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Abstract
Chronic liver inflammation drives hepatic fibrosis, and 
current immunosuppressive, anti-inflammatory, and an-
ti-viral therapies can weaken this driver. Hepatic fibrosis 
is reversed, stabilized, or prevented in 57%-79% of 
patients by conventional treatment regimens, mainly by 
their anti-inflammatory actions. Responses, however, 
are commonly incomplete and inconsistently achieved. 
The fibrotic mechanisms associated with liver inflam-
mation have been clarified, and anti-fibrotic agents 
promise to improve outcomes as adjunctive therapies. 
Hepatitis C virus and immune-mediated responses can 
activate hepatic stellate cells by increasing oxidative 
stress within hepatocytes. Angiotensin can be synthe-
sized by activated hepatic stellate cells and promote the 
production of reactive oxygen species. Anti-oxidants (N -
acetylcysteine, S -adenosyl-L -methionine, and vitamin 
E) and angiotensin inhibitors (losartin) have had anti-
fibrotic actions in preliminary human studies, and they 
may emerge as supplemental therapies. Anti-fibrotic 
agents presage a new era of supplemental treatment 

for chronic liver disease.
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Core tip: The prevention of hepatic fibrosis and the 
reversal of cirrhosis are now achievable objectives in 
the management of chronic liver disease. Conventional 
immunosuppressive, anti-inflammatory, and anti-viral 
therapies can accomplish these outcomes by reducing 
liver damage, suppressing hepatic inflammation, and 
eliminating etiological agents, but they do so inconsis-
tently and indirectly. The continuing clarification of pro-
fibrotic mechanisms affords opportunities to design 
site-specific, anti-fibrotic interventions. Anti-oxidants 
and angiotensin inhibitors have shown promise as ad-
junctive anti-fibrotic agents in preliminary human stud-
ies, and they exemplify a genre of interventions that 
are likely to influence future management strategies.
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INTRODUCTION
Hepatic fibrosis is commonly preceded by chronic in-
flammation[1,2], and persistence of  this inflammation has 
been associated with progressive hepatic fibrosis and the 
development of  cirrhosis[3]. Chronic viral hepatitis and 
autoimmune hepatitis are chronic inflammatory diseases 
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of  the liver that exemplify this progression, and studies 
have indicated that prompt and sustained suppression of  
inflammatory activity by eliminating the etiological agent 
(virus)[4-10] or dampening the immune response (lym-
phocytic proliferation and infiltration)[11-15] can halt and 
even reverse the fibrotic process. The current treatments 
of  chronic liver inflammation were not designed to be 
anti-fibrotic[9,14], but the success of  these treatments in 
achieving this effect can be measured in prolonged sur-
vival and possibly a reduced occurrence of  hepatocellu-
lar carcinoma[10,16-21].

The molecular pathways that link chronic liver inflam-
mation with progressive hepatic fibrosis continue to be 
clarified, and this evolving knowledge affords opportuni-
ties to directly target the fibrotic process[22-24]. Current 
conventional treatments that are focused on elimination 
of  an etiological agent or putative immune-mediated 
mechanism may be supplemented in the future by agents 
that diminish oxidative stress, dampen hepatic stellate 
cell activation, reduce myofibroblast proliferation, and 
increase degradation of  the extracellular matrix[22-24]. The 
challenges are to characterize the disease-specific mecha-
nisms of  fibrogenesis, establish the safety and efficacy 
of  the anti-fibrotic interventions in a timely fashion, and 
incorporate them into conventional treatment regimens.

Highly selective, site-specific, anti-fibrotic therapies 
are unlikely to replace current treatments for the chronic 
inflammatory liver diseases, and their eventual emergence 
into clinical practice is best envisioned as a supplemental 
therapy[22-24]. Novel anti-fibrotic treatments must have 
actions that are additive to the anti-inflammatory and im-
munosuppressive properties that are already possessed by 
the conventional treatments.

The objectives of  this review are to describe the 
mechanisms by which liver inflammation can stimulate 
hepatic fibrosis, discuss the putative anti-fibrotic proper-
ties of  the conventional drug regimens used in the treat-
ment of  the chronic inflammatory liver diseases, detail 
the clinical efficacy of  these current regimens, and assess 
the prospect of  ancillary anti-fibrotic therapies.

HEPATIC INFLAMMATION AS A DRIVER 
OF HEPATIC FIBROSIS
Liver inflammation is commonly associated with hepato-
cyte necrosis and apoptosis[1,2,23]. These forms of  liver cell 
injury initiate a sequence of  events that is independent 
of  the etiological basis for the inflammation and can 
result in hepatic fibrosis. Apoptotic bodies derived from 
the damaged hepatocytes can activate quiescent hepatic 
stellate cells and Kupffer cells, and these activated cell 
populations can in turn promote inflammatory and fi-
brogenic responses[1,2,23] (Figure 1). Transforming growth 
factor beta 1 (TGFβ1), platelet-derived growth factor, 
and endothelial growth factor can induce the activated 
hepatic stellate cells to transform into myofibroblasts[25-33]. 
The activated hepatic stellate cells can also increase the 
production of  inflammatory chemokines[34], the expres-

sion of  adhesion molecules[35], and the presentation of  
antigens to T lymphocytes and natural killer T cells[36]. 
These enhanced inflammatory and immune-mediated 
responses can promote hepatocyte necrosis and apopto-
sis and thereby strengthen and perpetuate the stimuli for 
fibrogenesis[23,37-40].

Myofibroblasts have a contractile property that is 
signaled by the expression of  α-smooth muscle actin[41]. 
They are derived from hepatic stellate cells and from 
portal mesenchymal cells, and their origin may reflect 
the nature of  the liver injury and the microenvironment 
within the liver. The transition between hepatic stellate 
cells to myofibroblasts involves signaling pathways, such 
as Notch and Hedgehog, which modulate the epithelial-
to-mesenchymal cell transition[42]. Hepatic stellate cells 
can be deactivated, and a mesenchymal-to-epithelial cell 
transition can occur which reverts the myofibroblast 
to an inactive hepatic stellate cell[42]. This inactive cell 
remains primed for reactivation, and it may be more re-
sponsive to recurrent fibrogenic stimuli than its original 
quiescent state[41-45]. Deactivation of  the hepatic stellate 
cells terminates fibrogenesis and facilitates regression of  
the extracellular matrix[43].

