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Abstract
BACKGROUND 
Acute pancreatitis (AP) and recurring AP are serious health care problems 
causing excruciating pain and potentially lethal outcomes due to sepsis. The 
validated caerulein- (CAE) induced mouse model of acute/recurring AP produces 
secondary persistent hypersensitivity and anxiety-like behavioral changes for 
study.

AIM 
To determine efficacy of acetyl-L-carnitine (ALC) to reduce pain-related behaviors 
and brain microglial activation along the pain circuitry in CAE-pancreatitis.

METHODS 
Pancreatitis was induced with 6 hly intraperitoneal (i.p.) injections of CAE (50 
µg/kg), 3 d a week for 6 wk in male C57BL/6J mice. Starting in week 4, mice 
received either vehicle or ALC until experiment’s end. Mechanical 
hypersensitivity was assessed with von Frey filaments. Heat hypersensitivity was 
determined with the hotplate test. Anxiety-like behavior was tested in week 6 
using elevated plus maze and open field tests. Microglial activation in brain was 
quantified histologically by immunostaining for ionized calcium-binding adaptor 
molecule 1 (Iba1).
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RESULTS 
Mice with CAE-induced pancreatitis had significantly reduced mechanical 
withdrawal thresholds and heat response latencies, indicating ongoing pain. 
Treatment with ALC attenuated inflammation-induced hypersensitivity, but 
hypersensitivity due to abdominal wall injury caused by repeated intraperitoneal 
injections persisted. Animals with pancreatitis displayed spontaneous anxiety-like 
behavior in the elevated plus maze compared to controls. Treatment with ALC 
resulted in increased numbers of rearing activity events, but time spent in 
“safety” was not changed. After all the abdominal injections, pancreata were 
translucent if excised at experiment’s end and opaque if excised on the 
subsequent day, indicative of spontaneous healing. Post mortem histopathological 
analysis performed on pancreas sections stained with Sirius Red and Fast Green 
identified wide-spread fibrosis and acinar cell atrophy in sections from mice with 
CAE-induced pancreatitis that was not rescued by treatment with ALC. Microglial 
Iba1 immunostaining was significantly increased in hippocampus, thalamus 
(intralaminar nuclei), hypothalamus, and amygdala of mice with CAE-induced 
pancreatitis compared to naïve controls but unchanged in the primary 
somatosensory cortex compared to naïves.

CONCLUSION 
CAE-induced pancreatitis caused increased pain-related behaviors, pancreatic 
fibrosis, and brain microglial changes. ALC alleviated CAE-induced mechanical 
and heat hypersensitivity but not abdominal wall injury-induced hypersensitivity 
caused by the repeated injections.

Key Words: Acute recurrent pancreatitis; Neuropathic pain; Mechanical hypersensitivity; 
Heat hypersensitivity; Anxiety-like behavior; Ionized calcium-binding adaptor molecule 1

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The caerulein- (CAE) induced pancreatitis model requiring 6 wk of repeated 
injections is a model of recurrent acute bouts of pancreatitis that causes pancreatic 
tissue damage and fibrosis. Control repeated i.p. saline injections alone caused 
abdominal wall injury and hindpaw secondary mechanical hypersensitivity. Treatment 
with acetyl-L-carnitine significantly attenuated CAE-induced hypersensitivity without 
alleviating pancreatic histological disruption. Mice with CAE-induced pancreatitis with 
secondary mechanical and heat hypersensitivity had elevated plus maze anxiety-like 
behavior. Post-mortem analysis revealed microglial morphology changes indicative of 
activation in amygdala, hippocampus, hypothalamus, and thalamus, but not in primary 
somatosensory cortex. These data suggest that activated microglia in these brain 
regions contribute to chronic hypersensitivity and anxiety-like behaviors in mice with 
CAE-induced pancreatitis.

