World Journal of *Clinical Cases*

World J Clin Cases 2020 December 26; 8(24): 6213-6545

Published by Baishideng Publishing Group Inc

W J C C World Journal of Clinical Cases

Contents

Semimonthly Volume 8 Number 24 December 26, 2020

MINIREVIEWS

6213 Role of gut microbiome in regulating the effectiveness of metformin in reducing colorectal cancer in type 2 diabetes

Huang QY, Yao F, Zhou CR, Huang XY, Wang Q, Long H, Wu QM

ORIGINAL ARTICLE

Retrospective Cohort Study

6229 Impact factors of lymph node retrieval on survival in locally advanced rectal cancer with neoadjuvant therapy

Mei SW, Liu Z, Wang Z, Pei W, Wei FZ, Chen JN, Wang ZJ, Shen HY, Li J, Zhao FQ, Wang XS, Liu Q

Retrospective Study

- Three-year follow-up of Coats disease treated with conbercept and 532-nm laser photocoagulation 6243 Jiang L, Qin B, Luo XL, Cao H, Deng TM, Yang MM, Meng T, Yang HQ
- 6252 Virus load and virus shedding of SARS-CoV-2 and their impact on patient outcomes Chen PF, Yu XX, Liu YP, Ren D, Shen M, Huang BS, Gao JL, Huang ZY, Wu M, Wang WY, Chen L, Shi X, Wang ZQ, Liu YX, Liu L, Liu Y
- 6264 Risk factors for de novo hepatitis B during solid cancer treatment

Sugimoto R, Furukawa M, Senju T, Aratake Y, Shimokawa M, Tanaka Y, Inada H, Noguchi T, Lee L, Miki M, Maruyama Y, Hashimoto R, Hisano T

6274 Cause analysis and reoperation effect of failure and recurrence after epiblepharon correction in children Wang Y, Zhang Y, Tian N

Clinical Trials Study

6282 Effects of different acupuncture methods combined with routine rehabilitation on gait of stroke patients Lou YT, Yang JJ, Ma YF, Zhen XC

Observational Study

- 6296 Application of endoscopic submucosal dissection in duodenal space-occupying lesions Li XY, Ji KY, Qu YH, Zheng JJ, Guo YJ, Zhang CP, Zhang KP
- 6306 Early renal injury indicators can help evaluate renal injury in patients with chronic hepatitis B with longterm nucleos(t)ide therapy Ji TT, Tan N, Lu HY, Xu XY, Yu YY

Contents

Semimonthly Volume 8 Number 24 December 26, 2020

Prospective Study

6315 Neoadjuvant chemoradiotherapy plus surgery in the treatment of potentially resectable thoracic esophageal squamous cell carcinoma

Yan MH, Hou XB, Cai BN, Qu BL, Dai XK, Liu F

CASE REPORT

- 6322 Uterine rupture in patients with a history of multiple curettages: Two case reports Deng MF, Zhang XD, Zhang QF, Liu J
- 6330 Pleural effusion and ascites in extrarenal lymphangiectasia caused by post-biopsy hematoma: A case report

Lin QZ, Wang HE, Wei D, Bao YF, Li H, Wang T

6337 Eighty-year-old man with rare chronic neutrophilic leukemia caused by CSF3R T618I mutation: A case report and review of literature

Li YP, Chen N, Ye XM, Xia YS

- 6346 Sigmoid colon duplication with ectopic immature renal tissue in an adult: A case report Namgung H
- 6353 Paraplegia from spinal intramedullary tuberculosis: A case report Qu LM, Wu D, Guo L, Yu JL
- 6358 Confocal laser endomicroscopy distinguishing benign and malignant gallbladder polyps during choledochoscopic gallbladder-preserving polypectomy: A case report

Tang BF, Dang T, Wang QH, Chang ZH, Han WJ

6364 Sclerosing stromal tumor of the ovary with masculinization, Meig's syndrome and CA125 elevation in an adolescent girl: A case report

Chen Q, Chen YH, Tang HY, Shen YM, Tan X

- 6373 Primary pulmonary malignant melanoma diagnosed with percutaneous biopsy tissue: A case report Xi JM, Wen H, Yan XB, Huang J
- 6380 SRY-negative 45,X/46,XY adult male with complete masculinization and infertility: A case report and review of literature

Wu YH, Sun KN, Bao H, Chen YJ

6389 Refractory case of ulcerative colitis with idiopathic thrombocytopenic purpura successfully treated by Janus kinase inhibitor tofacitinib: A case report

Komeda Y, Sakurai T, Sakai K, Morita Y, Hashimoto A, Nagai T, Hagiwara S, Matsumura I, Nishio K, Kudo M

6396 Immunotherapies application in active stage of systemic lupus erythematosus in pregnancy: A case report and review of literature