The activated Kupffer cells can promote hepatic fi-
brogenesis by releasing cytokines and chemokines that 
stimulate the hepatic stellate cells[1,2,23] (Figure 1). The 
Kupffer cells can also release reactive oxygen species, 
nitric oxide, and chemotactic proteins that promote he-
patocyte injury and nurture the inflammatory response. 
Nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase can stimulate the production of  reactive oxygen 
species in hepatic stellate cells, macrophages and hepato-
cytes[46,47], and the resultant oxidative stress on the hepa-
tocytes can damage deoxyribonucleic acid (DNA), induce 
apoptosis, promote the expression of  pro-inflammatory 
genes, enhance fibrogenesis, and possibly trigger malig-
nant transformation[47,48]. Inducible nitric oxide synthase 
(iNOS) can promote hepatocyte toxicity by increasing 
the production of  nitric oxide, and the nuclear factor 
kappa-light-chain enhancer of  activated B cells (NF-κB) 
can modulate the production of  iNOS and the oxidative 
stress reaction[49]. The net consequence of  these diverse 
interactive cellular and molecular mechanisms is to per-
petuate and extend the tissue injury and enhance the ac-
cumulation of  the extracellular matrix of  collagen[50].

The overproduction and accumulation of  collagens 
Ⅰ and Ⅳ, procollagen Ⅲ, and elastin occur early in liver in-
jury, and metalloproteinases that are directed at the different 
types of  collagen are activated to degrade the depositions 
and maintain stability of  the matrix[23,50] (Figure 1). Tissue 
inhibitors of  the metalloproteinases are also expressed 
to counter-regulate the degradation process[50,51]. They 
may also induce expression of  the anti-apoptotic protein, 
Bcl-2, and thereby enhance survival of  hepatic stellate 
cells[23,52]. Maturation of  the collagen matrix depends 
mainly on lysyl oxidases that cross-link the collagen fibrils 
and increase the resistance to degradation[50,53].

Prevention or reversal of  hepatic fibrosis depends 
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on signaling pathways that influence the apoptosis of  
myofibroblasts, inactivation of  hepatic stellate cells, and 
degradation of  extracellular matrix (Figure 1). Myofi-
broblast apoptosis has been associated with the down-
regulation of  anti-apoptotic genes[44,45]; the peroxisome 
proliferator-activated receptor-gamma (PPARγ ) gene has 
been associated with sustained quiescence of  hepatic stel-
late cells and possibly their inactivation[45,54,55]; and metal-
loproteinases have degradative and fibrogenic properties 
that are counterbalanced[23,56,57]. Autophagy connotes the 
lysomal degradation of  non-vital or dysfunctional cel-
lular components, and these products can provide energy 
sources that maintain cell survival[58]. Hepatic stellate cells 
release lipid droplets (retinyl esters and triglycerides) dur-
ing their activation, and this manifestation of  autophagy 
may provide the energy necessary for their transition to 

myofibroblasts[59,60]. Clarification and potentiation of  the 
signaling pathways that modulate these various actions 
can have therapeutic relevance.

Hepatic inflammation initiates fibrogenesis by pro-
moting hepatocyte necrosis and apoptosis, sustains 
fibrogenesis by activating hepatic stellate cells and 
Kupffer cells, and maintains itself  by the actions of  pro-
inflammatory cytokines and chemokines that influence 
the trafficking of  inflammatory and immune cells within 
the liver[1,2] (Figure 1). The deposition of  extracellular 
fibrillar collagen is the net result of  these diverse and 
counter-regulated actions, and the degradation of  this 
matrix becomes more formidable after cross-linkage of  
the collagen fibrils[61]. Diverse interactive and counter-reg-
ulatory mechanisms strive to maintain homeostasis, and 
current anti-inflammatory and immunosuppressive regi-
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Figure 1  Activation and de-activation pathways of hepatic fibrosis. Hepatic inflammation triggered by virus infection or immune-mediated mechanisms can initi-
ate fibrogenesis by inducing apoptosis of hepatocytes. The released apoptotic bodies can activate quiescent hepatic stellate cells and transform them into myofibro-
blasts under the mediation of transforming growth factor beta 1 (TGFβ1), platelet-derived growth factor (PDGF), and endothelial growth factor (EGF). The activation 
process is fueled by the release of lipid droplets (autophagy). The apoptotic bodies from the damaged hepatocytes can also stimulate Kupffer cells to generate reac-
tive oxygen species (ROS) and nitric oxide (NO) by inducible nitric oxide synthase (iNOS). The ROS in turn can enhance hepatocyte apoptosis and continue the acti-
vation of hepatic stellate cells. Kupffer cells can also release ROS, cytokines and chemokines that contribute to the transformation of quiescent hepatic stellate cells to 
myofibroblasts. The myofibroblasts can also generate ROS and increase oxidative stress on hepatocytes by the nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase pathway and promote hepatic inflammation by enhancing the expression of pro-inflammatory cytokines, adhesion molecules, activated T lymphocytes, and 
natural killer T (NKT) cells. The myofibroblasts generate the extracellular matrix which can be cross-linked by lysyl oxidases and rendered resistant to degradation by 
metalloproteinases (MMP). The reversibility of the extracellular matrix depends in part on the cross-linkage of collagen fibrils and the counterbalance of activities be-
tween MMP and MMP inhibitors. Myofibroblast activity can be attenuated by the down-regulation of anti-apoptotic genes which then favor myofibroblast apoptosis and 
the expression of the peroxisome proliferator-activated receptor-gamma (PPARγ) gene which may contribute to hepatic stellate cell inactivation. Inactivated stellate 
cells are different from quiescent hepatic stellate cells in that they are “primed” to have a low threshold for reactivation by TGFβ1.
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indicated that the prevention or reversal of  hepatic fi-
brosis was an appropriate goal of  the conventional treat-
ments for chronic inflammatory liver disease[3,14].

Anti-viral therapies
Treatments that eliminate the hepatitis C virus (HCV) can 
impair virus-induced inflammatory, immune-mediated, 
and fibrogenic responses (Table 1). The hepatitis C virus 
can activate hepatic stellate cells[72,73], and viral proteins 
can increase oxidative stress within hepatocytes[1,23,74] and 
promote the release of  pro-inflammatory chemokines[75]. 
The introduction of  non-structural proteins of  HCV 
into hepatic stellate cells via an adenovirus vector can 
increase the proliferation of  these cells, stimulate che-
mokine secretion, and enhance expression of  adhesion 
molecules[74]. Incubation of  activated human hepatic stel-
late cells with recombinant HCV proteins increases the 
production of  reactive oxygen species[1,23,74], and HCV 
proteins also stimulate the secretion of  TGFβ1 and the 
production of  pro-collagen in cultured rat hepatic stellate 
cells[74].

