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Abstract
Hepatitis C virus (HCV) infection disrupts the normal 
metabolism processes, but is also influenced by several 
of the host’s metabolic factors. An obvious and signifi-
cantly detrimental pathophysiological feature of HCV 
infection is insulin resistance in hepatic and peripheral 
tissues. Substantial research efforts have been put 
forth recently to elucidate the molecular mechanism of 
HCV-induced insulin resistance, and several cytokines, 
such as tumor necrosis factor-α, have been identi-
fied as important contributors to the development of 
insulin resistance in the distant peripheral tissues of 
HCV-infected patients and animal models. The demon-
strated etiologies of HCV-induced whole-body insulin 
resistance include oxidative stress, lipid metabolism 
abnormalities, hepatic steatosis and iron overload. In 
addition, myriad effects of this condition have been 
characterized, including glucose intolerance, resistance 
to antiviral therapy, progression of hepatic fibrosis, 
development of hepatocellular carcinoma, and general 
decrease in quality of life. Metabolic-related conditions 
and disorders, such as visceral obesity and diabetes 
mellitus, have been shown to synergistically enhance 
HCV-induced metabolic disturbance, and are associated 
with worse prognosis. Yet, the molecular interactions 
between HCV-induced metabolic disturbance and host-
associated metabolic factors remain largely unknown. 
The diet and lifestyle recommendations for chronic 

hepatitis C are basically the same as those for obesity, 
diabetes, and metabolic syndrome. Specifically, pa-
tients are suggested to restrict their dietary iron intake, 
abstain from alcohol and tobacco, and increase their 
intake of green tea and coffee (to attain the beneficial 
effects of caffeine and polyphenols). While successful 
clinical management of HCV-infected patients with met-
abolic disorders has also been achieved with some anti-
diabetic (i.e. , metformin) and anti-lipid (i.e. , statins) 
medications, it is recommended that sulfonylurea and 
insulin be avoided.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: A specific pathophysiologic feature of hepa-
titis C virus (HCV) infection is whole-body insulin 
resistance, which is related to oxidative stress, lipid 
metabolism abnormalities, hepatic steatosis, and iron 
overload. Host metabolic factors synergistically en-
hance the HCV-induced metabolic disturbance, affec-
tively deteriorating the clinical course in patients with 
chronic hepatitis C. Consequently, diet, lifestyle and 
medications appropriate for metabolic disorders are 
important for management of HCV-infected patients to 
improve their prognosis.
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INTRODUCTION
Epidemiological and clinical studies have shown that pa-
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tients with chronic liver disease, especially those infected 
with the hepatitis C virus (HCV), have a higher preva-
lence of  glucose intolerance than the general popula-
tion[1-8]. Insulin resistance appears to be a central feature 
of  the pathogenesis of  HCV-induced glucose intolerance. 
Eradication of  HCV by antiviral therapy has been shown 
to ameliorate insulin resistance, both in hepatic tissues[4] 

and whole body[9]; in addition, these patients with antivi-
ral treatment response show significantly lower incidence 
rates of  glucose metabolism abnormalities during the 
subsequent follow-up[10,11]. 

Insulin resistance has emerged as an important prog-
nostic factor for the clinical course of  HCV infection, due 
to its association with resistance to antiviral therapy[12-18], 
progression of  hepatic fibrosis[13,19-24], development of  
hepatocellular carcinoma (HCC)[25], and poor quality of  
life[26]. In addition, insulin resistance, as well as oxidative 
stress, has been shown to contribute to the HCV-related 
disruptions in host metabolic factors, particularly lipids 
and iron[27-31]. Visceral obesity has been shown to enhance 
HCV-induced insulin resistance[32], and HCV infection in 
patients with both obesity and diabetes mellitus has been 
reported to strongly promote the development of  HCC[33]. 
Thus, synergistic effects of  viral and metabolic factors are 
hypothesized to contribute to hepatocarcinogenesis. 