Xiong ZH, Cao XS, Guan HL, Zheng HL

Conton	World Journal of Clinical Cases
Conten	Semimonthly Volume 8 Number 24 December 26, 2020
6408	Minimally invasive maxillary sinus augmentation with simultaneous implantation on an elderly patient: A case report
	Yang S, Yu W, Zhang J, Zhou Z, Meng F, Wang J, Shi R, Zhou YM, Zhao J
6418	Congenital nephrogenic diabetes insipidus due to the mutation in <i>AVPR2</i> (c.541C>T) in a neonate: A case report
	Lin FT, Li J, Xu BL, Yang XX, Wang F
6425	Primary gastric melanoma in a young woman: A case report
	Long GJ, Ou WT, Lin L, Zhou CJ
6432	Extreme venous letting and cupping resulting in life-threatening anemia and acute myocardial infarction: A case report
	Jang AY, Suh SY
6437	Novel conservative treatment for peritoneal dialysis-related hydrothorax: Two case reports
	Dai BB, Lin BD, Yang LY, Wan JX, Pan YB
6444	Clinical characteristics of pulmonary cryptococcosis coexisting with lung adenocarcinoma: Three case reports
	Zheng GX, Tang HJ, Huang ZP, Pan HL, Wei HY, Bai J
6450	Fracture of the scapular neck combined with rotator cuff tear: A case report
	Chen L, Liu CL, Wu P
6456	Synchronous colonic mucosa-associated lymphoid tissue lymphoma found after surgery for adenocarcinoma: A case report and review of literature
	Li JJ, Chen BC, Dong J, Chen Y, Chen YW
6465	Novel mutation in the <i>ASXL3</i> gene in a Chinese boy with microcephaly and speech impairment: A case report
	Li JR, Huang Z, Lu Y, Ji QY, Jiang MY, Yang F
6473	Recurrent thrombosis in the lower extremities after thrombectomy in a patient with polycythemia vera: A case report
	Jiang BP, Cheng GB, Hu Q, Wu JW, Li XY, Liao S, Wu SY, Lu W
6480	Status epilepticus as an initial manifestation of hepatic encephalopathy: A case report
	Cui B, Wei L, Sun LY, Qu W, Zeng ZG, Liu Y, Zhu ZJ
6487	Delayed diagnosis of prosopagnosia following a hemorrhagic stroke in an elderly man: A case report
	Yuan Y, Huang F, Gao ZH, Cai WC, Xiao JX, Yang YE, Zhu PL
6499	Oral myiasis after cerebral infarction in an elderly male patient from southern China: A case report
	Zhang TZ, Jiang Y, Luo XT, Ling R, Wang JW
6504	Rare case of drain-site hernia after laparoscopic surgery and a novel strategy of prevention: A case report
	Gao X, Chen Q, Wang C, Yu YY, Yang L, Zhou ZG

Conton	World Journal of Clinical Cases
Conten	Semimonthly Volume 8 Number 24 December 26, 2020
6511	Extracorporeal shock wave therapy treatment of painful hematoma in the calf: A case report
	Jung JW, Kim HS, Yang JH, Lee KH, Park SB
6517	Takotsubo cardiomyopathy associated with bronchoscopic operation: A case report
	Wu BF, Shi JR, Zheng LR
6524	Idiopathic adulthood ductopenia with elevated transaminase only: A case report
	Zhang XC, Wang D, Li X, Hu YL, Wang C
6529	Successful endovascular treatment with long-term antibiotic therapy for infectious pseudoaneurysm due to <i>Klebsiella pneumoniae</i> : A case report
	Wang TH, Zhao JC, Huang B, Wang JR, Yuan D
6537	Primary duodenal tuberculosis misdiagnosed as tumor by imaging examination: A case report
	Zhang Y, Shi XJ, Zhang XC, Zhao XJ, Li JX, Wang LH, Xie CE, Liu YY, Wang YL

Contents

Semimonthly Volume 8 Number 24 December 26, 2020

ABOUT COVER

Peer-Reviewer of World Journal of Clinical Cases, Dr. Adonis Protopapas is a gastroenterology Resident at the first Propaedeutic Department of Internal Medicine of the Aristotle University of Thessaloniki (Greece), located at the A.H.E.P.A Hospital. He earned his Bachelor's degree in 2015 from the Democritus University of Thrace, followed by three Master's of Science degrees, with specializations in clinic pharmacology, medical research methodology, and healthcare management. His research interests are mainly focused on the area of hepatology, although he also participates in various projects related to endoscopy and inflammatory bowel disease. He is particularly fascinated by research on cirrhosis and its complications. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Clinical Cases	https://www.wjgnet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2307-8960 (online)	https://www.wjgnet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
April 16, 2013	https://www.wjgnet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Semimonthly	https://www.wjgnet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT
Dennis A Bloomfield, Sandro Vento, Bao-gan Peng	https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
December 26, 2020	https://www.wjgnet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2020 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal of Clinical Cases

World Journal of

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2020 December 26; 8(24): 6380-6388

DOI: 10.12998/wjcc.v8.i24.6380

ISSN 2307-8960 (online)

CASE REPORT

SRY-negative 45,X/46,XY adult male with complete masculinization and infertility: A case report and review of literature

Yan-Hua Wu, Ke-Na Sun, Hui Bao, Ying-Jian Chen

ORCID number: Yan-Hua Wu 0000-0002-5826-4290; Ke-Na Sun 0000-0002-8351-3324; Hui Bao 0000-0001-8558-7629; Ying-Jian Chen 0000-0001-5975-3160.