Citation: McIlwrath SL, Starr ME, High AE, Saito H, Westlund KN. Effect of acetyl-L-carnitine 
on hypersensitivity in acute recurrent caerulein-induced pancreatitis and microglial activation 
along the brain’s pain circuitry. World J Gastroenterol 2021; 27(9): 794-814
URL: https://www.wjgnet.com/1007-9327/full/v27/i9/794.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i9.794

INTRODUCTION
Pancreatitis is a progressive disease that when developing from acute to chronic 
pancreatitis increases the risk for pancreatic cancer[1-5]. A recent meta-analysis reported 
10% of patients with acute and 36% with recurrent acute pancreatitis (AP) develop 
chronic pancreatitis[6,7]. This multifactorial disorder has a complex etiology including 
gene mutations/heritable factors, gallstones, poor and/or high fat diet, smoking, and 
regular alcohol consumption[8-10]. The recurrent inflammation of the pancreas results in 
progressive pancreatic insufficiency and replacement of exocrine parenchyma with 
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fibrotic tissue and adipocytes. Chief complaint of patients with pancreatitis is 
intractable abdominal pain, present in approximately 90% of patients[11,12]. At present 
there is no cure for pancreatitis and pain management remains inadequate, yet pain 
which is the main cause of reduced quality of life is often ignored and neglected by 
specialists since it is poorly understood[13-15].

In the past, pain due to pancreatitis has been attributed to inflammation and 
distension pressure within the pancreas. Relieving pancreatic tissue pressure provides 
post-surgical pain relief, but no long-term pain relief[16]. More recently, studies have 
shown that severity of pancreatitis induced pain is independent of abdominal findings 
in clinical patients[14,17]. Pancreatitis pain is initially driven by peripheral inflammation, 
mitochondrial dysfunction in acinar cells, and release of reactive oxygen species[18-20]. 
The result is pathological activation of innervating sensory neurons and a vicious cycle 
of neurogenic inflammation[21]. Pre-treatment with acetyl-L-carnitine (ALC), a 
nutraceutical antioxidant and mitochondrial enhancer, has been shown to prevent 
biochemical and histological evidence of AP[22]. ALC is a free radical scavenger that can 
potentially repair oxidized polyunsaturated fatty acids esterified in membrane 
phospholipids[23,24]. With progression to recurrent acute and chronic pancreatitis, 
associated nerve pain becomes neuropathic and clinical study has demonstrated 
attenuation by pregabalin, the conventional pharmacological intervention for 
neuropathic pain[25]. Concurrent neuroplastic changes in the spinal cord and along the 
brain pain neuraxis cause a transition to central sensitization[26,27].

Microglia are resident immune cells in the central nervous system. After activation 
through neurochemical communication among neurons and glial cells, microglia can 
phagocytose cell debris and/or invading foreign cells, as well as activate circulating 
immune cells[28-31]. Microglial communication with neurons in the spinal cord has been 
identified as central in establishing and maintaining neuropathic pain[27,32]. Release of 
brain-derived neurotrophic factor from activated microglia in the spinal cord causes a 
neuronal anion shift that contributes to central sensitization[33]. In neuropathic pain 
models, ligating either spinal nerves or parts of the sciatic nerve induces selective 
microglial activation in the spinal cord but reportedly not in supraspinal regions 2 wk 
after nerve injury[34,35]. Four weeks after partial sciatic nerve ligation, however, 
migrated M2 bone-marrow derived microglia were localized in the amygdala 
concurrent with anxiety-like behavior[36]. Several studies using a chemically induced 
rat model of pancreatitis have demonstrated that activated spinal microglia are 
involved in the establishment and maintenance of hypersensitivity[27,31]. In clinical 
patients with chronic pancreatitis cortical reorganization within the pain neuraxis has 
been reported[37,38]. However, the role of microglia in this process is not yet understood.

