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Abstract
Currently, nuclear imaging such as positron emission 
tomography (PET) and single photon emission com-
puted tomography (SPECT) is increasingly used in the 
management of liver malignancy. 18F-fluorodeoxyglu-
cose (FDG)-PET is the most widely used nuclear imag-
ing in liver malignancy as in other cancers, and has 
been reported to be effective in diagnosis, response 
monitoring, recurrence evaluation, and prognosis pre-
diction. Other PET imaging such as 11C-acetate PET is 
also used complementarily to FDG-PET in diagnosis of 
liver malignancy. Additionally, image-based evaluation 
of regional hepatic function can be performed using 
nuclear imaging. Those imaging modalities are also 
effective for candidate selection, treatment planning, 
and perioperative evaluation in liver surgery and trans-
plantation. Recently, nuclear imaging has been actively 
adopted in the transarterial radioembolization therapy 
of liver malignancy, according to the concept of ther-
agnosis. With the development of new hybrid imaging 
technologies such as PET/magnetic resonance imaging 
and SPECT/CT, nuclear imaging is expected to be more 
useful in the management of liver malignancy, particu-

larly regarding liver surgery and transplantation. In 
this review, the efficacy and roles of nuclear imaging 
methods in diagnosis, transplantation and theragnosis 
are discussed.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Nuclear imaging methods including single 
photon emission computed tomography (SPECT) and 
positron emission tomography (PET) are increasingly 
being used in the management of liver malignancy. 
In this review, the efficacy and clinical role of nuclear 
imaging methods are discussed with regard to fluo-
rodeoxyglucose PET and other PET or SPECT imaging 
methods. In particular, the application of nuclear imag-
ing for theragnosis and surgical intervention including 
transplantation is discussed in detail. This review may 
be helpful for understanding current trends of nuclear 
imaging for liver malignancy.
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INTRODUCTION
Liver cancer is one of  the leading causes of  cancer death; 
particularly in men and developing countries. In 2008, 
the worldwide incidence and the number of  deaths from 
liver cancer were estimated to be 748300 and 695900, 
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respectively[1]. Additionally, the liver is a frequent meta-
static site of  almost all cancers, and metastatic liver can-
cer is much more common than primary liver cancer[2].

For primary liver cancer, the curative treatment is sur-
gical resection and/or interventional treatment when the 
disease is in an early stage. Thus, early diagnosis, accurate 
staging, and appropriate evaluation of  tumor character-
istics are of  utmost importance to cure the disease. In 
case of  unresectable disease, liver transplantation can be 
another option for cure if  the tumor is confined to the 
liver. However, because donor organ supply is limited, 
adequate recipients should be selected meticulously; cur-
rently the Milan criteria are most commonly used for 
candidate selection in liver transplantation[3]. In addition 
to accurate diagnosis and staging, pre- and postoperative 
functional evaluations are also required for successful 
transplantation.

In diagnosis and evaluation of  liver malignancy, ul-
trasonography (USG) and computed tomography (CT) 
have been widely used as conventional imaging modali-
ties, and recently, magnetic resonance imaging (MRI) is 
increasingly used with a strength of  high image contrast 
in the soft tissue. These imaging methods are based on 
structural changes, and can show mass lesions in primary 
or metastatic sites. In contrast, nuclear imaging meth-
ods including gamma camera scanning, single photon 
emission computed tomography (SPECT), and positron 
emission tomography (PET) target specific physiologi-
cal or molecular processes, and can show functional and 
biological features such as hepatobiliary function, viabil-
ity, and metabolic activity of  tumors.

Currently, 18F-fluorodeoxyglucose (FDG)-PET is the 
most widely used nuclear imaging for management of  
liver malignancy. FDG-PET shows cellular glucose me-
tabolism, which is usually enhanced in malignant tissues, 
and it can be used for sensitive detection and character-
ization of  tumors. Additionally, FDG-PET can cover the 
whole body with a single scan, therefore, it is valuable in 
detection of  metastatic lesions throughout the body. As 
well as initial staging and characterization, FDG-PET is 
now widely used in response evaluation after transarte-
rial chemoembolization (TACE), radiofrequency ablation 
(RFA) and chemotherapy. In addition to FDG, other 
imaging radiopharmaceuticals targeting fatty acid me-
tabolism or nucleotide synthesis are also used in recent 
clinical practice for liver cancer.

Theragnosis, another new field of  nuclear imaging, 
is a recently suggested concept that means simultaneous 
diagnosis and therapy with a common mechanism. In 
liver cancer, transarterial radioembolization (TARE) or 
selective internal radiotherapy (SIRT) is an example of  
theragnosis, in which SPECT or PET is directly used for 
planning treatment and evaluating response.

In this review, the clinical application of  FDG and 
other PET imaging is discussed in terms of  diagnostic 
efficacy in liver malignancy. Additionally, nuclear imaging 
is reviewed as a tool for candidate selection, and pre- and 
postoperative functional evaluation in liver surgery and 

transplantation. The theragnostic application of  nuclear 
imaging and therapy is also discussed briefly.