Author contributions: Chen YJ designed the study and revised the manuscript; Wu YH performed data acquisition, analysis, and interpretation and wrote the manuscript; Sun KN and Bao H performed the experiments; All authors issued final approval of the submitted version of the manuscript.

Informed consent statement: All

study participants, or their legal guardians, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors have no conflicts of interest to declare

CARE Checklist (2016) statement:

The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative

Yan-Hua Wu, Hui Bao, Ying-Jian Chen, Department of Laboratory Medicine, The 960th Hospital of The PLA Joint Logistics Support Force, Jinan 250031, Shandong Province, China

Ke-Na Sun, Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong Province, China

Corresponding author: Ying-Jian Chen, PhD, Chief Doctor, Professor, Department of Laboratory Medicine, The 960th Hospital of The PLA Joint Logistics Support Force, No. 25 Shifan Road, Tianqiao District, Jinan 250031, Shandong Province, China. yjqchen@126.com

Abstract

BACKGROUND

45,X/46,XY mosaicism is a rare chromosomal abnormality with a wide range of phenotypes in both males and females, from normal individuals with different degrees of genital ambiguity to those who show signs of Turner's syndrome. More rarely, cases of 45,X/46,XY mosaicism with a normal-appearing male phenotype are not found until a chromosome test is performed to investigate the cause of male infertility.

CASE SUMMARY

In this study, a 29-year-old male patient with complete azoospermia is reported. Chromosomal analyses of his lymphocytes revealed the karyotype 45,X[93%] /46,X,+mar(Y)[7%]. In addition, Y chromosome-specific markers, such as SRY, ZFY, AZFa, AZFb and AZFc, were not observed in his blood DNA according to multiplex polymerase chain reaction test. A literature review identified several 45,X/46,XY cases with a normal-appearing male phenotype, most of whom were diagnosed during infertility investigation. However, the present case is the first SRY-negative 45,X/46,XY male case diagnosed during a premarital medical examination.

CONCLUSION

This finding further suggests that sex determination is a complex process regulated by multiple genetic and environmental factors.

Key Words: Azoospermia; Sex chromosome; Mosaicism; Y chromosomal microdeletions; SRY-negative; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Commons Attribution

NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: China

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: August 6, 2020 Peer-review started: August 6, 2020 First decision: September 13, 2020 Revised: September 28, 2020 Accepted: October 13, 2020 Article in press: October 13, 2020 Published online: December 26, 2020

P-Reviewer: Carloni R S-Editor: Chen XF L-Editor: Filipodia P-Editor: Ma YJ

Core Tip: A rare chromosomal abnormality is 45,X/46,XY mosaicism. Here, we describe the diagnosis of a rare case of a 45,X/46,XY SRY-negative man with complete virilization and infertility as the main anomaly.

Citation: Wu YH, Sun KN, Bao H, Chen YJ. SRY-negative 45,X/46,XY adult male with complete masculinization and infertility: A case report and review of literature. World J Clin Cases 2020; 8(24): 6380-6388

URL: https://www.wjgnet.com/2307-8960/full/v8/i24/6380.htm DOI: https://dx.doi.org/10.12998/wjcc.v8.i24.6380

INTRODUCTION

As a rare complement, the chromosomal abnormality of 45, X/46, XY mosaicism is found in 1.7 cases among 10000 newborns^[1]. The spectrum of observed phenotypes ranges continuously from normal individuals with varying degrees of genital ambiguity to Turner's syndrome^[2]. Most normal-appearing male phenotype cases are diagnosed during the prenatal period, and cases with genital/gonadal anomalies are usually diagnosed after birth^[3]. More rarely, cases of 45,X/46,XY mosaicism with a normal-appearing male phenotype are not found until a chromosome test is performed to investigate the cause of male infertility.

Because the Y chromosome carries testis-determining factor, which is a genetically predominant locus, under normal circumstances, the bipotent gonadal primordium can be triggered and testes formation can be processed, which makes the Y chromosome a key factor in human sex determination. The SRY gene located in Yp11.2 was found to be cytogenetic and confirmed to play a critical role in the complex and tightly regulated processes of testis development^[4] and sex differentiation^[5]. However, more and more *SRY*-negative male cases with various karyotypes have been reported. In addition, increasing studies have shown that other factors, including both genetic and environmental factors, may regulate gender determination and differentiation through a multi-target approach.

Key genetic factors are known to regulate spermatogenesis on Yq, namely azoospermia factors (AZFs), including AZFa, AZFb and AZFc. Spermatogenetic failure caused by AZF microdeletions is a common cause of male infertility. Studies have shown that AZF microdeletions can be detected in approximately 10%-15% of azoospermia patients in China^[6].

In the present report, we describe the diagnosis of a rare *SRY*-negative male case with 45,X/46,XY mosaicism. In addition, we review the 45,X/46,XY male phenotype cases reported in the literature to date to provide a more comprehensive description of the genetic and pathological features of this subgroup.

CASE PRESENTATION

Chief complaints

A 29-year-old man visited our urology clinic for a premarital medical examination, with complaints of occasional scrotal pain.

History of present illness

For the previous month, the patient had experienced occasional minor pain in the testicles.

History of past illness

The patient had no notable previous medical history.