In the present study we utilized a modified caerulein- (CAE) induced recurrent AP 
model[39-42]. This model causes pancreatic dysregulation of digestive enzymes, oxidative 
stress, fibrosis, acinar cell death, infiltration of inflammatory cells, leading to edema 
and fibrosis in mice[19,20,40,42]. In male C57BL/6J mice the CAE-induced pancreatitis 
model produces secondary hypersensitivity and anxiety-like behavioral changes. 
Morphological changes indicative of microglial activation in pain and anxiety-related 
brain regions were quantified after 6 wk of CAE-induced recurrent AP. Efficacy of 
ALC treatment to alleviate these symptoms in the last 3 wk of CAE-induced 
pancreatitis was determined.

MATERIALS AND METHODS
Animals
All animal procedures were conducted in accordance with the guidelines for the 
ethical treatment of experimental animals published by the International Association 
for the Study of Pain and approved by the University of Kentucky Institutional Animal 
Care and Use Committee. A total of 27 male 16- to 26-week-old C57BL/6J mice (The 
Jackson Laboratory, Bar Harbor, MA, United States) were used. All animals were 
maintained on a 12/12 h light/dark cycle with up to 5 animals in each pressurized 
intraventilated cage in a temperature (21-23 ºC) and humidity (30%-70%) controlled 
room. Animals were given water and food ad libitum.

Body weight was measured daily to ascertain well-being. After 5 wk of repeated 
daily intraperitoneal injections, uninjected naïve control group animals weighed 
significantly more than the 3 other experimental groups whose body weight had 
plateaued (naïve control = 31.2 ± 0.5 g, VEH (vehicle) + ALC = 28.4 ± 0.7 g, CAE + 
VEH = 28.9 ± 0.8 g, CAE + ALC = 28.7 ± 0.5 g, P < 0.05 two-way ANOVA with 
Newman-Keuls post hoc test) (Supplementary Figure 1).

http://
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CAE-induced persistent pancreatitis model
Animals were randomly divided into 4 groups: CAE + VEH had CAE-induced 
pancreatitis and saline treatment, CAE + ALC had CAE-induced pancreatitis and ALC 
treatment, VEH + ALC control animals received saline injections and ALC treatment, 
and naïve controls that received no injections at all. Recurrent AP was induced using 
CAE, similar to previous description[39,41-43]. In brief, animals received 6 hly 
intraperitoneal (i.p.) injections of 100 µL of 0.9% sterile saline containing 50 μg/kg 
CAE (American Peptide, Sunnyvale, CA, United States) 3 times a week (Monday, 
Wednesday, Friday) for a total duration of 6 wk using a 1 mL syringe with a 1/2 inch 
long 27 gauge needle. Control vehicle animals were injected with the same volume of 
0.9% saline vehicle[41]. Naïve control animals were not injected.

ALC treatment
In the present study we tested the efficacy of ALC post-treatment to reduce pain-
related behaviors. Three weeks after the start of the CAE injections, animals received 
i.p. injections twice daily of either 50 µL 0.9% saline (VEH) or ALC (100 mg/kg per 
injection for a total daily dose of 200 mg/kg; Sigma-Aldrich, St. Louis, MO, United 
States). Injections continued in weeks 4-6 until experiment’s end. A previous study 
demonstrated the efficacy of ALC pre-treatment given daily (200 mg/kg body weight, 
i.p.) for 7 d to prevent acute CAE-induced pancreatitis[22]. It has been shown that 100 
mg/kg body weight results in a peak plasma carnitine concentration 3 h post and is 
completely removed within 24 h after administration[44].

Behavioral assessments
Animals were acclimated in their home cage to the behavior testing room for 1 h prior 
to starting experiments. Reflexive mechanical and heat assays were conducted weekly. 
Mechanical and heat sensitivity was tested several consecutive days in the week prior 
to the first CAE injection and baseline measurements were recorded when sensitivity 
measures were stable. The elevated plus maze and open field test were performed 
only once at the end of the experiment.