FDG PET IN EVALUATION OF LIVER 
MALIGNANCY
Principles of FDG PET
FDG is an analog of  glucose that is labeled with 18F. In 
actively growing tumor cells, glucose metabolism is en-
hanced under various conditions, which is known as the 
Warburg effect. FDG is taken up by cells with the same 
mechanism as that of  glucose, depending on glucose 
transporters and hexokinases. FDG that is not taken up 
by cells is rapidly removed by renal excretion[4]. In addi-
tion to this biological decay, 18F decays physically with a 
half-life of  110 min. Thus, effective radiation doses from 
routine FDG-PET do not exceed 10 mSv, even with a 
combined low-dose CT scan. The radiation dose from 
FDG-PET/CT is usually not higher than that from a 
single whole-body diagnostic CT scan[5,6]. Also, FDG is 
a safe radiopharmaceutical that has caused no pharma-
cological adverse reaction in tens of  thousands of  cases 
of  human administration[7]. As a result of  the relatively 
long half-life of  18F, FDG can be delivered to an imaging 
center without an on-site cyclotron, within 1 or 2 h dis-
tance. Currently, most PET scans are performed using 
hybrid PET/CT scanners. The combined CT scan can 
compensate for some weaknesses of  isolated PET scans, 
and faster scan and accurate localization of  lesions are 
available with the CT scan. PET/CT images can provide 
both functional and anatomical information in a single 
study.

One of  the most important strengths of  PET is that 
it can provide quantitative information on metabolism 
or molecular processes. Standardized uptake value (SUV) 
is the most widely used semi-quantitative parameter on 
FDG-PET. SUV is defined as the ratio of  tissue radio-
activity concentration and injected dose of  radioactiv-
ity per kilogram of  the patient’s body weight. Some 
researchers adopt corrections for body surface area or 
serum glucose level. SUV can be easily measured and is 
commonly used for evaluation of  glucose metabolism 
of  normal or cancer tissues. However, some studies have 
suggested that the tumor-to-normal liver ratio is a more 
effective parameter than SUV[8,9], because FDG uptake 
is affected by underlying liver diseases or serum glucose 
level[10] and the ratio can reflect variations in liver glucose 
metabolism better than tumor SUV itself.

Despite the many advantages, FDG-PET also has 
some limitations in liver imaging. First of  all, the liver 
is involved in the physiological glucose metabolism and 
normally shows considerable FDG uptake. The SUV of  
normal liver on FDG-PET is 2.0-3.0, which may inter-
fere with detection of  some tumors that have low glu-
cose metabolism. Additionally, the liver is adjacent to the 
diaphragm and the liver dome area is prone to motion 
artifacts caused by breathing or swallowing.
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FDG-PET in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most common 
primary liver malignancy. FDG-PET is effective in dif-
ferential diagnosis between malignant and benign liver 
lesions such as hepatic adenoma, harmatoma, hemangio-
ma, and nodular hyperplasia[11,12]. However, the sensitivity 
of  FDG-PET in diagnosis of  primary HCC is relatively 
limited and has been reported to be 50%-70%; par-
ticularly in small tumors[11,13,14]. In one of  these studies, 
detection rate was as low as 27.2% for tumors of  -2 cm 
and 47.8% for those of  2-5 cm[13]. One probable cause 
is the relatively high background uptake in the normal 
liver. Another cause is speculated to be glucose-6-phos-
phatase, which is highly expressed in HCC cells as well 
as normal hepatic cells, because dephosphorylation by 
glucose-6-phosphatase enables FDG to escape from cells. 
However, FDG uptake depends on malignancy grade of  
HCC; poorly differentiated HCC showed higher SUV 
and SUV ratio than moderately or well-differentiated 
HCC[9]. Thus, FDG-PET should be considered not only 
for lesion detection, but also for characterization or 
prognosis prediction. FDG-PET is also related to other 
characteristics of  tumor phenotypes such as P-glycopro-
tein expression or aggressive biological properties[9,15].

Despite relatively low sensitivities for primary liver 
lesions, FDG-PET plays an important role in finding 
extrahepatic or distant metastasis (Figure 1). A recent 
meta-analysis reported that PET or PET/CT has no-
table performances in diagnosis of  extrahepatic metasta-
sis or recurrent lesions of  HCC[16]. In this meta-analysis, 
pooled sensitivity and specificity for metastasis were 
76.6% and 98.0%, and those for recurrent lesions were 
81.7% and 88.9%, respectively. Although PET has a 
lower sensitivity than CT in detection of  small (< 1 cm) 
lung metastasis[17], PET is superior to other imaging mo-
dalities in detection of  extrahepatic lesions, particularly 
bone lesions[18].