Personal and family history

He denied any family history and had no specific past history.

WJCC | https://www.wjgnet.com

Physical examination

His height was 167 cm, and his weight was 57.9 kg. After physical examination, we found that he had no dysmorphisms and had a normal distribution of pubic hair and body hair. His external urethral meatus was in a normal position, and his penis had a normal appearance and size (5.7 cm, non-erectile).

Laboratory examinations

The results of the patient's serum test revealed that the luteinizing hormone (LH) concentration was elevated at 15.73 IU/L (normal range: 1.7-8.6 IU/L), and the folliclestimulating hormone (FSH) concentration was elevated at 14.13 IU/L (normal range: 1.5-12.4 IU/L). However, the serum testosterone hormone concentration was 3.22 μ g/L, which was in the normal range for adult males of 2.49-8.36 μ g/L. Azoospermia was determined after repeated seminal analysis. Chromosomal analysis was performed twice on samples collected at different times, and 100 metaphases were analyzed in each analysis. Two different cell lines with the karyotype 45,X[93%] /46,X,+mar(Y)[7%] were observed by GTG banding. Fluorescence in situ hybridization analysis with screening of metaphase and interphase lymphocytes was carried out to confirm the result of the karyotype analysis. Two cell lines, one with one green signal for Xcen (182/200) and the other with one green signal and one red signal for Xcen and Ycen (18/200), respectively, were observed according to fluorescence in situ hybridization (Figure 1A and B). All the metaphase and interphase lymphocytes showed one signal for Xcen but no SRY signal, except for cell lines containing SRY (Figure 1C). Polymerase chain reaction amplification of 16 Y-STS gene loci (SRY, ZFY, sY86, sY84, CDY2, SMCY, sY127, sY134, sY1161, sY1191, sY254, sY255, DAZ, sY157, CDY1, ZFX, SMCX, DAZL) using a Y-chromosome microdeletion detection kit (Microread Gene; Beijing, China) demonstrated the presence of Y chromosomederived sequences. The SRY and ZFY genes were not amplified in the AZF region (Figure 1D). The negative amplification of *SRY* further confirmed the partial absence of the Y-chromosome sequence.

Imaging examinations

Ultrasound scanning of the scrotum showed that both testicles were located in the scrotum, but the volumes (6.6 mL and 6.8 mL, respectively) were significantly smaller than the normal adult male testicle size (range: 15-23 mL). In addition, a normal-sized prostate and seminal vesicles were observed by internal genitalia ultrasound analysis.

FINAL DIAGNOSIS

Azoospermia.

TREATMENT

The recommended treatments were hormone replacement therapy, including oral testosterone undecanoate to maintain sexual function, and sperm donation and assisted reproductive technology to solve fertility problems.

OUTCOME AND FOLLOW-UP

Follow-up found that the patient had a normal penile erection. He was married 1 year later, and the couple decided to adopt a child after marriage.

DISCUSSION

Stability of the number and structure of chromosomes is the basic requirement for maintaining the normal sex differentiation process. Two decades ago, Telvi *et al*^[3] found that 45,X/46,XY mosaicism can manifest as a normal male phenotype and can also cause some abnormal clinical phenotypes, including Turner's syndrome, pseudohermaphroditism, and mixed gonad dysplasia. The subgroup of 45,X/46,XY mosaicism with normal adult male phenotype is usually diagnosed during infertility

Figure 1 Fluorescence in situ hybridization analysis of metaphase chromosomes. A-C: Fluorescence in situ hybridization analysis showed the presence of two cell lines, one with one green signal for Xcen (A) and the other with one green signal and one red signal for Xcen and Ycen, respectively (B), as well as the absence of the SRY gene, with only green signal of the X chromosome (C); D: Polymerase chain reaction amplification of 16 Y-STS gene loci.

investigation. Lashkari *et al*^[7] reported that the occurrence rate of 45,X/46,XYmosaicism in azoospermic and oligozoospermic patients was 0.78%. Among the 49 infertile adult male patients with the 45,X/46,XY mosaicism karyotype that they evaluated, 21 showed azoospermia, 24 had sperm abnormalities, and four displayed a normal spermogram.

We reviewed additional literature regarding 45,X/46,XY adult male cases (Table 1)^[8-18]. Among the 34 cases reviewed, 96.5% (28/29) showed azoospermia or oligozoospermia. The 45,X/46,XY mosaicism rates ranged from 6/93.3 to 94/6.7. There was no relationship between the mosaicism rate in peripheral blood lymphocyte and the phenotype, which was consistent with previous results^[19,20]. The mosaicism ratio in different tissues may explain the variety of phenotypes in mixed gonadal dysgenesis^[21]. Moreover, these individuals showed short or normal stature, with height ranged from 148-181 cm (data from 24 cases). Most of the patients had small testicles (92%, 23/25), elevated LH concentration (65.2%, 15/23), elevated FSH concentration (80.9%, 17/21), and normal testosterone concentration (95.2%, 20/21). All patients had the SRY gene, while 62.1% (18/29) had the AZF microdeletion. The most common AZF microdeletions were AZF(b+c) (66.7%, 12/18) followed by AZFc (22.2%, 4/12), AZFb (5.5%, 1/18), and AZF(a+b+c) (5.5%, 1/18). In our study, the man with the 45,X/46,XY mosaic karyotype also showed complete masculinization and azoospermia, with short stature, small testicles, elevated LH and FSH concentrations, and a normal T concentration. However, the SRY gene, ZFY gene, and AZF(a+b+c)regions of blood DNA were missing in this case, and this is the first male with the SRY -negative 45,X/46,XY mosaic karyotype according to our literature search results.