Mechanical withdrawal threshold measurement using von Frey filaments on 
hindpaws
The up-down method was used to determine mechanical sensitivity of the 
hindpaws[45]. Briefly, animals were placed on an elevated Teflon screen mesh (3 mm2 
holes) in individual clear lucite boxes and the hind paw glabrous skin was probed 
using a graded series of calibrated von Frey filaments (0.4, 0.6, 1.0, 2.0, 4.0, 6.0, 8.0, 15.0 
g or 3.9, 5.9, 9.8, 19.6, 39.2, 58.8, 98.0 mN). Withdrawal of the foot was considered a 
positive response. An algorithm was used to determine the mechanical sensitivity 
threshold for experimental group comparisons.

Hotplate test
Heat sensitivity was determined using a hot plate analgesiometer apparatus set at 50 
ºC (Columbus Instruments, Columbus, OH, United States). Animals were placed 
individually on the hotplate (25.4 cm × 25.4 cm heated surface) surrounded by a 30 cm 
high Plexiglas barrier. The latency until a nocifensive response (shaking or licking the 
paw, jumping, or running) occurred was recorded. Animals were immediately 
removed after the initial response. A mandatory cut-off time of 25 s prevented burn 
injury but was never employed. The heat sensitivity test was performed 3 times at 20 
min intervals and latencies averaged.

Elevated plus maze test
The elevated plus maze consists of 2 closed (safe) and 2 open (threatening environ-
ment) arms and is widely used to measure anxiety-like behavior. The mouse is placed 
in the center of the elevated 4-arm maze and video recorded in isolation for 5 min (300 
s) for post hoc analysis. Fear/anxiety-like behavior is determined by the number of 
open and closed arm entries, total open and closed arm occupancy, and by the number 
of exploratory rearing events. Anxiety-like behavior is related to open arm avoidance 
and reduced rearing events[46]. This test was consistently performed in all mice before 
the open field assay.

Open field exploratory behavior test
Exploratory behaviors were measured using the Flexfield Animal Activity System (San 
Diego Instruments, San Diego, CA, United States) that consisted of a Plexiglas 
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chamber (40 cm × 40 cm × 36 cm) equipped with a Photobeam Activity System (PAS) 
coupled to a Compaq 486 computer (Hewlett Packard, Palo Alto, CA, United States). 
An array of 16 evenly spaced infrared photobeam sensors in the X- and Y-axis (total of 
32 sensors) was arranged at a distance of 1.25 cm above the chamber’s floor. 
Obstruction of these light beams allowed the PAS software to localize the animal 
within the two-dimensional space to follow the animal’s movement, distance traveled, 
and resting time within the chamber. A second array of 16 beams per axes was located 
8 cm above the chamber’s floor. Obstruction of these light beams indicated that the 
animal had moved in the z-axis, i.e., rearing on its hindlegs[47]. Animals were tested 
after 6 wk of CAE injections with and without ALC treatment. Each session lasted for 
45 min and data were collected in 5 min intervals to determine: (1) Number and 
duration of rearing events; (2) Active time vs rest time; (3) Overall distance traveled; 
and (4) Time spent in the central vs peripheral areas of the chamber.

Histology
At experiment’s end, animals were deeply anesthetized with inhalant isoflurane (4%-
5% in 1 L O2) and euthanized by exsanguination through transcardial perfusion with 
heparinized 0.9% saline. The pancreas was excised and the animal perfused with 4% 
buffered paraformaldehyde (PFA). Whole mount pancreas tissue was photographed 
floating in 0.9% saline in a petri dish with charcoal-stained Sylgard covered bottom 
(Sigma, St. Louis, MO, United States). Tissue from cohort 2 was then immersed in 4% 
PFA overnight, embedded in paraffin, 5 μm sections cut and mounted on glass slides 
for microscopy. Sections were deparaffinized and reacted with Sirius Red and Fast 
Green[48]. Brightfield images were taken at 100 × magnification using a Zeiss AxioCam 
ICc 1 camera mounted on an Axio Observer Z1 microscope (Carl Zeiss Microscopy, 
White Plains, NY, United States). Semiquantitative histopathological scores on a scale 
of 1 (no damage) to 5 (severe damage) were made by three observers blinded to 
experimental groups. Scores were then averaged and graphed.