Selective local treatments are widely performed for 
unresectable HCCs, along with chemotherapy. In plan-
ning of  treatment, response evaluation is crucial for 
adequate selection of  treatment methods. Currently used 
criteria in HCC are the modified Response Evaluation 

Criteria in Solid Tumors (RECIST)[19], and the European 
Association for the Study of  the Liver criteria[20], which 
depend on measurements of  size or enhancing portion 
on contrast CT. However, FDG-PET has advantages 
in the evaluation of  treatment response, in that it can 
reflect metabolic activity of  cancer cells and is less af-
fected by structural distortion after treatment than CT. 
Torizuka et al[21] reported that FDG uptake is increased 
in viable HCC tissue, whereas it is decreased or absent in 
the necrotic tissue in > 90% of  cases.

Thus, FDG-PET can be used with high efficacy to 
detect residual or recurrent lesions. Kim et al[22] reported 
that sensitivity, specificity and accuracy of  FDG PET/
CT were 87.5%, 71.4%, and 80.0%, respectively, in 
evaluation of  residual disease 1 mo after interventional 
therapy. In another study, diagnostic sensitivity and 
specificity were 100% and 63%, for residual lesions 3 mo 
after TACE[23]. Paudyal et al[24] reported that FDG-PET 
detected recurrence after RFA at least 4 mo earlier than 
CT in 33% of  patients. In their study, overall detection 
rate of  recurrence on FDG-PET was 92%, which was 
higher than 75% for CT. As a result, FDG-PET could 
change management plans in 18%-28% of  HCC pa-
tients[25,26]. Additionally, pretreatment FDG-PET per se is 
an effective prognostic predictor for treatment response 
in HCC. Song et al[8] have reported that SUV ratio mea-
sured on pretreatment FDG-PET/CT is an indepen-
dent predictor of  response to TACE in patient with 
intermediate-stage HCC. Lee et al[27] have reported that 
HCC patients with lower SUV (maximum SUV < 5.0) 
on FDG-PET showed longer overall and progression-
free survival than those with higher SUV, after sorafenib 
treatment. Intriguingly, Kucuk et al[28] have reported a 
longer progression-free survival rate in HCC patients 
with higher FDG uptake, in TARE treatment with 90Y.

FDG-PET in cholangiocarcinoma
Cholangiocarcinoma (CCA) is the second most common 
hepatobiliary malignancy. Prognosis of  CCA is gener-
ally poor because of  difficulty in early diagnosis, delayed 
clinical manifestation and lack of  effective non-surgical 
therapeutic options.
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Figure 1  18F-fluorodeoxyglucose-positron emission tomography in hepatocellular carcinoma. 18F-fluorodeoxyglucose-positron emission tomography/computed 
tomography (CT) fusion (A) and CT (B) images show hot uptake in the primary lesion (arrow) in the right lobe of the liver and regional lymph node metastases (arrowhead).
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In diagnosis of  bile duct cancer, sensitivity, specificity 
and accuracy of  FDG-PET were reported to be 92.3%, 
92.9%, and 92.6%, respectively[29]. In another study, a 
maximum SUV of  3.9 was suggested as a cutoff  for 
differential diagnosis between CCA and primary scleros-
ing cholangitis, and sensitivity, specificity, and accuracy 
were reported to be 94%, 83%, and 91%, respectively[30]. 
However, in contrast to intrahepatic CCA, diagnostic 
sensitivities of  FDG-PET were relatively low in extra-
hepatic CCA, for which MRI or magnetic resonance 
cholangiopancreatography was more effective than 
FDG-PET/CT[31-33]; probably due to small tumor size 
and uptake in adjacent organs such as the small bowel. 
The detection of  regional lymph node metastasis in 
CCA by FDG-PET also depends on size and metastatic 
tumor burden, thus demonstrating different results ac-
cording to the stage. The sensitivity of  FDG-PET for 
regional lymph node metastasis was 11.7%-31.6% in 
the resectable stage and 82.1% in the advanced stage. 
However, the specificity of  FDG-PET was as high as 
88.2%-96.4%[31-33].

One strength of  FDG-PET/CT is the diagnosis of  
metastasis in CCA. The accuracy of  PET/CT for distant 
metastasis was reported to be 88.3%-100%, which was 
superior to that of  CT[31-34]. With high diagnostic perfor-
mances, FDG-PET/CT findings changed management 
plans in 16%-20% of  cases deemed resectable after con-
ventional imaging studies[31,33,35].

FDG-PET in metastatic liver malignancy
Liver metastasis is from many types of  malignancies 
such as colorectal, stomach, breast and lung cancers, and 
is often found incidentally on FDG-PET during stag-
ing work-up. A meta-analysis revealed that FDG-PET 
is more sensitive than USG and CT for detection of  
liver metastasis from gastrointestinal cancers[36]. Another 
meta-analysis including 39 studies, in which diagnostic 
performances of  FDG-PET for liver metastasis from 
colorectal cancers were analyzed, reported sensitivi-
ties of  CT, MRI and PET as 83.6%, 88.2% and 94.1%, 
respectively[37]. Additionally, PET/CT had a higher sen-
sitivity and specificity (96.5% and 97.2%, respectively) 
than PET alone.