The process of sexual differentiation begins in the early stages of human embryo development. After a series of complex and orderly procedures, bipotential gonads eventually develop into testes or ovaries. The SRY gene plays a critical role in the cascade of events of sexual differentiation. The histogenesis of testis is initiated by the

Table 1 Characteristics of 34 reported 45,X/46,XY adult male cases

Ref.	No.	Age in yr	Karyotype[%]	Reason for examination	Semen analysis	Height in cm	Genital/gonads	LH in U/L	FSH in U/L	T in ng/mL	E2 in pg/mL	AZF	SRY
Wu et al ^[8] , 2017	1	22	45,X[93.3]/46,XY[6.7]	Primary sterility	AZO	148	Male/left and right TV: 4.4 mL, 1.6 mL dysplasia of epididymis	17.07	52.78	3.94	13.58	No missing	+
	2	23	45,X[36.7]/46,X,del(Y)(q11.223)[63.3]	Primary sterility	AZO	159	Male/left and right TV: 8.7 mL, 8.7 mL	9.98	16.22	4.32	37.38	AZF(b+c)	+
	3	23	45,X[65]/46,XY[35]	Primary sterility	AZO	173	Male/left and right TV: 4 mL, 5.4 mL	9.10	15.33	2.52	< 5.00	AZF(b+c)	+
	4	26	45,X[6]/46,XY[94]	Primary sterility	AZO	170	Male/left and right TV: 3.8 mL, 4.5 mL	9.32	17.04	4.06	47.79	AZF(b+c)	+
	5	26	45,X[83.3]/46,X,Yqh-[16.7]	Primary sterility	AZO	165	Male/left and right TV: 6 mL, 6 mL	10.44	28.20	7.12	33.26	AZF(b+c)	+
	6	29	45,X[45]/46,X,Yqh-[55]	Primary sterility	AZO	160	Male/left and right TV: 5.4 mL, 6.2 mL	13.58	22.00	3.49	40.95	AZF(b+c)	+
	7	29	45,X[28.3]/46,XY[71.7]	Primary sterility	AZO	165	Male/left and right TV: 6 mL, 3.2 mL	14.26	31.31	3.26	20.64	AZF(b+c)	+
Akinsal <i>et al</i> ^[9] , 2018	8	24	45,X[66]/46,XY[34]	Primary sterility	AZO	158	Male/left and right TV: 18 mL, 12 mL	19.7	15.15	3.83		AZFc	+
	9	26	45,X[70]/46,XY[30]	Primary sterility	AZO	178	Male/left and right TV: 9 mL, 9 mL	7.5	9.8	6.74	16.14	No missing	+
	10	29	45,X[40]/46,XY[60]	Primary sterility	AZO	156	Male/left and right TV: 7 mL, 7 mL	7.97	20.4	7.44	48.6	AZFc	+
	11	40	45,X[30]/46,XY[70]	Primary sterility	AZO	165	Male/left and right TV:14 mL, 14 mL	9.96	22.29	3.78		No missing	+
	12	26	45,X[55]/46,XY[45]	Primary sterility	AZO	165	Male/left and right TV: 12 mL, 14 mL	7.96	6.91	3.96	19.01	No missing	+
	13	29	45,X[66]/46,XY[34]	Primary sterility	AZO	164	Male/left and right TV: 8 mL, 10 mL	13.2	28	4.00	40.8	AZF(b+c)	+
	14	33	45,X[73]/46,XY[27]	Primary sterility	AZO	160	Male/left and right TV: 18 mL, 18 mL	3.8	11.12	2.52	18.63	No missing	+
	15	41	45,X[45]/46,XY[55]	Primary sterility	AZO	155	male/left and right TV: 8 mL, 7 mL	19.25	25.16	1.68	72.06	No missing	+
Lindhardt <i>et al</i> ^[10] , 2012	16	20	45,X[63]/46,Xdel(Y)(q12)[37]	Delayed puberty			Male/left and right TV:12 mL, 15 mL					AZF(b+c)	+
	17	28	45,X[20]/46,XY[80]	Infertility			Male/left and right TV: 2 mL, 0 mL					No missing	+
	18	33	45,X[55.6]/46,XY[44.4]	Infertility			Male/left and right TV: 12 mL, 6 mL					AZF(b+c)	+
	19	49	45,X[33.3]/46,Xidic(Y)(p)[66.7]	Infertility			Male/left and right TV: 4 mL, 4 mL					AZF (a+b+c)	+