Brains were cryoprotected with 30% sucrose, stored at -80 ºC, and sectioned (40 µm). 
Free floating sections were incubated for 30 min in 0.5% fresh sodium borohydride to 
break aldehyde bonds for improved antigen retrieval and to reduce background 
staining. Tissue was reacted with rabbit anti-Iba1 (ionized calcium-binding adaptor 
molecule 1) antibody (1:60000; Wako Chemicals United States, Richmond, VA, United 
States; Cat. #019-19741) overnight and visualized using the Pierce DAB substrate kit 
according to manufacturer instructions (ThermoFisher Scientific, Waltham, MA, 
United States). Images were taken of a brain slice at bregma -2.18 mm (interaural 1.62 
mm) at 200 × magnification using a Nikon E1000 microscope (Nikon Instruments, 
Melville, NY, United States) and ACT1 software. Photomicrographs were analyzed 
with NIH ImageJ.

Microglial histological analysis
Histological analysis of the histological section taken at bregma -2.18 mm (interaural 
1.62 mm) was conducted by a scientist blinded to experimental groups. Brain 
microglia were identified based on Iba1 immunoreactivity in 4 naïve control and 5 
CAE + VEH animals. Microglial morphology was quantified from 10-20 cells per brain 
from each animal by measuring somal and convex hull area, the smallest convex 
polygon needed to surround the whole cell shape, soma and processes[49]. The somal 
area was outlined using the wand tool in NIH ImageJ. The microglial convex hull area, 
the smallest convex polygon needed to surround the entire cell (soma and processes) 
was drawn by hand. Area and intensity of staining were measured using NIH ImageJ.

Statistical analysis
All data are presented as the mean ± SE of the mean. Behavioral data and histo-
pathological scores were compared using two-way ANOVA and Newman-Keuls 
Multiple Comparison post-hoc testing, one-way ANOVA or Student’s t-test where 
appropriate. Microglial histological data were compared using Student’s t-test. A P 
value of P < 0.05 was considered significant.

RESULTS
Behavioral responses to mechanical and heat stimuli
CAE-induced pancreatitis caused secondary mechanical and heat hypersensitivity on 
the hindpaws (Figure 1). At baseline, mechanical withdrawal thresholds were not 
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Figure 1 Caerulein-induced pancreatitis produced secondary hypersensitivity of the hindpaws that was attenuated by treatment with 
acetyl-L-carnitine. A: Mechanical withdrawal thresholds were significantly reduced after 3 wk of caerulein (CAE) injections indicating hypersensitivity and 
remained reduced after 6 wk of CAE injections; B: Response latencies to heat stimulation in the hotplate test were significantly reduced after 3 and 6 wk of CAE 
injections. Concurrent treatment with acetyl-L-carnitine (ALC) during the last 3 wk attenuated mechanical and heat hypersensitivity. n = 6/group; aP < 0.05 compared 
to naïve control; bP < 0.05 compared to VEH + ALC; cP < 0.05 compared to CAE + ALC; two-way ANOVA with Newman-Keuls post hoc test. ALC: Acetyl-L-carnitine; 
CAE: Caerulein; VEH: Vehicle.