In colorectal cancers, isolated liver metastasis is a 
candidate for curative metastasectomy that can benefit 
long-term prognosis[38]. Thus, appropriate selection of  
resectable liver metastasis is of  crucial importance for 
appropriate treatment and reducing unnecessary surgical 
procedures. Selzner et al[39] have reported that PET/CT 
is superior to contrast-enhanced CT for detection of  
local recurrences, and intra- and extrahepatic metas-
tases in colorectal cancer patients who are candidates 
for liver metastasectomy. It has also been reported that 
adding FDG-PET/CT to the routine assessment of  pa-
tients with liver metastases changes therapeutic plans in 
28%-34% of  cases by changing disease stage[40,41]. Even-
tually, patients with liver metastasis who were preopera-
tively screened by FDG PET/CT had a longer 5-year 

survival rate (58%) than patients who were not screened 
(30%)[38]. Thus, FDG-PET/CT is recommended by sev-
eral guidelines as an appropriate and necessary imaging 
tool for initial staging of  colorectal cancers[42,43].

FDG-PET is also effective for early response moni-
toring and follow-up after selective local treatment of  
liver metastasis. FDG-PET is reported to be more ac-
curate for evaluation of  treatment response and able to 
detect local relapse earlier than CT in RFA treatment of  
liver metastases[44,45]. Also in TARE, response evaluated by 
FDG-PET/CT is well correlated with changes in tumor 
markers and progression-free survival, whereas RECIST 
and tumor density criteria are not[46]. Haug et al[47] have 
reported that the change in maximal SUV at 3 mo after 
TARE is an independent prognostic factor in patients 
with liver metastasis from breast cancer. Regarding che-
motherapy, Findlay et al[48] have reported that FDG-PET 
can be used for early response evaluation; > 15% reduc-
tion in tumor-to-liver ratio at 4-5 wk after chemotherapy 
was able to discriminate response from non-response with 
100% sensitivity and 75% specificity. Parameters on meta-
bolic volume have been widely investigated in evaluation 
of  chemotherapeutic response. In a recent study, meta-
bolic tumor volume and total lesion glycolysis measured 
on FDG-PET were shown to be effective in response 
evaluation[49]. However, it should be noted that sensitivity 
of  FDG-PET is limited for small lesions with low uptake, 
particularly within 1 wk after chemotherapy[50-52].

OTHER PET TRACERS AND NOVEL 
INSTRUMENTS FOR LIVER MALIGNANCY
Although FDG-PET is widely used in management of  
liver malignancy, the sensitivity of  FDG-PET is limited 
because of  relatively high background uptake in normal 
liver tissue. Additionally, FDG uptake is often lower in 
well-differentiated HCC. Thus, several alternative PET 
imaging agents have been tried in imaging of  liver malig-
nancy, including 11C-acetate, 11C-choline, 18F-choline and 
18F-fluorothymidine (FLT).

PET tracers other than FDG
Acetate is a metabolic substance used for fatty acid syn-
thesis and energy production via the Krebs cycle[53,54]. 
11C-Acetate PET is approved for human use in many 
countries including the United States, European Union, 
and South Korea, and used for tumor imaging in vari-
ous cancers including HCC, although establishment of  
an on-site cyclotron is required for use of  11C that has 
a short half-life of  20 min. In HCC, the uptake ratio 
between the lesion and the normal liver is usually much 
higher on 11C-acetate PET than on FDG-PET (Figure 
2). Ho et al[55] have reported that 11C-acetate PET is more 
sensitive than FDG-PET for detection of  HCC, particu-
larly well-differentiated HCC. Intriguingly, uptake of  11C-
acetate is not as high in CCA and metastatic liver tumors 
as in HCC, and thus, 11C-acetate PET is suggested as a 
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complementary imaging method to FDG-PET in well-
differentiated HCC. 11C-Acetate PET has also been 
reported to have a higher sensitivity than FDG-PET in 
detection of  bone metastasis from HCC (93% and 62%, 
respectively)[56].

As a result of  differences between FDG and 11C-
acetate in effective half-life and metabolic characteristics, 
dual-tracer PET/CT that uses both FDG and 11C-acetate 
was suggested to be more accurate in imaging of  HCC. A 
prospective study reported the overall sensitivity of  dual-
tracer PET/CT was 82.7% in primary HCC[13]. Addition-
ally, sensitivity and specificity of  dual-tracer PET/CT 
were significantly higher (96.8% and 91.7%, respectively) 
than those of  contrast CT (41.9% and 33.0%, respective-
ly), in selection of  candidates for liver transplantation[57].