Liver cirrhosis, regardless of  etiology, leads to marked 
metabolic disturbances in protein-energy malnutrition[34], 
whole-body insulin resistance[35,36], and peripheral hyper-
insulinemia[37-40]. Thus, the pathophysiology of  liver cir-
rhosis is not included in the present discussion of  inter-
active and synergistic relationships between HCV-specific 
metabolic disturbances. Instead, we provide overviews of  
the following: (1) insulin signaling factors and pathways 
that play important roles in glucose and lipid metabolism; 
(2) mechanism of  HCV-induced insulin resistance in 
multiple organs; (3) mechanisms of  altered lipid metabo-
lism and hepatic steatosis under conditions of  HCV in-
fection; (4) interactions between the iron metabolism and 
oxidative stress pathways in HCV infection; (5) impact of  
host-related metabolic factors on HCV-induced metabol-
ic disturbance; and (6) recommendations for diet, lifestyle 
and medications aimed at protecting against or resolving 
metabolic disorders in HCV-infected non-cirrhosis pa-
tients. 

OVERVIEW OF INSULIN ACTION IN THE 
REGULATION OF GLUCOSE AND LIPID 
METABOLISM
Insulin controls postprandial blood glucose levels by in-
creasing glucose uptake in muscle and fat, and reducing 
hepatic glucose production. Insulin stimulates cellular 
synthesis of  glycogen, proteins and lipids, and inhibits 
glycogenolysis, protein breakdown and lipolysis, thereby 
facilitating storage of  these substrates. The uptake of  
glucose by muscle and fat cells is promoted through insu-
lin’s stimulation of  glucose transporter (GLUT) 4 trans-

location from the cytoplasm to the plasma membrane. 
Although insulin does not affect GLUT2 in hepatocytes, 
it blocks gluconeogenesis and glycogenolysis, and stimu-
lates glycogen synthesis[41].

The biological action of  insulin involves modula-
tion of  a cascade of  intracellular signaling molecules 
in response to circulating insulin binding to its cognate 
cell surface receptor. The insulin receptor is a tetrameric 
complex, consisting of  two extracellular insulin-binding 
α-subunits and two b-subunits transversing the cell 
membrane; these subunits function as allosteric enzymes, 
whereby the α-subunit inhibits the tyrosine kinase ac-
tivity of  the b-subunit[42]. Furthermore, insulin binding 
promotes its receptor’s autophosphorylation, which leads 
to tyrosine phosphorylation of  the intracellular insulin 
receptor substrate (IRS)-1 and IRS-2, initiating a cascade 
of  multifaceted events[41]. Conversely, serine phosphory-
lation of  the IRS proteins attenuates insulin signaling by 
decreasing insulin-stimulated tyrosine phosphorylation; 
this action acts as a negative feedback signal under nor-
mal physiologic conditions, providing a crosstalk mecha-
nism between pathways that are not directly modulated 
by insulin but which can produce insulin resistance[43-46]. 
Additional factors that suppress activation of  IRS pro-
teins have also been implicated in development of  insulin 
resistance; these include the protein tyrosine phosphatas-
es (PTPs), especially PTP1B, which dephosphorylate ty-
rosine residues on the insulin receptor or IRS-1/2[47], and 
the suppressor of  cytokine signaling (SOCS) proteins, 
SOCS-1 and SOCS-3, which promote ubiquitin-mediated 
IRS-1 and IRS-2 degradation[48]. 

The phosphatidyl inositol 3-kinase (PI3K)-Akt path-
way is a key transducer of  the insulin-mediated metabolic 
signal[41,49]. PI3K itself  consists of  a p110 catalytic sub-
unit and a p85 regulatory subunit. IRS proteins activate 
PI3K by phosphorylating two SH2 domains in the p85 
component[50]. Subsequently, the p110 component of  
PI3K phosphorylates the membrane phospholipid phos-
phatidylinositol 4,5-bisphosphate at the 3’ position. The 
resultant phosphatidylinositol 3,4,5-triphosphate (PIP3) 
regulates the phosphoinositide-dependent kinase 1, 
which phosphorylates and activates Akt[51]. Overexpres-
sion of  the phosphatase and tensin homolog[52] and the 
SH2 domain-containing inositol-5-phosphatase[53] leads 
to decreased levels of  PIP3, resulting in inhibition of  the 
PI3K-Akt pathway. 