In patients with chronic hepatitis C, the chemokines, 
CCL21 and CCR7, are expressed within liver tissue, and 
CCL21 is concentrated around portal tracts and lym-
phoid nodules[75]. CD8+ T lymphocytes isolated from the 
liver of  these patients are more commonly positive for 

mens for the chronic inflammatory liver diseases have an 
important, but imprecise, role in supporting this effort. 
Interventions that target site-specific molecular pathways 
implicated in the fibrotic process promise to bolster these 
regimens[22-24].

ANTI-FIBROTIC ACTIONS OF THE 
CONVENTIONAL DRUG REGIMENS
Anti-viral and immunosuppressive regimens have been 
the mainstays of  therapy for the chronic inflammatory 
liver diseases, and the prevention or reversal of  hepatic fi-
brosis has not been their primary objective. The dynamic 
nature of  hepatic fibrosis had not been fully appreciated 
at the time of  their introduction[62,63]; assessments of  
changes in hepatic fibrosis were hampered by sampling 
error and observer variation in the interpretation of  liver 
tissue specimens[64-68]; and biomarkers more closely re-
flected liver inflammation than collagen deposition[69,70]. 
Subsequent investigations indicated that fibrosis could 
decrease during anti-viral therapy for chronic hepatitis 
C[4,9,10,71] and corticosteroid treatment for autoimmune 
hepatitis[11,12,14,15]. Furthermore, isolated clinical studies 
suggested that cirrhosis could disappear during treat-
ment[13,14]. These experiences implicated hepatic inflam-
mation as an important driver of  liver fibrosis, and they 

  Conventional therapies Possible anti-fibrotic actions Clinical outcomes

  Anti-viral agents Prevent viral activation of HSC[72,74]

Limit viral induction of ROS[74]

Reduce HSC proliferation[72]

Decrease pro-inflammatory signals[74]

Reduce TGFβ1 and procollagen[72-74]

Decrease lymphocyte recruitment[75]

No fibrosis at 96 wk in 68%[7]

Less fibrosis after SVR in 33%[9]

Fibrosis stable in non-responders[6,9]

Reversal of cirrhosis possible[10]

Fewer complications of cirrhosis[10]

Better transplant-free survival[10]

  Corticosteroids Inhibit NF-κB by stimulating IκB[85]

Deplete pro-inflammatory factors[86]

Decrease adhesion molecules[84,87]

Increase lymphocyte apoptosis[88]

Reduce production of ROS[49]

Suppress metalloproteinase inhibitors[90]

Decrease TGFβ1 activity[91-93]

Impair activation of HSC[94]

Less fibrosis in 57%[11]

Reversal of cirrhosis[12,13]

Less or stable fibrosis in 79%[14]

Inflammation increases fibrosis[3,14]

Cirrhosis survival improved[11,18,165]

  Cyclosporine
  (calcineurin inhibitors)

Reduce cytokines and growth factors[162]

Decrease lymphocyte proliferation[97,162]

Inhibit TGFβ and interleukin-4[164]

Decreased hepatic fibrosis score[15]

Reduced inflammation score[15]

  Azathioprine Deplete purine-based nucleotides[98-100]

Impair lymphocyte proliferation[98]

Increase lymphocyte apoptosis[105,106]

Deplete NK cells[107]

Suppress pro-inflammatory genes[108]

Conjectural anti-fibrotic effects[97]

Used mainly with steroids[97,109]

Possibly protective after relapse[110]

  Mycophenolate mofetil Inhibit lymphocyte proliferation[112,113]

Increase lymphocyte apoptosis[112,113]

Decrease adhesion molecules[112,113]

Inhibit fibroblast proliferation[114]

Reduce iNOS production[112,113]

Unproven anti-fibrotic effects[97]

  Ursodeoxycholic acid Limit apoptosis of hepatocytes[138]

Decrease oxidative stress[139]

Reduce TGFβ1 signaling in HSC[140]

Varied anti-fibrotic effects[118,120,125]

Slows fibrosis progression[126]

Table 1  Anti-fibrotic actions and clinical outcomes of the conventional drug regimens

BA: Bile acids; HSC: Hepatic stellate cells; IκB: Inhibitor of nuclear factor kappa B; NF-κB: Nuclear factor kappa B; NK: Natural killer; ROS: Reactive oxygen 
species; SVR: Sustained virological response; TGFβ1: Transforming growth factor beta 1.
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CCR7 than cells from controls, and cultured hepatic stel-
late cells produce CCR7 and react to CCL21 by triggering 
pro-inflammatory signaling pathways that include NF-
κB[75]. In this fashion, HCV can influence the intrahepatic 
cytokine milieu and support inflammatory and immune-
mediated responses that favor fibrogenesis.

Hepatic steatosis is present in as many as 70% of  
patients with chronic hepatitis C[76-78]. In those patients 
infected with HCV genotype non-3, the frequencies of  
steatosis and fibrosis are higher in patients with oxida-
tive stress[78]. Hepatic steatosis is independently associ-
ated with oxidative stress, and hepatic steatosis and the 
histological activity score are independent predictors of  
hepatic fibrosis[78]. These findings suggest that complex 
inter-dependent pathogenic pathways involving liver in-
flammation, oxidative stress, hepatic steatosis, and hepatic 
fibrosis are interwoven in some patients with chronic 
hepatitis C. Elimination of  the viral agent might be the 
key to interrupting this fibrogenic process.

Anti-viral therapy may be anti-fibrotic because HCV 
infection promotes hepatic inflammation, immune-medi-
ated responses, and signaling pathways that can enhance 
fibrogenesis (Table 1). HCV may also directly activate 
hepatic stellate cells without mediators of  inflammation, 
and this possibility suggests a basis for the observed 
discrepancy between inflammatory activity and progres-
sive hepatic fibrosis in some HCV-infected patients[72]. 
Other viral agents are not as well studied as triggers for 
fibrogenesis, but the association should be broadly ac-
cepted until proven otherwise. Elimination rather than 
attenuation of  the viral infection should be the goal of  
treatment[79].