Choline is one of  the essential components of  phos-
pholipids in the cellular membrane, and metabolism and 
uptake of  choline are increased in actively proliferating 
tumor cells. As well as 11C-choline, several 18F-labeled 
choline analogs such as 18F-fluorocholine, 18F-fluoroethyl-
choline and 18F-fluoromethyl-choline are used for clini-
cal imaging of  choline metabolism. These 18F-labeled 
tracers have longer half-lives and are more easily acces-
sible in clinical practice[58]. A prospective study with 18F-
fluorocholine PET in patients with chronic liver disease 
reported an overall sensitivity of  84% for HCC (including 
well-differentiated type), which was significantly higher 
than that of  FDG (67%)[59]. Intriguingly, some HCCs 
presented as a photopenic pattern on choline PET, and 

both hyper- and hypometabolic lesions may be regarded 
as positive results. A pilot study reported that HCC with 
a photopenic pattern on 18F-fluorocholine PET was asso-
ciated with the presence of  microvascular invasion, high 
FDG uptake, and early recurrence after surgical resec-
tion, resulting in poor prognosis[60]. However, HCC with 
a photopenic pattern may be an obstacle in differential 
diagnosis between HCC and benign liver lesions. In a re-
cent study, mean SUV ratios were 1.68 for focal nodular 
hyperplasia and 0.88 for hepatocellular adenoma[61].

18F-FLT is an analog of  thymidine. FLT-PET is used 
for imaging of  cellular proliferation, reflecting DNA 
synthesis. Although FLT-PET is effective in many can-
cers, its efficacy is limited in liver malignancy due to high 
physiological uptake in the normal liver. A pilot study 
reported higher FLT uptake than surrounding liver tis-
sue in 11 of  16 HCC cases (69%), which was related to 
a proliferation marker, MIB-1[62]. However, in liver me-
tastases of  colorectal cancer, only 11 of  32 cases (34%) 
were discernible on FLT-PET[63].

PET/MRI
PET/MRI is a recently developed hybrid imaging in-
strument that can provide both PET and MRI images 
simultaneously. MRI has excellent image contrast in the 
soft tissue including the liver, and shows a high diagnos-
tic performance for liver malignancy using liver-specific 
contrast materials and diffusion-weighted imaging, par-
ticularly in small lesions[64,65]. The hybrid images of  
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Figure 2  18F-fluorodeoxyglucose and 11C-acetate positron emission tomography in hepatocellular carcinoma. In a patient with HCC, maximal intensity projec-
tion (A), PET (B), and PET/CT fusion (C) images of 18F-fluorodeoxyglucose-PET does not show a lesion of hot uptake. However, the same image set of 11C-acetate 
PET (D-F) shows hot uptake in the S7 segment of the liver. PET: Positron emission tomography; HCC: Hepatocellular carcinoma; CT: Computed tomography.
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PET/MRI can yield benefits from the strengths of  both 
PET and MRI, which are perfectly co-registered to each 
other. Thus, PET/MRI has potential for imaging of  liver 
malignancy.

Several studies have investigated the efficacy of  
software-based image fusion between PET and MRI. 
One study reported that fusion images of  FDG-PET/
CT and MRI had a high sensitivity (93%) and specific-
ity (87%-97%) for liver malignancy[66]. Recently, some 
clinical hybrid PET/MRI scanners became commercially 
available and results of  initial studies on PET/MRI 
have been reported. PET/MRI provided better diag-
nostic confidence than PET/CT for both benign and 
malignant liver lesions[67]. Additionally, MRI can provide 
various information using different imaging sequences; 
diffusion-weighted imaging was reported to be related 
to histological grade of  tumor, and dynamic contrast-
enhancement imaging, to tumor viability[68,69]. The infor-
mation from MRI combined with metabolic information 
from PET could be new imaging biomarker profiles for 
tumor characterization.

However, attenuation correction is performed by MRI-
based methods in PET/MRI scanners, and there is a 
concern about the difference in SUV between PET/CT 
and PET/MRI[70,71]. Further studies are required to in-
vestigate quantitation methods for clinical application of  
PET/MRI in conjunction with PET/CT.

IMAGING IN LIVER SURGERY AND 
TRANSPLANTATION
FDG-PET in liver transplantation
Liver transplantation is the best curative option in early 
but unresectable liver malignancy. However, because of  
limited sources of  donor organs, careful candidate selec-
tion is of  paramount importance. Currently, the Milan or 
University of  California San Francisco criteria are widely 
used for candidate selection[3,72], in which size and num-
ber of  tumors are considered. They are based on the 
concept that a lower tumor burden is related to lower 
probability of  recurrence and better prognosis. However, 
size and number of  tumors are not perfect markers for 
the tumor burden, and errors may exist in preoperative 
measurement of  tumors on conventional CT.