Ren <i>et al</i> ^[11] , 2015	20	27	45,X[50]/46,XY[50]	Primary infertility				Ν	14 IU/L	Ν	Ν	No missing	+
Rosa <i>et al</i> ^[12] , 2014	21	24	45,X[33]/46,XY[67]	Primary infertility	AZO		EMS 12	Ν					
Ketheeswaran <i>et al</i> ^[13] , 2019	22	39	45,X[6]/46,XY[94], peripheral blood; 46,XY, buccal mucosal cells	Primary infertility	Ν	181	Male/left and right TV: 20 mL, 18 mL	1.8 IU/L	1.3 IU/L	10.2 nmol/L	0.06 nmol/L		
Reddy <i>et al</i> ^[14] , 1998	23	37	45,X[47]/46,XY[53], peripheral blood; 45,X[43]/46,XY[57], testis	Infertility	AZO		Male/atrophic testis						
Gassó-Matoses et al ^[15] , 1992	24	33	45,X[85]/46,XY[15], testis	Infertility	AZO	157	Bilateral small testis	10	17.2	430 ng/dL			
Li <i>et al</i> ^[16] , 2013	25	23	45,X[19]/46,XY[81]	Primary infertility	AZO	162	Ν					AZFc	+
	26	25	45,X[15]/46,XY,Yqh-[85]	Primary infertility	OLIGO	158	Ν					No missing	+
	27	30	45,X[15]/46,XY[85]	Primary infertility	AZO	163	Ν					AZF(b+c)	+
	28	24	45,X[56]/46,X,dic(Y)[44]	Primary infertility	AZO	157	Ν					AZFc	+
	29	36	45,X[55]/46,XY,Yp+[45]	Primary infertility	AZO	155	Ν					No missing	+
	30	26	45,X[22]/46,X,dic(Y)[78]	Primary infertility	AZO	168	Ν					No missing	+
Kilic <i>et al</i> ^[17] , 2010	31	28	45,X[5]/46,XY[95]	Infertility	AZO		Testicular diameters: 3 cm × 3.5 cm	16	21	2.21		AZFb	+
	32	25	45,X[20]/46,XY[80]	Primary infertility	OLIGO		Testicular diameters: 3.2 cm × 2.5 cm	18	26	2.8			
	33	32	45,X[45]/46,XY[55]	Primary infertility	AZO		Testicular diameters: 4.0 cm × 2.8 cm	17	23	2.77		AZF(b+c)	+
Valetto <i>et al</i> ^[18] , 2004	34	41	45,X[71]/46,X,idic(Yp)[26]/46,XY[3]	Infertility	AZO	155		Ν				AZF(b+c)	+

AZO: Azoospermia; E2: Estrogen; EMS: External masculinization score; FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; N: Normal; OLIGO: Oligozoospermia; T: Testosterone; TV: Testicular volume.

SRY gene, beginning at about 6 wk post-implantation^[21,22]. On the other hand, a deletion mutant of the *SRY* gene can affect masculinization and may cause 46,XY female sex reversal^[23]. Even though the *SRY* gene is critical in the initiation of testis determination, some of the *SRY*-negative phenotype may show the typical male phenotype, as seen in the present patient. Our findings further suggest that testicular formation and development occurs *via* a comprehensive process jointly regulated by other key genetic factors or environmental factors in addition to the *SRY* gene. Several hypotheses have attempted to explain rationally the formation of testicles in *SRY*-negative males, such as the possible predominance of the 46,XY cell line in the gonads^[20], hidden mosaicism for a Y-derivative material, or mutation of an autosomal or X-chromosomal gene downstream from *SRY*. In addition, studies have shown that

overexpression of the SOX9 gene can initiate testis differentiation when the SRY gene is silenced. This result indicates that the SOX9 gene, as downstream factor of SRY, plays an important role in the sex determination process^[24-26]. In the present study, the patient refused to undergo genetic analysis of genital skin and gonadal fibroblasts as well as further examinations, and thus, the exact mechanism of his gender development could not be explained.

The AZF gene is located on the long arm of the Y chromosome, and its locus contains protein-coding genes essential for spermatogenesis^[27]. Y chromosome microdeletion, which might result from Y-chromosome instability and lead to 45,X karyotype, is one of the key causes of severe male infertility. Clinical statistics indicate that 10%-15% of azoospermic patients and 5%-10% of severe oligospermia patients have Y chromosome microdeletion^[6,28]. Studies have reported that deletion of large and submicroscopic Y chromosome may lead to an increased proportion of 45,X abnormal karyotype cells among sperm cells and lymphocytes^[29]. In the present case, the patient had deletions of AZF(a+b+c) regions in addition to 45, X/46, XY mosaicism, which may explain the high percentage of 45,X cells and azoospermia.

From the perspective of oncology, gonadal germ cell tumors are detected at an elevated frequency among patients with a 45,X/46,XY karyotype and malformations of the external genitalia^[30]. The risk for malignant transformation is reportedly about 10% and increases with age in patients with 45,X/46,XY gonadal dysgenesis^[31,32]. It is worth noting that the prognoses of 45,X/46,XY patients with an apparently normal male phenotype until adulthood and patients who are born with severe genital anomalies show no statistical difference^[33]. Therefore, adult patients with the 45,X/46,XY mosaic karyotype must be followed up for life, with particular focus on testicular function and testicular tumor screening.