Corticosteroids
Immune-mediated liver diseases are consequences of  cell-
mediated and antibody-dependent mechanisms that are 
directed against self-antigens[80,81]. Autoimmune hepatitis 
lacks an etiological trigger that can be precisely targeted, 
and its treatment is directed in a non-selective fashion 
at putative inflammatory and immune-mediated mecha-
nisms of  tissue injury that can in turn promote hepatic 
fibrosis[82] (Table 1). Prednisolone is the active metabolite 
of  prednisone, and it binds to a glucocorticoid receptor 
within the cytosol[82,83]. This complex is then translocated 
to the nucleus where it interacts with glucocorticoid-
responsive genes and inhibits the production of  pro-
inflammatory cytokines[82,84].

Prednisolone also has an intracytoplasmic effect on 
the activity of  NF-κB by stimulating the production 
of  its inhibitor (IκB)[82,85]. Nuclear factors essential for 
the transcription of  cytokines are depleted, and pro-
inflammatory and immune-stimulatory actions are sup-
pressed[82,86]. These actions are augmented by a prednis-
olone-induced reduction in the expression of  adhesion 
molecules necessary for the targeting of  inflammatory 
and immune cells[84,85,87]. Furthermore, prednisolone en-
hances the apoptosis of  lymphocytes, and it can thereby 
interrupt an injurious immune-response[88].

Prednisolone also has broad anti-fibrotic actions 

(Table 1). By reducing hepatic inflammation, the signal-
ing pathways that trigger the production of  reactive 
oxygen species may be less active[49]. Metalloproteinase 
inhibitors, which are stimulated by hepatic inflammation, 
may be less provoked, and the degradation of  fibrillar 
collagens by unopposed metalloproteinases may proceed 
more freely[89,90]. The expression of  TGFβ1 may also be 
reduced by a glucocorticoid-responsive element in the 
human TGFβ1 gene promoter[91]. Furthermore, the acti-
vation and binding characteristics of  TGFβ1 may be im-
paired by corticosteroids[92,93]. These actions may in turn 
reduce the transformation of  hepatic stellate cells into 
myofibroblasts[94].

The net effect of  these corticosteroid actions on the 
inflammatory and immune-mediated responses in auto-
immune hepatitis is to limit tissue damage, reduce the 
signals for fibrogenesis, and restore homeostatic mecha-
nisms that control the extracellular matrix. The multiplic-
ity and diversity of  corticosteroid actions[82,87] and the 
complexity and interconnectivity of  the signaling path-
ways of  fibrogenesis[1,2] limit the efficacy and consistency 
of  corticosteroids as anti-fibrotic agents[23]. Cirrhosis 
is still a common consequence of  autoimmune hepati-
tis[18,95], and corticosteroids have had variable effects on 
fibrogenesis in animal models[96].

Azathioprine
Azathioprine is a purine antagonist that has anti-prolifer-
ative, pro-apoptotic, and anti-inflammatory actions that 
are complementary to the actions of  prednisone and 
prednisolone, and these actions may in turn strengthen 
the anti-fibrotic actions of  the corticosteroids[97] (Table 
1). The 6-thioguanine nucleotides are the active metabo-
lites of  azathioprine, and they can impair the synthesis 
of  purine-based nucleotides essential in the creation of  
new DNA and the proliferation of  activated lympho-
cytes[98-102]. Intracellular signal transduction can also be 
blocked by the generation of  6-thioguanine triphosphate 
which in turn dampens immune cell proliferation[103]. 
Furthermore, the azathioprine-generated 6-thioguanine 
triphosphate can interrupt a dephosphorylation path-
way necessary for the activation of  T lymphocytes by 
antigen presenting cells[104]. These anti-proliferative ac-
tions can be complemented by pro-apoptotic and anti-
inflammatory actions that may also impact on the signals 
for fibrogenesis.

Genes that regulate the expression of  anti-apoptotic 
factors are inhibited by 6-thioguanine triphosphate, and 
the survival of  the activated T and B lymphocytes that 
mediate liver injury may be shortened[105,106]. Natural killer 
cells that can contribute to an antibody-dependent cell-
mediated liver injury may also be depleted[107]. These 
actions can reduce immune-mediated liver injury and 
secondarily, the inflammatory response to tissue damage. 
The 6-thioguanine nucleotides can also directly impair 
the inflammatory response by dampening the expression 
of  pro-inflammatory genes[108].

The anti-fibrotic actions of  azathioprine are con-
jectural and based on the putative actions of  its active 
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metabolites[97] and its association with the clinical find-
ings of  reduced fibrosis in patients with corticosteroid-
treated autoimmune hepatitis[14]. The preferred treatment 
of  autoimmune hepatitis is prednisone or prednisolone 
in combination with azathioprine, and the anti-fibrotic 
contributions of  azathioprine to the clinical experiences 
with corticosteroids can only be surmised[109]. Azathio-
prine (2 mg/kg daily) has been used as a long-term main-
tenance therapy in patients with autoimmune hepatitis 
who have relapsed after corticosteroid withdrawal, but its 
anti-fibrotic effects during such treatment have not been 
studied[110]. The stable quiescence of  the disease during 
maintenance therapy with azathioprine suggests that the 
drug may prevent progressive fibrosis by preventing ex-
acerbations of  inflammatory activity[110,111].

Mycophenolate mofetil
Mycophenolate mofetil is a next generation purine antag-
onist that has a different metabolic pathway than azathio-
prine but similar anti-proliferative and anti-inflammatory 
actions[97,112,113] (Table 1). The synthesis of  purine-based 
nucleotides is impaired by mycophenolic acid, which is 
the active metabolite of  the drug, and cell proliferation 
is reduced by reversible, non-competitive inhibition of  
inosine monophosphate dehydrogenase, the enzyme nec-
essary for conversion of  inosine monophosphate to gua-
nosine monophosphate. Deficiencies in guanosine mo-
nophosphate can in turn dampen cell-mediated immune 
responses and antibody production[97,112,113]. Furthermore, 
mycophenolic acid can induce apoptosis of  activated 
lymphocytes, suppress the expression of  adhesion mol-
ecules, decrease the proliferation of  fibroblasts, and im-
pair the production of  iNOS in macrophages[97,112-114]. By 
these mechanisms, mycophenolate mofetil can limit the 
survival of  activated lymphocytes, decrease inflammatory 
activity, and reduce tissue damage mediated through nitric 
oxide production. The theoretical net effects of  these ac-
tions would be to reduce tissue damage and fibrogenesis 
while favoring fibrinolysis by de-repressing metallopro-
teinases[114]. As with azathioprine, the anti-fibrotic effects 
of  mycophenolate mofetil are unproven and not the pri-
mary objectives of  treatment with this agent[97].