The following three pathways regulate glucose uptake: 
PI3K-Akt[54]; PI3K-atypical protein kinase C (aPKC, 
composed of  PKC ζ/λ)[55]; and lipid raft-expressed CAP-
Cbl-TC10[56,57]. For all, the PI3K-Akt pathway is critical 
for GLUT4 translocation. Upon activation, Akt inhib-
its glycogen synthase kinase-3[58] and activates protein 
phosphatase 1[59], thereby activating glycogen synthase by 
promoting its dephosphorylation. Insulin itself  inhibits 
gluconeogenesis and glycogenolysis through its modula-
tion of  certain process-related transcription factors, such 
as hepatic nuclear factor-4, members of  the forkhead 
protein family and peroxisome proliferator-activated re-
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ceptor (PPAR)γ co-activator 1, and increases lipogenesis 
by modulating the sterol regulatory element binding pro-
tein (SREBP)-1[41]. Insulin-mediated PI3K pathway and 
mammalian target of  rapamycin (mTOR) signaling acti-
vate p70 ribosomal S6 kinase, which synthesizes proteins 
and modulates the mammalian translation machinery[60]. 
Insulin can also stimulate cellular proliferation and dif-
ferentiation by perturbing Ras activation by Grb2-SOS, 
which modulates the downstream mitogen-activated pro-
tein kinase (MAPK) signaling cascade[61,62] (Figure 1).

HCV-INDUCED METABOLIC 
DISTURBANCE 
Molecular mechanisms of insulin resistance in HCV-
infected liver 
A study using liver biopsy specimens obtained from 
non-diabetic HCV-infected patients showed that HCV 
impaired the insulin-stimulated tyrosine phosphorylation 
of  hepatic IRS-1, resulting in reduced PI3K-Akt activa-
tion without any alterations in the MAPK pathway[63]. 
Subsequent study of  a transgenic mouse model express-
ing the HCV genotype 1 core protein indicated that the 

core protein was responsible for inducing hepatic insulin 
resistance via suppression of  IRS-1 tyrosine phosphory-
lation, which was shown to ultimately lead to overt dia-
betes[64]. When human hepatoma cell lines were infected 
with HCV genotype 1, the core protein-mediated induc-
tion of  SOCS-3 was shown to promote proteosomal 
degradation of  IRS-1/2 through ubiquitination, resulting 
in inhibition of  the PI3K-Akt pathway[65]. Although an-
other study demonstrated that HCV genotype 2 did not 
mediate the same IRS-1/2 degradation via up-regulation 
of  SOCS-3[66], both of  the core proteins derived from 
genotype 2 and genotype 1 have been shown to increase 
serine phosphorylation of  IRS-1 through the c-Jun 
N-terminal kinase (JNK) signaling pathway to decrease 
tyrosine phosphorylation of  IRS-1 and impair the PI3K-
Akt pathway[44]. In addition, the core protein of  genotype 
1 has been shown to promote IRS-1 degradation through 
mTOR activation[67] and to suppress phosphorylation of  
tyrosine on IRS-1, as well as the production of  IRS-2, 
through modulation of  a proteasome activator (PA)28γ-
dependent pathway[68]. The core protein of  HCV geno-
type 3 can also promote IRS-1 degradation, and this 
effect is mediating by its effects on PPARγ that lead to 
up-regulation of  SOCS-7[67,69]. In general, HCV can also 
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peripheral, rather than hepatic, insulin resistance[74]. It is 
assumed that some humoral factors are necessary for the 
development of  insulin resistance in peripheral tissues 
that are distant from the HCV-infected liver. A study us-
ing the Zucker (fa/fa) rat model of  obesity and insulin 
resistance showed that tumor necrosis factor (TNF)-α 
impaired insulin signaling by inhibiting the function of  
insulin receptor or IRS-1 in the muscle and adipose tis-
sues, but not in the liver[75]. Subsequent studies of  the 
TNF-α induced insulin resistance indicated that the un-
derlying mechanism involved up-regulation of  SOCS-3 
and consequent promotion of  ubiquitin-mediated 
IRS-1/2 degradation[76], as well as activation of  JNK and 
consequent phosphorylation of  serine 307 on IRS-1[45,46]. 
Furthermore, the levels of  TNF-α in patients with 
chronic hepatitis C were found to be strongly associated 
with both hepatic and systemic insulin resistance[9,32,64,68,77] 
and the development of  diabetes[9,64,78]. While other cyto-
kines, such as interleukin (IL)-6 and IL-18, have also been 
implicated in the development of  insulin resistance[73,78-81], 
TNF-α appears to play a central role in obesity-related 
and HCV-induced insulin resistance (Figure 3).

inhibit insulin signaling by dephosphorylation of  Akt, 
and this mechanism has been shown to involve the endo-
plasmic reticulum (ER) stress signal inducing overexpres-
sion of  protein phosphatase (PP)2A[70-72] (Figure 2).