FDG-PET has been used in pretransplantation evalu-
ation of  liver malignancy to detect extrahepatic metas-
tases. Additionally, FDG-PET can show the metabolic 
activity of  the primary liver lesion, which is related to 
the prognosis and tumor recurrence after transplanta-
tion. In a recent study, tumor-to-normal liver SUV ratio 
on preoperative FDG-PET was reported to be an inde-
pendent and significant prognostic factor for tumor re-
currence and survival in liver transplantation for HCC[73]. 
This agrees with the result that non-FDG-avid HCC 
showed a significantly lower rate of  microvascular inva-
sion, lower recurrence rate, and better 3-year recurrence-
free survival (11.5%, 3.8% and 93%, respectively) than 
FDG-avid HCC (87.5%, 50% and 35%, respectively)[74]. 

In another study, even in cases exceeding the Milan cri-
teria, the 5-year recurrence-free survival rate of  patients 
with non-FDG-avid HCC was comparable (81%) to that 
of  patients with tumors meeting the Milan criteria (81% 
and 86.2%, respectively)[75]. Pant et al[76] also have report-
ed that patients with non-FDG-avid HCC largely had 
lower-stage disease and could be candidates for curative 
surgical resection and liver transplantation, whereas the 
majority of  patients with FDG-avid HCC had advanced-
stage disease, with a higher chance of  metastases and 
vascular invasion. Similar results were reported in hilar 
CCA; patients with non-FDG-avid CCA had a signifi-
cantly lower recurrence rate and higher 2-year recur-
rence-free survival rate after liver transplantation than 
patients with FDG-avid CCA[77]. Thus, FDG-PET can 
be recommended as an essential imaging modality for 
preoperative evaluation of  liver transplantation.

In postoperative follow-up of  liver transplantation, 
FDG-PET can also be used for detection of  recurrence, 
although there is some limitation in detection of  small 
lesions including intrahepatic and brain metastases[78]. 
Additionally, FDG-PET is effective for diagnosis of  
post-transplant lymphoproliferative disorder (PTLD). 
PTLD is the second most common malignancy in adult 
transplant recipients, and has a very high mortality rate 
of  50%. Despite a small number of  subject cases, several 
studies reported that FDG-PET/CT may be a useful 
tool for detection, diagnosis, staging and therapy moni-
toring of  PTLD[79,80].

Image-based evaluation of hepatic function
In liver malignancy, radical treatment often requires ex-
tensive resection, which may impair hepatic function. In 
liver transplantation, resectability of  tumor and feasibil-
ity of  a living donor should be determined based on 
hepatic function. Thus, preoperative and postoperative 
residual hepatic function needs to be meticulously evalu-
ated to prevent postoperative hepatic failure. Nuclear 
imaging can be used for image-based evaluation of  liver 
function.

99mTc-labeled galactosyl human serum albumin (99mTc-
GSA) is a radiopharmaceutical that targets asialoglyco-
protein receptor of  hepatocytes. 99mTc-GSA scanning 
can provide valuable parameters for determining hepatic 
functional reserve, which demonstrated a good relation-
ship with other parameters of  liver function such as 
Child-Pugh classification, indocyanine green clearance, 
serum bilirubin, prothrombin time, and histology[81,82]. 
On 99mTc-GSA scanning, the ratio of  the heart activities 
at 15 and 3 min after injection (HH15) is used as a pa-
rameter for blood clearance, and the ratio of  the liver ac-
tivity and liver plus heart activity at 15 min after injection 
(LHL15) is used as a parameter for hepatic uptake. In 
patients with liver cirrhosis, high LHL15 or low HH15 is 
related to high survival rate[82].

Preoperatively measured LHL15 is reported to be re-
lated to postoperative complications after hepatectomy, 
with cutoff  values of  0.875-0.90[83,84]. 99mTc-GSA scan-
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ning can also be used for postoperative evaluation of  
hepatic function; LHL15 measured at 2 wk after trans-
plantation is correlated with other functional parameters 
such as model for end-stage liver disease score and 
graft-to-recipient weight ratio[85]. The modified receptor 
index, which is calculated as LHL15/HH15, was lower 
in the partial hepatectomy group than the control group 
in patients with fatty liver[86], reflecting residual hepatic 
function. In liver transplantation due to hepatitis, it is 
suggested that a decrease in the modified receptor index 
at 3 mo after transplantation could be assumed to be re-
current hepatitis affecting the graft[87].

The most notable advantage of  image-based func-
tional evaluation is that it can assess regional function 
easily. On 99mTc-GSA scanning, regional functions can 
be assessed using separate regions of  interest target 
areas. In a study on auxiliary partial orthotopic liver 
transplantation, in which the donor liver and residual 
native liver coexist, 99mTc-GSA scanning can be used for 
monitoring both donor and native liver function after 
transplantation[88]. Additionally, more accurate evaluation 
of  regional function and functional volume is available 
with SPECT or SPECT/CT imaging. Hwang et al[89] have 
reported that postoperative liver function and complica-
tions can be predicted using 99mTc-GSA dynamic SPECT 
in hepatectomy patients. 99mTc-GSA SPECT can also 
show hepatic function-volume relationship; functional 
recovery was reported to be more rapid than volumetric 
recovery after portal vein embolization or liver resection, 
in studies using 99mTc-GSA SPECT[90,91].