Ursodeoxycholic acid
Ursodeoxycholic acid alone or in combination with cor-
ticosteroids has been an effective frontline therapy for 
autoimmune hepatitis in Japan[115-117] (Table 1). In other 
countries, it has been used mainly in diverse cholestatic 
liver diseases as the sole drug[118-120] or in syndromes with 
mixed features of  autoimmune hepatitis and cholestasis 
(“overlap syndromes”) in conjunction with cortico-
steroids[121-123]. Unlike the drugs used for chronic viral 
hepatitis or autoimmune hepatitis, the principal actions 
of  ursodeoxycholic acid are not directed at reducing liver 
inflammation by either eliminating an etiological agent or 
interrupting immune-mediated pathways[124].

Experiences reporting stabilization of  histological 
stage in treated patients with primary biliary cirrhosis 

(PBC)[120] have been countered by experiences report-
ing no or uncertain effects of  the drug on hepatic fi-
brosis[118,125]. Treatment of  PBC with ursodeoxycholic 
acid has been associated with a five-fold slower rate of  
progression from early stage to advanced stage disease 
compared to untreated patients[126], and the drug probably 
has an anti-fibrotic effect that is manifested by the slower 
progression of  fibrosis. The impact of  ursodeoxycholic 
acid on hepatic fibrosis takes years to recognize, and the 
treatment has not been associated with regression[126].

Importantly, hepatic inflammation, manifested as lym-
phocytic piecemeal necrosis, is an independent predictor 
of  progressive hepatic fibrosis in PBC[127,128], and patients 
with PBC and inflammatory manifestations that resemble 
those of  autoimmune hepatitis respond poorly to PBC-
directed therapies[129]. They have higher frequencies of  
esophageal varices, gastrointestinal bleeding, ascites, and 
death from liver failure or requirement for liver trans-
plantation than patients with classical PBC[129,130], and 
the presence of  these inflammatory manifestations has 
justified treatment regimens that combine corticosteroids 
with ursodeoxycholic acid[121,131,132]. In PBC as in chronic 
hepatitis C and autoimmune hepatitis, hepatic inflamma-
tion is a driver of  hepatic fibrosis.

Ursodeoxycholic acid has cytoprotective, bile stimula-
tory, and anti-apoptotic properties in chronic cholestatic 
liver disease, and its anti-inflammatory or anti-fibrotic 
effects are consequences of  these three basic proper-
ties[124,133]. Phospholipids in mixed micelles protect chol-
angiocytic membranes against damage by hydrophobic 
bile acids[134], and ursodeoxycholic acid can modulate 
the composition of  micelles to favor the phospholipid 
component[135,136]. The cytoprotective actions by this hy-
drophilic bile acid can in turn reduce or prevent cholan-
giocyte injury, portal inflammation, and the generation of  
fibrogenic stimuli. Ursodeoxycholic acid also stimulates 
biliary secretion of  potentially toxic hydrophobic bile 
acids[137], and it can thereby protect against the apoptosis 
of  liver cells whose death receptors would otherwise be 
directly stimulated by increasing intracellular concentra-
tions of  the toxic bile acids[138].

Ursodeoxycholic acid has had anti-fibrotic effects 
in a bile duct-ligated animal model[139], and it has been 
found to reduce the expressions of  TGFβ1, TGF type 1 
receptor and other components of  the signaling pathway 
involved in the activation of  cultured rat hepatic stellate 
cells[140]. Furthermore, ursodeoxycholic acid may reduce 
fibrogenesis through a pathway involved in the synthe-
sis of  glutathione which in turn may decrease oxidative 
stress and the activation of  hepatic stellate cells[139]. These 
properties have had limited effects on hepatic fibrosis in 
humans with chronic cholestatic liver disease[118,120,125,126], 
and norursodeoxycholic acid, which is a homologue of  
ursodeoxycholic acid, may have more potent anti-inflam-
matory and anti-fibrotic actions[134,141].

Norursodeoxycholic acid has a shortened side chain 
which distinguishes it from ursodeoxycholic acid, and it 
is resistant to conjugation (amidation) with taurine or gly-
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cine[141-143]. The unconjugated state and its shortened side 
chain renders the molecule more easily reabsorbed from 
bile and more rapidly re-secreted by hepatocytes[141,144]. 
This shunting within the enterohepatic circulation is 
associated with a hypercholeresis and decreased cholan-
gitis and fibrosis in a murine model of  primary scleros-
ing cholangitis[141]. Biliary fibrosis in murine models of  
chronic cholestatic liver disease correlate with the amount 
of  ductular reaction[145-147], and norursodeoxycholic acid 
may attenuate this trigger for fibrosis by reducing ductu-
lar proliferation[141]. Clinical trials are needed to determine 
the efficacy and safety of  this intervention.

EFFICACY OF CURRENT TREATMENTS 
IN PREVENTING OR REVERSING HEPATIC 
FIBROSIS
The ability of  conventional therapies to prevent or re-
verse hepatic fibrosis has been difficult to assess reliably 
because treatment regimens and follow-up schedules have 
varied and the methods for evaluating changes in hepatic 
fibrosis have been flawed. The sampling variations and 
interpretative inconsistencies of  liver tissue examina-
tions[23,64,66,148,149] have stimulated the quest for biomark-
ers[128,150-152] and imaging tests of  hepatic fibrosis[151,153,154]. 
Liver tissue examination by needle biopsy, however, has 
remained the standard assessment of  liver fibrosis as 
other modalities have been inaccurate, costly, or pre-
mature[152]. Furthermore, confidence in the liver tissue 
examination has been improved by the use of  codified 
evaluation protocols for histological interpretation[155,156].

In chronic hepatitis C, the METAVIR scoring system 
developed by the French Cooperative Study Group has 
been the preferred scoring system[65,68,155], and in autoim-
mune hepatitis, the Ishak scoring system[3,14,156], which is 
a refinement of  the earlier Knodell scoring system[157], 
has been preferred. Both systems are subject to sampling 
error and inter- and intra-observer variations[67,68]; each 
system can underestimate the grade and stage of  the liver 
disease in small tissue samples[158]; and each system can 
anticipate a maximum staging accuracy of  only 75% in 
tissue specimens that are ≥ 25 mm in length[68,148,159].