Mechanisms of insulin resistance in HCV-uninfected 
peripheral tissues (mainly skeletal muscle) 
Under normal physiologic conditions, skeletal muscle 
accounts for up to 75% of  insulin-dependent glucose 
disposal, while adipose tissue accounts for only a small 
fraction[41]. However, obese and diabetic patients simulta-
neously develop insulin resistance in liver, skeletal muscle, 
and fat. HCV-infected patients also develop insulin resis-
tance in peripheral tissues (mainly skeletal muscle) as well 
as the liver, although the molecular mechanism remains 
unclear.

One clinical study using a euglycemic hyperinsulin-
emic clamp showed that HCV infection increased en-
dogenous glucose production (reflecting hepatic insulin 
resistance) and decreased total glucose disposal (reflecting 
peripheral insulin resistance)[73]. Another clinical study 
showed that chronic hepatitis C was associated with 
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HCV-related changes in pancreatic β-cells
Whether the pathogenesis of  HCV-induced diabetes is 
the same as that of  type 2 diabetes remains controversial, 
despite extensive studies of  HCV effects on the main 
diabetes-related features of  decreased islet mass and β-cell 
dysfunction. In vitro studies have demonstrated that HCV 
infection of  human β-cells leads to a reduction in the 
cells’ glucose-stimulated insulin release[82] and induces a 
novel apoptosis-like death through an ER stress-involved, 
caspase 3-dependent, specific pathway[83]. In contrast, 
however, an in vivo study of  the HCV core protein trans-
genic mouse model suggested no substantial effects on 
pancreas-related insulin, due to a compensatory increase 
of  islet mass that occurred without infiltration of  inflam-
matory cells[64].

These in vivo results agree with the reported clinical 
observations of  up-regulated insulin secretion in HCV-
infected patients[3,4,9,12-14,18-20,22-24,65,84,85]. Nonetheless, fur-
ther studies are needed to elucidate the effects of  HCV 
on pancreatic β-cells and their production and release of  
insulin.

HCV-related changes in gut hormones
The gastrointestinal tract plays pivotal roles in regulat-
ing glucose metabolism and energy homeostasis through 
the digestion and absorption of  nutrients and the secre-
tion of  multiple gut hormones. The incretin hormones, 
glucagon-like peptide (GLP)-1 and glucose-dependent 
insulinotropic polypeptide, are produced mainly in the 

small intestine and promote insulin biosynthesis, insulin 
secretion, and β-cell survival, and are enzymatically inac-
tivated by dipeptidyl peptidase (DPP)-Ⅳ[86]. Furthermore, 
GLP-1 inhibits glucagon secretion and gastric emptying, 
induces satiety, and activates glycogen synthesis in hepa-
tocytes[86,87]. In contrast, the ghrelin hormone, which is 
produced in the stomach, inhibits insulin secretion and 
stimulates food intake[88]. The cholecystokinin and gastrin 
hormones both act to stimulate the formation of  new 
β-cells by stimulating islet neogenesis[86].

Only a few reports to date have addressed the re-
lationship between gut hormones and HCV infection. 
One study demonstrated that HCV could decrease serum 
GLP-1 through up-regulation of  DPP-Ⅳ expression and 
suggested that this mechanism may explain HCV-induced 
glucose intolerance[89]. Another recent study showed that 
circulating levels of  active ghrelin were positively correlat-
ed with serum albumin levels in HCV-infected patients[90]. 
However, the effect of  ghrelin on glucose metabolism in 
HCV infection remains unclear.

HCV affects lipid metabolism and induces hepatic 
steatosis by genotype-specific mechanisms
Host lipids are manipulated by HCV to support its life 
cycle. Viral replication and assembly require close in-
teractions with lipid droplets and factors of  lipoprotein 
metabolism[91,92] in the host cell. Moreover, when mature 
virus is released from hepatocytes it is complexed with 
host lipoproteins[93]. Unfortunately, modulation of  the 
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Figure 3  Multi-organ interaction in hepatitis C virus infection. Visceral adiposity enhances hepatitis C virus (HCV)-induced whole-body insulin resistance. TNF: 
Tumor necrosis factor; FFA: Free fatty acid.
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lipid metabolism process in host cells by HCV can induce 
hepatic steatosis[27]. This fact is reflected by the higher 
prevalence of  hepatic steatosis in HCV-infected patients 
compared to the general population or even patients with 
chronic hepatitis B[94].