CONCLUSION

In conclusion, we have described the clinical and genetic findings for a male with complete virilization in SRY-negative 45,X/46,XY mosaicism. We believe that a perfect karyotype analysis and Y-microdeletion analysis could not only reveal the cause of male infertility, in order to facilitate reproductive counseling, but also provide prognostic information for patients with specific karyotypes.

REFERENCES

- Chang HJ, Clark RD, Bachman H. The phenotype of 45,X/46,XY mosaicism: an analysis of 92 prenatally diagnosed cases. Am J Hum Genet 1990; 46: 156-167 [PMID: 2294747]
- Layman LC, Tho SP, Clark AD, Kulharya A, McDonough PG. Phenotypic spectrum of 45,X/46,XY 2 males with a ring Y chromosome and bilaterally descended testes. Fertil Steril 2009; 91: 791-797 [PMID: 18555994 DOI: 10.1016/j.fertnstert.2007.12.078]
- 3 Telvi L, Lebbar A, Del Pino O, Barbet JP, Chaussain JL. 45,X/46,XY mosaicism: report of 27 cases. Pediatrics 1999; 104: 304-308 [PMID: 10429013 DOI: 10.1542/peds.104.2.304]
- 4 Zeng YT, Ren ZR, Zhang ML, Huang Y, Zeng FY, Huang SZ. A new de novo mutation (A113T) in HMG box of the SRY gene leads to XY gonadal dysgenesis. J Med Genet 1993; 30: 655-657 [PMID: 8105086 DOI: 10.1136/jmg.30.8.655]
- Goodfellow PN, Lovell-Badge R. SRY and sex determination in mammals. Annu Rev Genet 1993; 5 27: 71-92 [PMID: 8122913 DOI: 10.1146/annurev.ge.27.120193.000443]
- 6 Zhang YS, Dai RL, Wang RX, Zhang HG, Chen S, Liu RZ. Analysis of Y chromosome microdeletion in 1738 infertile men from northeastern China. Urology 2013; 82: 584-588 [PMID: 23769119 DOI: 10.1016/j.urology.2013.04.017]
- Mohammadpour Lashkari F, Sadighi Gilani MA, Ghaheri A, Zamanian MR, Borjian Boroujeni P, 7 Mohseni Meybodi A, Sabbaghian M. Clinical aspects of 49 infertile males with 45,X/46,XY mosaicism karyotype: A case series. Andrologia 2018; 50: e13009 [PMID: 29527714 DOI: 10.1111/and.13009]
- 8 Wu Q, Wang C, Shi H, Kong X, Ren S, Jiang M. The Clinical Manifestation and Genetic Evaluation in Patients with 45,X/46,XY Mosaicism. Sex Dev 2017; 11: 64-69 [PMID: 28214852 DOI: 10.1159/000455260
- Akinsal EC, Baydilli N, Bayramov R, Ekmekcioglu O. A Rare Cause of Male Infertility: 45,X/46,XY Mosaicism. Urol Int 2018; 101: 481-485 [PMID: 29161714 DOI: 10.1159/000484615]
- 10 Lindhardt Johansen M, Hagen CP, Rajpert-De Meyts E, Kjærgaard S, Petersen BL, Skakkebæk NE, Main KM, Juul A. 45, X/46, XY mosaicism: phenotypic characteristics, growth, and reproductive function -- a retrospective longitudinal study. J Clin Endocrinol Metab 2012; 97: E1540-E1549 [PMID: 22605431 DOI: 10.1210/jc.2012-1388]