Importantly, the general availability of  the needle 
biopsy assessment, the opportunity to acquire addi-
tional histological information about the disease and 
its response to treatment[148,160], the high concordance 
of  the histological interpretations among pathologists 
(83%-84%)[67,68], and the strong association of  the tissue 
findings with clinical outcomes[161] have counterbalanced 
the deficiencies intrinsic to the needle biopsy procedure. 
As a result, needle biopsy of  liver tissue remains the prin-
cipal basis for understanding the dynamics of  hepatic 
fibrosis in patients with chronic hepatitis.

Anti-viral therapy and the prevention or reversal of 
hepatic fibrosis
Pooled data from three randomized clinical trials involv-

ing 1509 patients with chronic hepatitis C demonstrated 
that patients who were treated with interferon alfa-2b in 
combination with ribavirin or interferon alfa-2b in com-
bination with placebo for 48 wk had little or no hepatic 
fibrosis by METAVIR criteria at 96 wk more commonly 
than patients receiving the same regimens for 24 wk (68% 
vs 42% and 64% vs 24%, respectively)[7] (Table 1). The 
frequency of  a sustained virological response, the dura-
tion of  anti-viral therapy, and the histological stage of  
fibrosis prior to treatment were associated with the ability 
to prevent progressive hepatic fibrosis[7]. The efficacy of  
this treatment in limiting fibrosis was 68%.

Similar findings were reported in another study in 
which 99 patients with chronic hepatitis C were treated 
with interferon and ribavirin and 64 patients were treated 
with interferon alone[9] (Table 1). Progression of  hepatic 
fibrosis, as assessed by changes in the METAVIR score 
and a semi-quantitative fibrosis score, was slowed more 
commonly in patients with advanced hepatic fibrosis who 
achieved a sustained virological response than in the non-
responders[9]. Patients with cirrhosis at presentation who 
achieved a sustained virological response decreased their 
fibrosis score more commonly than non-responders (33% 
vs 9%), albeit fibrosis scores did not decrease by more 
than 2 points in any patient with cirrhosis. Importantly, 
the non-responders had no progression of  hepatic fibro-
sis after 12 mo of  therapy, and the anti-viral treatment 
may have had a protective effect even in the absence of  a 
virological response[9], as had been reported in an earlier 
study[6].

The anti-fibrotic effects of  anti-viral therapy in pa-
tients with chronic hepatitis C and cirrhosis have also 
been associated with fewer liver-related morbidities and 
better survival than in patients with unimproved hepatic 
fibrosis (Table 1). Of  96 patients with chronic hepati-
tis C and cirrhosis who received anti-viral therapy, 18 
patients (19%) improved from stage 4 to stage 2 by the 
METAVIR scoring system after a median follow-up of  
118 mo. Ten patients improved to stage 2; 7 patients 
improved to stage 1, and one patient improved to stage 
0[10]. Improvements in the stage of  fibrosis were associ-
ated with a reduction in the incidence of  cirrhosis-related 
complications (ascites, hepatic encephalopathy, variceal 
bleeding, bacterial peritonitis, hepatocellular carcinoma, 
and liver transplantation) from 4 per 100 patient-years 
in individuals without regression of  fibrosis to 0 per 100 
patient-years in individuals with regression of  fibrosis. 
Furthermore, the frequency of  transplant-free survival at 
10 years was higher in the patients in whom the fibrosis 
regressed (100% vs 74%)[10].

The composite experiences with anti-viral therapy in 
chronic hepatitis C confirm an anti-fibrotic effect, espe-
cially after sustained clearance of  the virus, but the results 
are unpredictable, incomplete, and most often of  low 
magnitude. Nevertheless, improvements in the fibrosis 
score have been associated with less morbidity and better 
survival in patients with chronic hepatitis C.
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Immunosuppressive therapy in the prevention or 
reversal of hepatic fibrosis
Corticosteroid therapy has improved hepatic fibrosis 
scores by a semi-quantitative scoring system in 57% 
of  patients with autoimmune hepatitis who underwent 
paired needle biopsy examinations during a median fol-
low-up of  49 mo, and the 10-year survival of  all patients 
was similar to that of  matched controls (90% vs 92%)[11] 
(Table 1). Another study indicated the loss of  fibrosis 
and the reversal of  cirrhosis (improvement in the median 
fibrosis score from 3.3 to 0.8 by Knodell scoring criteria) 
in 8 patients with autoimmune hepatitis and cirrhosis 
who responded to corticosteroid therapy[12]. Skepticism 
about the reversal of  cirrhosis in needle biopsy speci-
mens was somewhat allayed by the disappearance of  cir-
rhosis in paired liver samples obtained by wedge biopsy 
in one treated patient after 14 years[13].

A larger study involving 325 liver specimens obtained 
by needle biopsy from 87 corticosteroid-treated patients 
with autoimmune hepatitis showed a reduction in the 
Ishak fibrosis score from 3.4 to 2.6 during a mean ob-
servation period of  63 mo[14]. Fibrosis scores improved 
in 53% of  patients during a mean interval of  57 mo, and 
they did not worsen in 26% during a mean observation 
interval of  62 mo. In this study, corticosteroid treatment 
improved fibrosis or prevented its progression in 79% 
of  patients, and the fibrosis score improved more com-
monly in individuals with reduced scores that reflected 
histological inflammation (61% vs 32%)[14].

The calcineurin inhibitors (cyclosporine and tacroli-
mus) can impair the activation of  nuclear factors neces-
sary for the transcription of  cytokines and growth factors 
important in the proliferation of  lymphocytes[97,162,163] 
(Table 1). These anti-proliferative actions can in turn re-
duce immune-mediated tissue injury and the recruitment 
of  inflammatory cells to the sites of  damage. Reduced 
production of  TGFβ and interleukin-2 can have direct 
anti-fibrotic effects[164]. In 19 patients with autoimmune 
hepatitis who were treated with either cyclosporine (7 pa-
tients) or prednisolone (12 patients), mean fibrosis scores 
by the Ishak scoring system decreased from 4.5 to 2.2 
during a mean interval of  3.4 years[15]. Reductions in the 
fibrosis scores were associated mainly with the use of  cy-
closporine and the duration of  treatment, and the use of  
cyclosporine was the principal anti-fibrotic factor by lo-
gistic regression analysis (albeit the sample size was small 
and the confidence interval wide)[15]. Patients in whom 
fibrosis scores improved also had greater reductions in 
the scores for liver inflammation, and these findings re-
confirmed the association between liver fibrosis and he-
patic inflammation.