Using the HCV core protein transgenic mouse model, 
the core protein was implicated as a key inducer of  HCV-
related hepatic steatosis[95] and the mechanism was deter-
mined to involve inhibition of  both the microsomal tri-
glyceride transfer protein activity and of  very low density 
lipoprotein (VLDL) secretion[96]. HCV-induced oxidative 
stress via mitochondrial dysfunction has also been shown 
to cause lipid and protein peroxidation, resulting in im-
pairment of  VLDL export[27]. In addition, HCV core 
protein has been shown to impair the expression and 
function of  PPARγ[97], thereby reducing mitochondrial 
long chain fatty acid β-oxidation[98], and induce hepatic 
gene expression and transcriptional activity of  SREBP-1, 
thereby increasing fatty acid synthesis[99]. Activation of  
SREBP-1 is promoted via SOCS[100] or PA28γ[101] (Figure 
2). Collectively, these results suggest that hepatic steatosis 
in HCV infection is induced by decreases in lipid export 
from the liver, reduction of  fatty acid oxidation, and pro-
motion of  de novo fatty acid synthesis.

An in vitro study has shown that significant triglycer-
ide accumulation occurs in cells upon transfection with 
HCV genotypes 1 and 3, but not with genotypes 2, 4 
or 5. Furthermore, the HCV genotype 3 core protein 
was estimated to be three times more potent at inducing 
this triglyceride accumulation than the genotype 1 core 
protein[102]. Compared with genotype 1, HCV genotype 
3 also induced greater SREBP-1-dependent fatty acid 
synthase promoter activity[103], impairment of  PPARγ 
expression[104], and generation of  larger lipid droplets in 
hepatocytes[105]. Clinical studies of  hepatic steatosis in 
patients with HCV genotype 3 showed direct associations 
with serum[20,106,107] and intrahepatic[108] titers of  HCV 
RNA, which disappeared after HCV eradication by anti-
viral therapy[107-110] and recurred in conjunction with HCV 
relapse[108]. These clinical phenomena have not been ob-
served in studies of  the other HCV genotypes, suggest-
ing that only HCV genotype 3 possesses virus-specific 
cytopathic effects that may lead to steatosis.

Iron overload and oxidative stress in HCV infection
A study using liver biopsy specimens from chronic hepa-
titis patients indicated that hepatic iron overload was a 
characteristic of  HCV infection, and demonstrated that 
serum ferritin levels can reflect the extent of  hepatic iron 
storage in a clinical setting[111]. Recently, a large cohort 
study in the United States showed that HCV infection 
was significantly associated with increases in serum iron 
and ferritin levels, and that serum ferritin levels were di-
rectly correlated with results of  liver function tests[112]. In 
both in vitro and in vivo studies, the HCV core protein has 
been shown to cause mitochondrial oxidative stress mani-
fests as liver injury[113]. Transgenic expression of  HCV 
polyprotein in mice led to hepatic iron accumulation 
through a process that involved HCV-induced increases 

in reactive oxygen species (ROS) and subsequent down-
regulation of  hepcidin transcription leading to increased 
duodenal iron transport and macrophage iron release via 
ferroportin overexpression[31]. Patients with chronic hepa-
titis C have been shown to have up-regulated transferrin 
receptor 2, a type of  hepatic iron transporter, as well as 
down-regulated hepcidin expression in liver[114,115]. Excess 
divalent iron is known to produce hydroxyl radicals, a 
type of  ROS, through the Fenton reaction[116]; therefore, 
hepatic iron overload may also contribute to hepatic 
oxidative stress[117]. The above-mentioned vicious cycle 
between hepatic iron overload and oxidative stress has 
been implicated as an etiology of  elevated serum alanine 
aminotransferase (ALT)[30,112,118], insulin resistance[28-30], 
and hepatocarcinogenesis[119].