Imaging for hepatobiliary function
Hepatobiliary scanning has been used in clinical practice 
for several decades, using derivatives of  99mTc-labeled 
iminodiacetic acid (IDA) such as 99mTc-mebrofenin, 
99mTc-dimethyl IDA and 99mTc-diisopropyl IDA. These 
radiotracers are transported into hepatocytes and go 
through the biliary system without being metabolized, 
and thus, hepatic excretion and biliary drainage can be 
visualized.

In liver transplantation, hepatobiliary scanning is 
used for diagnosis of  postoperative biliary leakage or 
stricture, which is a frequent complication with inci-
dences of  5%-32%[92]. Hepatobiliary scanning has a high 
specificity for diagnosis of  post-transplantation biliary 
stricture, because passage of  only a small amount of  ra-
diotracers can be visualized on the scan. In a study that 
investigated hepatobiliary scanning with regard to find-
ings of  endoscopic or percutaneous cholangiography, 
positive and negative predictive values were reported to 
be 92.6% and 22%, respectively[93], which presumably 
resulted from difference in imaging sensitivities between 
the modalities. Dynamic hepatobiliary scanning may be 
useful for diagnosis of  complications such as biliary ob-
struction in liver transplantation[94].

Hepatobiliary scanning can also be used for evalua-
tion of  liver parenchymal function. On dynamic 99mTc-
mebrofenin scanning, hepatic uptake rate expressed as 

%/min was well correlated with indocyanine green clear-
ance test and residual liver function after major liver sur-
gery[95]. The cutoff  value of  future remnant liver func-
tion to prevent postoperative liver failure was suggested 
as 2.5-2.7 %/min per m2 body surface area[96,97].

SPECT and SPECT/CT are also helpful for hepato-
biliary scanning. Radiotracers are dynamically excreted 
through the hepatobiliary system, therefore, SPECT 
images are acquired at around the peak time of  hepatic 
time-activity curve, when the amount of  radioactivity 
within the liver is relatively stable and well correlated 
with hepatic function[98]. Fusion images of  SPECT/CT 
are expected to be better for regional assessment, with 
the aid of  anatomical reference images of  CT.

THERAGNOSIS USING NUCLEAR 
IMAGING IN LIVER MALIGNANCY
TARE as theragnosis
Theragnosis is a term coined from therapy and diagnosis, 
which means simultaneous diagnosis and therapy shar-
ing a common mechanism. Cancer-targeting tracers that 
have both imaging and therapeutic moieties are a typical 
example of  theragnosis. In liver malignancy, TARE or 
SIRT has been investigated for more than a decade, as 
an effective local treatment. TARE is performed with 
radiopharmaceuticals emitting therapeutic radiations. 
Additionally, nuclear imaging can be acquired using the 
radiations and used as a theragnosis for treatment plan-
ning and monitoring.

Currently, 90Y and 131I are widely used radioisotopes 
in TARE. Although 131I emits γ as well as β rays and can 
be imaged using a gamma camera, 90Y, more widely used 
than 131I, does not emit γ rays. However, 90Y can also be 
imaged using a gamma camera by the Bremsstrahlung 
X-ray, although image quality is relatively poor with it 
(Figure 3). Additionally, 90Y emits a small amount of  
positrons and can be imaged using a PET scanner. The 
images acquired from a gamma camera or a PET scan-
ner show distribution of  the radiopharmaceuticals, and 
are used for dosimetry, efficacy monitoring, and plan-
ning of  next treatment.

Theragnosis using 90Y-labeled microspheres
TARE can be considered in a patient with unresect-
able and hepatic artery-dominant primary or metastatic 
cancer, who has adequate general condition, preserved 
liver function, and a life expectancy of  at least 3 mo. 90Y-
labeled microspheres are most widely used in clinical 
trials and practice of  TARE. However, several other ra-
diopharmaceuticals are also available for TARE, such as 
131I-lipiodol[99], 166Ho-chitosan, and 188Re-lipiodol[100].

90Y-labeled microspheres are usually made of  resin 
or glass with sizes of  20-40 μm, which enables optimal 
access into tumor preventing adverse effect by leakage 
through microcirculation. In addition to embolizing the 
tumor-feeding artery, β ray irradiation from injected mi-

5381 May 14, 2014|Volume 20|Issue 18|WJG|www.wjgnet.com

Eo JS et al . Nuclear imaging for liver malignancy



crospheres destroys tumors. Dosimetry is a great benefit 
of  theragnosis imaging. Radiation doses of  the normal 
liver parenchyme and tumor can be calculated using par-
tition models or body surface area models, based on im-
ages that are acquired from pilot or previous treatment. 
Dosimetry results are used for treatment planning so 
that the radiation dose for the normal liver parenchyme 
does not exceed 35 Gy and that of  the tumor exceeds 70 
Gy[101].