The composite experiences with immunosuppres-
sive therapy in autoimmune hepatitis, including regi-
mens based on the administration of  cyclosporine, have 
indicated an anti-fibrotic effect in 57%-79%, and this 
improvement had been associated with reductions in he-
patic inflammation. Reversal of  cirrhosis is possible, but 
a limited reduction in the fibrosis score is more common.

PROMISING SITE-SPECIFIC 
ANTI-FIBROTIC AGENTS IN CHRONIC 
LIVER DISEASE
Conventional treatments for chronic liver disease can 
improve hepatic fibrosis scores and increase survival, 
but these improvements are unpredictable, slow, and 
typically small. Cirrhosis in autoimmune hepatitis is un-
common during the first year of  treatment (7%), but its 
occurrence increases to 39% at two years and 59% at 3 
years if  inflammatory activity continues[165]. The failure 
to induce resolution of  hepatic inflammation within 36 
mo is associated with higher frequencies of  cirrhosis 
(54% vs 18%) and need for liver transplantation (15% 
vs 2%) than resolutions that occur within 12 mo[166]. In 
patients satisfying criteria for remission, the mean annual 
incidence of  cirrhosis is 2.6%[165], and the risk of  cir-
rhosis in autoimmune hepatitis persists indefinitely as a 
consequence of  unsuspected residual or recurrent mild 
chronic inflammation[167,168].

The development of  cirrhosis is also slow in chronic 
hepatitis C, but there is greater individual variability in 
this propensity than in autoimmune hepatitis depend-
ing on the age at the time of  infection, daily alcohol 
consumption, and gender[169]. The median duration from 
infection to cirrhosis in untreated patients is 30 years, 
ranging from 13 years in men infected after the age of  40 
years to 42 years in non-alcoholic women. Importantly, 
31% of  patients never develop cirrhosis or remain free 
of  cirrhosis for at least 50 years[169]. These individual 
variations in the time to cirrhosis make assessments of  
the anti-fibrotic actions of  anti-viral therapy difficult, but 
delays in clearing the virus or tolerating the medication 
probably contribute to disease progression[23].

Anti-fibrotic therapies have the potential to protect 
the liver during the protracted process of  suppressing 
liver inflammation in autoimmune hepatitis and eliminat-
ing the etiological agent in chronic viral hepatitis (Table 
2). Most anti-fibrotic therapies have theoretical value, 
limited laboratory evidence, and minimal or no human 
experience[22-24]. The most promising anti-fibrotic thera-
pies that have been evaluated in humans with chronic 
liver disease have been the anti-oxidants[22,23]. The angio-
tensin inhibitor (losartin) has also had success in a limit-
ed non-randomized study[170]. Human trials of  interven-
tions that disrupt pro-inflammatory cytokine pathways 
mediated by tumor necrosis factor-α (infliximab[171-174], 
etanercept[175,176], and pentoxyphylline[177]), neurochemi-
cals that block the fibrogenic activity of  myofibroblasts 
(cannabinoid antagonists)[23,178], compounds that enhance 
the expression of  nuclear receptors within hepatic stel-
late cells and preserve their quiescence (farglitazar)[179], 
and drugs that inhibit fibrogenesis by inactivating he-
patic stellate cells, impairing TGFβ1 secretion, and pro-
tecting liver cells by increasing glutathione production 
and reducing oxidative stress (oltipraz)[180-182] have been 
ineffective or toxic.
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Anti-oxidants
Oxidative stress is present in 61% of  patients with chron-
ic hepatitis C irrespective of  histological activity index, vi-
ral load or viral genotype as assessed by immunoglobulin 
G antibodies against lipid peroxidation-derived antigens 
(malondialdehyde adducts to human serum albumin)[78]. 
Immunohistochemical staining of  liver tissue using 
monoclonal antibodies against mouse macrophage iNOS 
and nitrotyrosine, which reflects nitric oxide production 
during inflammation, has indicated oxidative stress in all 
specimens from patients with primary biliary cirrhosis (14 
patients) and autoimmune hepatitis (10 patients)[49]. The 
frequency of  oxidative stress in chronic liver disease and 
the deleterious effects of  reactive oxygen species on he-
patocytes have supported the use of  anti-oxidants as sup-
plemental therapies, and studies evaluating these agents 
in animal models[183-188], cell lines[183,189], and humans with 
diverse liver diseases[78,190-192] have strengthened this role. 
The ability of  anti-oxidants to reduce liver inflammation 
and disease severity has also advanced their promise as 
anti-fibrotic agents[193,194].

N-acetylcysteine is a sulfhydril donor that inhibits the 
transcription activities of  NF-κB, and it can reduce the 
expression of  pro-inflammatory genes[195], modulate the 
expression of  iNOS[183,196], and limit apoptosis by reducing 
nitric oxide production (Table 2)[195]. Therapy with N-ace-
tylcysteine in combination with metformin for 12 mo has 
improved histological activity scores and reduced hepatic 
fibrosis in patients with non-alcoholic steatohepatitis[191].

SAMe can replenish mitochondria with glutathione, 
inhibit NF-κB activity, reduce the generation of  reactive 
oxygen species, and limit hepatic stellate cell activation 
by impairing the production of  iNOS and the hepatic 
synthesis of  nitric oxide (Table 2)[197]. Therapy with 

SAMe has decreased mortality or the need for liver trans-
plantation in patients with alcoholic cirrhosis from 29% 
to 12%, and it has improved their two-year survival[190]. 
Therapy with SAMe (1600 mg daily for 2 wk) has also 
hastened the decline in viral load and increased the fre-
quency of  an early virological response (53% vs 0%) in 
non-responders with chronic hepatitis C (genotype 1)[192].