IMPACT OF HOST-RELATED METABOLIC 
FACTORS ON HCV INFECTION
Synergistic effect of visceral obesity on HCV-induced 
systemic insulin resistance
Free fatty acids (FFAs) produced and secreted by visceral 
adipocytes can induce insulin resistance in skeletal muscle 
and liver[120]. Recent studies have provided substantial 
insights into the mechanism of  lipid-induced insulin re-
sistance[121]. In particular, intracellular accumulation of  
fatty acid metabolites was shown to trigger activation of  
novel PKC (δ, ε, η and θ), resulting in impairment of  
insulin signaling. In muscle, activated PKCθ is necessary 
for diacylglycerol (DAG)-mediated inhibition of  GLUT4 
transportation, and in the liver, activated PKCε is neces-
sary for the DAG-mediated decrease in glycogen synthe-
sis and increase in gluconeogenesis. In addition, visceral 
adipocytes have also been shown to promote insulin 
resistance by negatively modulating several adipokines, 
including TNF-α, adiponectin, leptin, and resistin[41]. 
The hypothesis suggested by these cumulated findings, 
that visceral obesity may cause whole-body insulin resis-
tance and glucose intolerance via FFAs and adipokines, 
is supported by the clinical studies of  chronic hepatitis 
C patients showing that visceral adiposity synergistically 
enhances HCV-induced insulin resistance[32] (Figure 3).

Links between metabolic factors and resistance to 
antiviral therapy in HCV infection
Hepatic and peripheral insulin resistance is strongly asso-
ciated with response to pegylated interferon (peg-IFN)-α 
plus ribavirin combination therapy in patients with chron-
ic hepatitis C[12,13-18]. Non-response to antiviral therapy in 
HCV-infected patients has also been shown to be associ-
ated with increased hepatic expression of  SOCS-3[122], 
which is a physiological negative regulator of  a key factor 
in the transduction of  IFN-α signaling, the signal trans-
ducer and activator of  transcription (STAT)-1[123]. HCV 
is known to escape from the host immune system by 
interfering with IFN signaling via up-regulation of  PP2A 
and hypomethylation of  STAT-1, both of  which result 
in reduced transcriptional activation of  IFN-stimulated 
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genes[124]. Thus, factors related to IFN signaling may rep-
resent the molecular link between resistance to antiviral 
therapy and insulin resistance in patients with chronic 
hepatitis C. This theory is further supported by studies 
showing that SOCS proteins also play an important role 
in insulin resistance related to metabolic syndrome[100] and 
that obesity-related up-regulation of  hepatic SOCS-3 ex-
pression is associated with a reduced biological response 
to IFN-α in HCV-infected patients[122].

Metabolic factors are associated with hepatic 
inflammation, fibrosis, and hepatocarcinogenesis in 
HCV infection 
The presence of  visceral obesity in HCV-infected patients 
has been associated with decreased high-density lipopro-
tein cholesterol, hepatic insulin resistance, and steatosis, 
all of  which affect serum ALT levels[125]. In contrast to 
HCV genotype 3, which causes viral hepatic steatosis, 
HCV genotype 1 can cause metabolic hepatic steatosis 
through its interactions with factors related to visceral ad-
iposity[94]. Both insulin resistance and hepatic steatosis are 
related to hepatic inflammation and fibrosis, and might 
enhance these conditions when present as comorbidi-
ties[13,21-23,106]. Studies addressing the underlying molecular 
mechanisms of  this phenomenon have indicated that hy-
perglycemia and hyperinsulinemia may directly affect he-
patic stellate cells and increase connective tissue growth 
factor, stimulating production of  extracellular matrix[126]. 
Moreover, in HCV-infected patients, the risk of  HCC 
increases in proportion to body mass index (BMI)[127], 
and increased BMI is associated with younger onset of  
HCC[128]. The clinical observations of  postprandial hyper-
glycemia[129] and hyperinsulinemia[130] accelerating develop-
ment and progression of  hepatocarcinogenesis were also 
confirmed by a large cohort study of  Taiwanese HCV 
carriers that identified obesity and diabetes as significant 
risk factors (representing a > 100-fold increase in risk) of  
HCC[33]. Thus, the interactions of  hepatitis virus and host 
metabolic factors appear to synergistically promote hepa-
tocarcinogenesis.