- 11 Ren H, Chow V, Ma S. Meiotic behaviour and sperm aneuploidy in an infertile man with a mosaic 45,X/46,XY karyotype. Reprod Biomed Online 2015; 31: 783-789 [PMID: 26511872 DOI: 10.1016/j.rbmo.2015.08.016
- 12 Rosa RF, D'Ecclesiis WF, Dibbi RP, Rosa RC, Trevisan P, Graziadio C, Paskulin GA, Zen PR. 45,X/46,XY mosaicism: report on 14 patients from a Brazilian hospital. A retrospective study. Sao Paulo Med J 2014; 132: 332-338 [PMID: 25351753]
- Ketheeswaran S, Alsbjerg B, Christensen P, Gravholt CH, Humaidan P. 45,X/46,XY Mosaicism and 13 Normozoospermia in a Patient with Male Phenotype. Case Rep Med 2019; 2019: 2529080 [PMID: 30805004 DOI: 10.1155/2019/2529080]
- 14 Reddy KS, Sulcova V. Pathogenetics of 45,X/46,XY gonadal mosaicism. Cytogenet Cell Genet 1998; 82: 52-57 [PMID: 9763660 DOI: 10.1159/000015064]
- 15 Gassó-Matoses M, Picó-Alfonso A, Fernández-García J, Lobato-Encinas J, Mira-Llinares A. 45,X/46,XY gonadal dysgenesis in an infertile adult male. Urol Int 1992; 48: 239-241 [PMID: 1585524 DOI: 10.1159/000282343]
- 16 Li LL, Wu J, Dong Y, Zhu HB, Li LL, Liu RZ. [Clinical and cytogenetic analysis of 45,X/46,XY individuals]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2013; 30: 608-611 [PMID: 24078582 DOI: 10.3760/cma.j.issn.1003-9406.2013.05.022]
- Kilic S, Yukse B, Tasdemir N, Dogan M, Ozdemir E, Yesilyurt A, Keskin I. Assisted reproductive 17 treatment applications in men with normal phenotype but 45,X/46,XY mosaic karyotype: clinical and genetic perspectives. Taiwan J Obstet Gynecol 2010; 49: 199-202 [PMID: 20708529 DOI: 10.1016/S1028-4559(10)60042-3
- 18 Valetto A, Bertini V, Rapalini E, Baldinotti F, Di Martino D, Simi P. Molecular and cytogenetic characterization of a structural rearrangement of the Y chromosome in an azoospermic man. Fertil Steril 2004; 81: 1388-1390 [PMID: 15136108 DOI: 10.1016/j.fertnstert.2003.09.069]
- 19 Martinerie L, Morel Y, Gay CL, Pienkowski C, de Kerdanet M, Cabrol S, Lecointre C, Coutant R, Baron S, Colle M, Brauner R, Thibaud E, Leger J, Nihoul-Fekete C, Bouvattier C. Impaired puberty, fertility, and final stature in 45,X/46,XY mixed gonadal dysgenetic patients raised as boys. Eur J Endocrinol 2012; 166: 687-694 [PMID: 22236473 DOI: 10.1530/EJE-11-0756]
- 20 Tosson H, Rose SR, Gartner LA. Description of children with 45,X/46,XY karyotype. Eur J Pediatr 2012; 171: 521-529 [PMID: 21997800 DOI: 10.1007/s00431-011-1600-9]
- 21 Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346: 240-244 [PMID: 1695712 DOI: 10.1038/346240a0]
- Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of 22 chromosomally female mice transgenic for Sry. Nature 1991; 351: 117-121 [PMID: 2030730 DOI: 10.1038/351117a0]
- Akinsal EC, Baydilli N, Demirtas A, Saatci C, Ekmekcioglu O. Ten cases with 46,XX testicular 23 disorder of sex development: single center experience. Int Braz J Urol 2017; 43: 770-775 [PMID: 28379671 DOI: 10.1590/S1677-5538.IBJU.2016.0505]
- Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996; 122: 2813-2822 [PMID: 8787755]
- 25 Huang B, Wang S, Ning Y, Lamb AN, Bartley J. Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 1999; 87: 349-353 [PMID: 10588843 DOI: 10.1002/(sici)1096-8628(19991203)87:4<349::aid-ajmg13>3.0.co;2-n]
- Vidal VP, Chaboissier MC, de Rooij DG, Schedl A. Sox9 induces testis development in XX 26 transgenic mice. Nat Genet 2001; 28: 216-217 [PMID: 11431689 DOI: 10.1038/90046]
- 27 Vogt PH. AZF deletions and Y chromosomal haplogroups: history and update based on sequence. Hum Reprod Update 2005; 11: 319-336 [PMID: 15890785 DOI: 10.1093/humupd/dmi017]
- 28 Suganthi R, Vijesh VV, Vandana N, Fathima Ali Benazir J. Y choromosomal microdeletion screening in the workup of male infertility and its current status in India. Int J Fertil Steril 2014; 7: 253-266 [PMID: 24520494]
- Siffroi JP, Le Bourhis C, Krausz C, Barbaux S, Quintana-Murci L, Kanafani S, Rouba H, Bujan L, 29 Bourrouillou G, Seifer I, Boucher D, Fellous M, McElreavey K, Dadoune JP. Sex chromosome mosaicism in males carrying Y chromosome long arm deletions. Hum Reprod 2000; 15: 2559-2562 [PMID: 11098026 DOI: 10.1093/humrep/15.12.2559]
- 30 Müller J, Ritzén EM, Ivarsson SA, Rajpert-De Meyts E, Norjavaara E, Skakkebaek NE. Management of males with 45,X/46,XY gonadal dysgenesis. Horm Res 1999; 52: 11-14 [PMID: 10640893 DOI: 10.1159/000023425
- Liu AX, Shi HY, Cai ZJ, Liu A, Zhang D, Huang HF, Jin HM. Increased risk of gonadal malignancy 31 and prophylactic gonadectomy: a study of 102 phenotypic female patients with Y chromosome or Yderived sequences. Hum Reprod 2014; 29: 1413-1419 [PMID: 24826988 DOI: 10.1093/humrep/deu109]
- 32 Huang H, Wang C, Tian Q. Gonadal tumour risk in 292 phenotypic female patients with disorders of sex development containing Y chromosome or Y-derived sequence. Clin Endocrinol 86: 621-627 [PMID: 27862157 DOI: 10.1111/cen.13255]
- 33 Dumeige L, Chatelais L, Bouvattier C, De Kerdanet M, Hyon C, Esteva B, Samara-Boustani D, Zenaty D, Nicolino M, Baron S, Metz-Blond C, Naud-Saudreau C, Dupuis C, Léger J, Siffroi JP, Donadille B, Christin-Maitre S, Carel JC, Coutant R, Martinerie L. Should 45,X/46,XY boys with no

or mild anomaly of external genitalia be investigated and followed up? Eur J Endocrinol 2018; 179: 181-190 [PMID: 29973376 DOI: 10.1530/EJE-18-0309]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