Vitamin E is an anti-oxidant that protects against tox-
ic liver injury in animals[198] and prevents hepatic fibrosis 
in animal models and humans with acute and chronic 
liver damage (Table 2). Vitamin E reduces the produc-
tion of  TGFβ[199,200], and it in turn impairs the activation 
of  hepatic stellate cells[199]. It has already been shown to 
improve[201] or stabilize[202] hepatic fibrosis scores in non-
alcoholic fatty liver disease. Folate, melatonin, taurine, 
and salsalate are other anti-oxidants that are candidates 
for study in chronic liver disease[203]. Initial interest in be-
taine, as a method of  increasing hepatic SAMe levels and 
reducing hepatic steatosis[204], in alcoholic[205] and non-
alcoholic liver disease[206] has waned after performance 
of  a controlled clinical trial[207]. Anti-oxidants have not 
been used in autoimmune hepatitis, but the results 
of  their use in patients with alcoholic cirrhosis, non-
alcoholic steatohepatitis, and chronic hepatitis C compel 
their consideration.

Angiotensin inhibitors
Components of  the renin-angiotensin system are ex-
pressed in multiple organs, including the heart, kidney, 
gonads, pituitary, adrenal glands, and liver[208,209], and 
angiotensin Ⅱ, which is the principal product of  this 
system, can be synthesized by activated hepatic stellate 
cells[208]. Locally produced angiotensin Ⅱ from myofibro-
blasts is involved in the healing response to tissue injury, 

  Anti-fibrotic agent Possible anti-fibrotic actions Clinical experiences

  Anti-oxidants
     -acetylcysteine Inhibits NF-κB activity[195]

Limits pro-inflammatory genes[195]

Reduces iNOS and NO activity[196]

Decreases hepatocyte apoptosis[195]

Reduced hepatic fibrosis and inflammation in NASH[191]

     S-adenosyl-L- methionine
     (SAMe)

Increase mitochondrial glutathione[197]

Inhibit NF-κB activity[197]

Reduce ROS production[197]

Impair iNOS and NO production[197]

Limit HSC activation[197]

Decreased mortality and LT in alcoholic cirrhosis[190]

Hastened decline of viral load and increased early response 
in HCV non-responders[192]

     Vitamin E Reduce TGF-β in animals and humans[199,200]

Decrease oxidant stress on hepatocytes[198]

Limit collagen deposition[198]

Decreased hepatic fibrosis in NAFLD[201]

Prevented progressive hepatic fibrosis in NAFLD[202]

  Angiotensin inhibitors
     Losartin Limit angiotensin Ⅱ production by HSC[208]

Decrease expression of pro-fibrotic genes[170]

Limit NADPH-oxidase and oxidative stress[170]

Reduce TGF-β and pro-collagen production[214]

Decrease extracellular matrix[210,212,213]

Small trial in chronic hepatitis C[170]

Impeded pro-fibrotic and NADPH oxidase genes[170]

Reduced oxidative stress[170]

Decreased inflammatory and fibrosis scores in 50%[170]

Table 2  Promising anti-fibrotic agents in chronic liver disease

HCV: Hepatitis C virus; HSC: Hepatic stellate cells; iNOS: Inducible nitric oxide synthase; LT: Liver transplantation; NADPH: Nicotinamide adenine 
dinucleotide phosphate; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; NF-κB: Nuclear factor kappa-light-chain enhancer 
of activated B cells; NO: Nitric oxide; ROS: Reactive oxygen species; TGFβ: Transforming growth factor beta.
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and it can induce the secretion of  pro-inflammatory cy-
tokines and the synthesis of  extracellular matrix as well 
as inhibit collagen degradation[170,210-212]. The fibrogenic 
properties of  angiotensin Ⅱ are consequences of  reactive 
oxygen species that are generated within hepatic stellate 
cells by NADPH oxidase, and interventions that disrupt 
the renin-angiotensin system reduce experimental hepatic 
fibrosis and oxidative stress[213,214].

Losartan, an angiotensin receptor antagonist, has 
been assessed as an anti-fibrotic agent in a small clinical 
trial (Table 2). Fourteen patients with chronic hepatitis C 
were treated for 18 mo with losartin (50 mg daily)[170]. In-
flammatory activity and fibrosis stage by the METAVIR 
scoring system decreased in 7 patients, and the expres-
sion of  profibrotic genes and genes affecting NADPH 
oxidase activity and oxidative stress were also reduced[170]. 
Viral load, serum liver tests, collagen content, and fibrosis 
stage were unchanged overall, but the encouraging results 
in 7 patients justified a recommendation for a random-
ized clinical trial[170].

OVERVIEW
Hepatic fibrosis can be prevented or reversed by elimi-
nating the etiologic agent or disrupting the pathogenic 
mechanisms of  liver injury. Studies in animal models of  
bile duct ligation[215] and schistosomiasis[216] and clini-
cal experiences in patients with chronic bile duct ob-
struction[217], hemochromatosis[218], Wilson disease[219], 
jejuno-ileal bypass[220], thalessemia[221], primary biliary 
cirrhosis[222], chronic viral hepatitis[4-10], and autoimmune 
hepatitis[11,12,14,15] attest to this possibility[223]. Hepatic in-
flammation is only one driver of  hepatic fibrosis, but it 
is a injurious process that can be measured by laboratory 
and histological indices and targeted by conventional 
therapies[3].

Current management strategies for the chronic in-
flammatory liver diseases have not been optimized to 
prevent or reverse hepatic fibrosis, and their potential 
salutary effect on this response to tissue injury has often 
been underestimated, unrecognized, or ignored[18,165,224]. 
Treatments of  chronic viral hepatitis and autoimmune 
hepatitis are typically protracted[225-229], and advanced 
fibrosis and cirrhosis commonly develop late in the clini-
cal course[23,165,169]. In autoimmune hepatitis, cirrhosis can 
emerge years after the presentation[165,167,168].

Conventional treatment strategies must be modified 
to focus on the prevention of  hepatic fibrosis, and these 
modifications must ensure rapid viral clearance[166,226] and 
quick complete suppression of  liver inflammation[230-233]. 
Furthermore, the resolutions must be durable[111]. The 
achievement of  these objectives require early identifica-
tion of  the slow- or non-responder, reliable assessment 
of  the tissue response, individualized adjustments in 
the treatment regimens, and the early incorporation of  
supplemental anti-fibrotic interventions of  proven ef-
ficacy. Indefinite continuous therapy may be required in 
some patients[234]. Furthermore, anti-fibrotic agents are 

feasible as adjunctive therapies, and the identification and 
characterization of  the preferred agent may be disease-
dependent[235]. Randomized clinical trials are warranted to 
assess these issues, and they are only possible through a 
collaborative network of  clinical investigators that is sup-
ported by a societal commitment to fund these studies[236].
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