DIET AND LIFESTYLE 
RECOMMENDATIONS FOR HCV-
INFECTED NON-CIRRHOSIS PATIENTS
The diet and lifestyle recommendations for managing 
chronic hepatitis C are basically the same as those for 
obesity, diabetes and metabolic syndrome, reflecting the 
potential negative effects of  metabolic factors on the 
clinical course of  HCV infection. A recent meta-analysis 
confirmed that diet and lifestyle modifications designed 
to address metabolic syndrome produced effective re-
ductions in fasting blood glucose, waist circumference, 
blood pressure and triglycerides[131]. Exercise is a well-es-
tablished behavioral modification that benefits metabolic 
disorders, and the molecular mechanism has been deter-
mined to involve exercise-stimulated glucose transport 

via activation of  AMP-activated protein kinase (AMPK) 
in skeletal muscle[132]. Since the AMPK pathway is inde-
pendent of  insulin signaling, exercise is effective for im-
proving hyperglycemia without influence from an insulin 
resistant milieu. Although the precise impact of  diet and 
lifestyle modifications on outcomes of  HCV infection 
remain to be fully elucidated, we have shown that appro-
priate diet and exercise intervention can increase insulin 
sensitivity in HCV-infected patients, as well as improve 
early viral response to antiviral therapy and decrease se-
rum α-fetoprotein levels[84,85].

Considering the potential HCV-mediated effects on 
iron metabolism, it is recommended that HCV-infected 
patients reduce iron intake. Although the reported loads 
of  HCV-induced iron accumulation in liver have not been 
extremely high[133,134], excessive iron intake may enhance 
the condition to a dangerous level[31,118,119]. Therefore, 
dietary iron restriction is important for HCV-infected 
patients. Intake of  a low iron diet with appropriate nutri-
tion has been shown to significantly decrease serum ALT 
and ferritin levels in patients with chronic hepatitis C[135]; 
in addition, reduction of  hepatic iron by phlebotomy was 
also shown to improve serum ALT levels[30,136-138] and in-
sulin resistance[30]. Long-term therapy of  low iron diet in 
combination with phlebotomy further improved hepatic 
inflammation and fibrosis[138], and reduced the risk of  
hepatocarcinogenesis[139]. The collected results from these 
clinical studies led to the estimation of  an ideal iron in-
take being < 7 mg/d for patients with chronic hepatitis C. 
The advantage of  phlebotomy use in combination with 
dietary iron restriction may be explained by the fact that 
dietary iron absorption is enhanced under conditions of  
iron deficiency[140].

The practice of  drinking alcohol is another important 
factor for any disease associated with the liver, such as 
hepatitis. Temperance is recommended for patients with 
chronic hepatitis C because HCV and alcohol metabo-
lism have been shown to synergistically accelerate disease 
progression via the oxidative stress pathway, promoting 
HCV replication and suppressing the antiviral action of  
IFN[141]. Furthermore, alcoholics with HCV infection 
have been shown to develop more severe fibrosis and to 
have higher rates of  both cirrhosis and HCC than their 
counterparts who are non-drinkers[142].

Tobacco smoking is another behavioral practice that 
is detrimental to both metabolic disorders and chronic 
pathogenic infections, in general. A meta-analysis of  
smoking and cancer[143] demonstrated a causal relation-
ship between tobacco smoking and cancer of  the liver 
[relative risk (RR) = 1.56, 95%CI: 1.29-1.87], as well as 
for lung (RR = 8.96, 95%CI: 6.63-12.11), larynx (RR = 
6.98, 95%CI: 3.14-15.52), pharynx (RR = 6.76, 95%CI: 
2.86-15.98), upper digestive tract (RR = 3.57, 95%CI: 
2.63-4.84), oral cavity (RR = 3.43, 95%CI: 2.37-4.94), 
lower urinary tract (RR = 2.77, 95%CI: 2.17-3.54), 
esophagus (RR = 2.50, 95%CI: 2.00-3.13), nasal sinuses 
and nasopharynx (RR = 1.95, 95%CI: 1.31-2.91), pan-
creas (RR = 1.70, 95%CI: 1.51-1.91), uterine cervix (RR 
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= 1.83, 95%CI: 1.51-2.21), stomach (RR = 1.65, 95%CI: 
1.39-1.96), and kidney (RR = 1.52, 95%CI: 1.33-1.74). 
Although the effect of  smoking on liver cancer was small 
compared to the other organs, smoking cessation is rec-
ommended for HCV-infected patients to avoid the syner-
gistic effect on hepatocarcinogenesis.