TARE with 90Y-labeled microspheres can be com-
bined with other treatments. However, surgery imme-
diately after TARE is recommended to be performed 
carefully considering the radiation safety for surgeons, 
although the risk of  radiation exposure caused by a 90Y 
microsphere-administered patient is not high[102,103]. Ad-
ditionally, discontinuation of  antiangiogenic drugs such 
as sorafenib is recommended before pretreatment angi-
ography, in order to avoid vascular complication and to 
optimize therapy.

Bremsstrahlung scanning and SPECT for 90Y-labeled 
microspheres are used for post-treatment imaging and 
confirmation of  dose delivery. However, image qual-
ity of  the Bremsstrahlung scan and SPECT is relatively 
poor and insufficient for quantitative analysis, although 
optimization of  reconstruction algorithm has been at-
tempted using a precalculated point-spread function of  
90Y[104]. Recently, PET has been performed using posi-
trons produced from minor decay branches of  90Y, which 
generate 32 electron-positron pairs per every 1 million 
decays of  90Y. As a result of  a small branching fraction, 
90Y PET has a limited image quality and requires long 
imaging time. However, with recent state-of-the-art PET 
scanners that have high sensitivity, high-quality 90Y PET 
images superior to those of  Bremsstrahlung SPECT can 
be acquired[105]. More accurate measurements of  tumor-
absorbed dose and therapeutic response monitoring are 
provided by 90Y PET.

Pretreatment planning and response monitoring in 
TARE
In planning treatment with TARE, 99mTc-labeled macro-

aggregated albumin (99mTc-MAA) scanning is obtained 
for simulation of  microsphere distribution and dosim-
etry. The estimation from 99mTc-MAA scanning may 
not always be same as that of  therapeutic microspheres, 
because of  differences in particle size, specific gravity, 
injected particle load, microembolic effects, placement 
of  microcatheter tip, and regional blood flow change 
from prophylactic coil embolization of  non-target arter-
ies[106,107]. However, 99mTc-MAA SPECT usually shows 
accurate registration with 90Y SPECT images[108,109].

99mTc-MAA scanning is effective for detecting un-
expectedly leaked activity in the gastrointestinal tract, 
measuring the amount of  liver-to-lung shunt, and even 
predicting treatment response and survival[110]. In case 
of  abnormally high gastrointestinal activity, changing the 
position of  the microcatheter tip and re-evaluation by 
99mTc-MAA scanning should be considered to minimize 
adverse effects on normal tissue. Furthermore, dose re-
duction of  TARE or other treatment should be consid-
ered in patients with a large lung shunt, to prevent toxic-
ity from systemic distribution of  microspheres. 99mTc-
MAA SPECT or SPECT/CT provides more valuable 
information than that provided by planar scans because 
cross-sectional SPECT images can show more accurate 
regional distribution, particularly with SPECT/CT (Fig-
ure 4). Radioactivity measured on SPECT or SPECT/
CT can also be used for elaborate calculation of  radia-
tion dose, using anatomically correct partition models.

Response to TARE has been variable because of  
subject heterogeneity, different time points, and differ-
ent methods of  assessment. A recent prospective study 
including 52 HCC patients reported response, disease 
control and complete response rates of  40.4%, 78.8% 
and 9.6%, respectively[111]. In another prospective multi-
center phase Ⅱ trial of  TARE in chemorefractory liver-
dominant metastatic colorectal cancer, disease was con-
trolled in 48% of  patients with a median survival of  12.6 
mo[112]. FDG-PET is also used for monitoring response 
in TARE, and interval-decreased intrahepatic tumoral 
uptake on post-treatment FDG-PET suggests better 
prognosis and longer survival[46,47,113].
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Figure 3  A Bremsstrahlung scan of 90Y-microsphere transarterial radioembolization. Anterior (A) and posterior (B) planar scan images show hot uptake (arrows) 
in the right lobe of the liver, which is well correlated with findings on angiography (C), in spite of relatively poor image quality with blurring. Some liver-to-lung shunt 
activities are shown in the lungs (arrowheads).
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CONCLUSION
FDG-PET/CT has demonstrated high diagnostic per-
formances in liver malignancy, regarding diagnosis, treat-
ment response monitoring and prognosis prediction. 
11C-Acetate and radiolabeled choline PET is comple-
mentary to FDG-PET in liver malignancy with low 
FDG uptake, such as well-differentiated HCC. 99mTc-
GSA and hepatobiliary scans can be used for regional 
evaluation of  hepatic function. In liver resection and 
transplantation, those imaging methods are effectively 
used for candidate selection, treatment planning and 
perioperative evaluation of  hepatic function. In recently 
developing treatment of  TARE, nuclear imaging is used 
for planning and evaluation of  treatment as theragnosis. 
With development of  new hybrid imaging technologies 
such as PET/MRI and SPECT/CT, nuclear imaging is 
expected to be more useful in the management of  liver 
malignancy, particularly regarding liver surgery and trans-
plantation.
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