors. However, the current research is limited to the changes in its quantity 
and distribution due to the limitations of current scientific research technologies and 
methods. When metformin is regarded as an anticancer drug in the intestine, the 
intestinal microbiota will change or affect the production of certain anticancer 
substances. Hence, it must be stressed again that establishing a complete drug-gut 
microbiota-disease relationship network is necessary for the potential medical 
application of gut microbiota. In addition, novel methods for microbiological research 
should be systematically carried out in order to explore the function and structure of 
gut microbiota in the future: structure functions, genomics, transcriptomics, 
proteomics, and metabolomics. These efforts will benefit the prevention, diagnosis, 
and treatment of clinical CRC. Advances in this field will also promote the progress of 
other microbial-related diseases and provide new ideas for the use of clinical drugs.

CONCLUSION
In summary, metformin can inhibit the initiation of CRC in T2DM patients by 
changing the abundance of gut microbiota or under the participation of gut 
microbiota. Further research is needed to confirm this hypothesis and explore the 
mechanisms behind it. Moreover, in order to understand thoroughly the function and 
structure of gut microbiota, more cutting-edge scientific research methods and 
technologies are needed to implement.
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