Caffeine and polyphenols may be another dietary 
factor related to outcome of  metabolic disorders and 
pathogenic infections. Some studies have shown that 
green tea and coffee may be beneficial to patients with 
chronic hepatitis C, with intake being associated with an 
improved clinical course. Green tea catechins have anti-
inflammatory and antioxidant properties[144-148] and have 
been shown to ameliorate glucose metabolism[149]. In ad-
dition, data from several studies have indicated that this 
plant-based extract may be effective in preventing hepa-
tocarcinogenesis[150-152]. The benefits of  coffee consump-
tion have been demonstrated by numerous studies, and 
include decreased risks of  developing elevated ALT activ-
ity[153], hepatic fibrosis[154] and HCC[155], and improvements 
in glucose metabolism[156]. Furthermore, a recent meta-
analysis showed that the RR of  HCC was 0.80 (95%CI: 
0.77-0.84) for an increment of  one cup of  coffee per day, 
regardless of  sex, alcohol intake, or history of  hepatitis 
or liver disease[157].

IMPACT OF ANTI-DIABETIC AND ANTI-
LIPID MEDICATIONS IN HCV-INFECTED 
PATIENTS
Anti-diabetic agents 
Although insulin resistance is strongly associated with 
resistance to IFN-based therapy in HCV-infected pa-
tients[12-18], the effect of  insulin sensitizers on antiviral 
therapy seems to be restrictive. In one study, administra-
tion of  metformin was shown to improve the rate of  
sustained viral response (SVR) to peg-IFN plus ribavirin 
therapy in patients with HCV genotype 1 infection and 
insulin resistance[158]; however, another study indicated 
that the metformin effect was limited to female pa-
tients[159]. Administration of  pioglitazone was similarly re-
ported to improve viral response to peg-IFN plus ribavi-
rin therapy in patients with HCV genotype 4 and insulin 
resistance[160], but shown to provide no benefit to patients 
with HCV genotype 1 and insulin resistance[161]. 

In contrast, several studies have detected a harm-
ful effect of  sulfonylurea or insulin on HCC incidence 
in HCV-infected patients; however, the metformin ap-
peared to provide a benefit in regard to this disease 
outcome[162,163]. A recent meta-analysis of  observational 
studies confirmed an increased incidence of  HCC in viral 
hepatitis patients with diabetes who were treated with 
sulfonylurea [odds ratio (OR) = 1.62; 95%CI: 1.16-2.24] 
or insulin (OR = 2.61; 95%CI: 1.46-4.65) and a reduced 
incidence for metformin treatment (OR = 0.50; 95%CI: 
0.34-0.73)[164]. Therefore, the therapeutic strategy to ad-
dress glucose intolerance in patients with chronic hepati-
tis C should aim to improve glucose metabolism as well 

as reduce serum insulin levels.

Anti-lipid agents 
A recent meta-analysis showed that addition of  statins 
(also known as HMG-CoA reductase inhibitors) to the 
combination therapy of  IFN-α and ribavirin improved 
SVR without additional adverse events[165]. Although 
statins might still provide beneficial effects in the era of  
direct acting antivirals (DAAs)[166], close attention must 
be paid to potential drug-drug interactions. Co-adminis-
tration of  simvastatin or lovastatin with DAAs metabo-
lized through cytochrome P450 (CYP) 3A is contraindi-
cated[167]. CYP3A-independent statins can also affect the 
concentration of  DAAs through interaction with organic 
anion transporter polypeptide 1B1, although to a lesser 
extent[167]. Nonetheless, a population-based cohort study 
of  260864 HCV-infected patients in Taiwan showed that 
statin use reduced the risk of  HCC in a cumulative, dose-
dependent manner[168] and a meta-analysis consisting of  
1459417 patients confirmed the association of  statin use 
with reduced risk of  HCC (although the effect was stron-
ger in Asian than Western populations)[169]. Therefore, 
statin use is considered beneficial for high-risk groups of  
HCC, such as HCV-infected patients, but regular moni-
toring is strongly recommended to readily detect the oc-
currence of  any statin-related adverse effects.

CONCLUSION
Interactive and synergistic relationships exist between 
HCV-specific metabolic disturbances and host-associated 
metabolic factors. HCV can induce both hepatic and pe-
ripheral insulin resistance, and the myriad mechanisms in-
volve oxidative stress pathways, lipid metabolism abnor-
malities, hepatic steatosis, and iron overload. The virus-
host synergism ultimately promotes deterioration of  the 
clinical course of  HCV infection. Modifications to diet 
and lifestyle and application of  the appropriate medica-
tions to address the metabolic disorder are important for 
the management of  HCV-infected patients and help to 
improve response to antiviral therapy, inhibit progression 
of  fibrosis, and prevent hepatocarcinogenesis.
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