different between groups (Figure 1A). After 3 wk of a 3 × a week treatment regimen of 
6 hly CAE injections, the force needed to elicit a hindpaw withdrawal response was 
significantly reduced in CAE + VEH (0.2 ± 0.1 g) and CAE + ALC (0.2 ± 0.1 g) groups, 
in comparisons to VEH + ALC (1.3 ± 0.1 g, P < 0.05) and naïve controls (2.3 ± 0.5 g, P < 
0.0001; two-way ANOVA with Newman-Keuls post hoc test). However, using saline 
alone in this injection scheme was also able to cause significant mechanical 
hypersensitivity in VEH+ALC mice compared to naïve controls (P < 0.05). At the 6-wk 
timepoint, CAE + ALC and VEH + ALC mice had received twice daily ALC injections 
(i.p.) for 3 wk while CAE + VEH animals were given twice daily saline injections. ALC 
attenuated mechanical hypersensitivity in animals with CAE-induced pancreatitis 
while it did not alter mechanical withdrawal thresholds of VEH + ALC mice. 
Mechanical withdrawal thresholds of CAE + VEH (0.1 ± 0.1 g, P < 0.001), CAE + ALC 
(0.9 ± 0.2 g, P < 0.05), and VEH + ALC (1.1 ± 0.2 g, P < 0.05) were still significantly 
reduced compared to naïve controls (2.0 ± 0.4 g, two-way ANOVA with Newman-
Keuls post hoc test). However, CAE + VEH responded to significantly lower 
mechanical stimuli compared to VEH + ALC (P < 0.05). Similarly, heat response 
latencies using the hotplate test were not different at baseline (Figure 1B). At the 3 wk 
timepoint, response latencies of both CAE + VEH (12.2 ± 1.1 s) and CAE + ALC (12.2 ± 
0.8 s) were significantly reduced compared to VEH + ALC (17.2 ± 0.1 s, P < 0.0001) and 
naïve control (17.6 ± 1.1 s, P < 0.0001; two-way ANOVA with Newman-Keuls post hoc 
test). At the 6-week timepoint, response latencies of CAE + VEH (10.4 ± 0.4 s) were 
significantly lower compared to all other experimental groups. Treatment with ALC 
significantly attenuated heat response latencies in CAE + ALC animals (13.4 ± 0.9 s) 
compared to the untreated CAE + VEH group (P < 0.05, two-way ANOVA with 
Newman-Keuls post hoc test), however response was still significantly reduced 
compared to the two control groups (VEH + ALC = 15.5 ± 1.0 s; naïve control = 16.8 ± 
0.8 s; P < 0.01, two-way ANOVA with Newman-Keuls post hoc test).

Anxiety-like responses
In week 6, anxiety-like behavior was determined using the elevated plus maze 
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(Figure 2). The CAE + VEH mice spent significantly more time in the closed arm (252.2 
± 3.8 s; P < 0.05) and significantly less in the center and open arm areas (center = 26.6 ± 
3.5 s; open arm = 21.3 ± 4.3 s; P < 0.05) compared to uninjected naïve control animals 
(Figure 2A). This behavior was not different from the CAE + ALC group (closed arm = 
240.7 ± 11.6 s; center = 32.4 ± 5.9 s; open arm = 26.8 ± 6.9 s) when compared to both 
control groups (VEH + ALC: closed arm = 209.5 ± 18.9 s; center = 47.0 ± 9.7 s; open arm 
= 43.5 ± 10.8 s; naïve control: Closed arm = 199.1 ± 14.3 s; center = 45.6 ± 4.9 s; open 
arm = 55.4 ± 13.0 s). No group differences were determined in the number of times 
animals entered the different zones of the elevated plus maze (Figure 2C). However, 
mice in the CAE + VEH group reared significantly less in the closed arm (Figure 2B) 
when compared to both control groups (CAE + VEH = 8.2 ± 1.6; VEH + ALC = 13.5 ± 
3.7; naïve control = 13.6 ± 1.6, P < 0.01, one-way ANOVA) which was alleviated in the 
treatment group with ALC (14.3 ± 1.9).

In the open field test, all repeatedly injected animal groups, including those 
receiving saline, displayed altered behavior compared to uninjected naïve control 
animals. Compared to the other groups, naïve control mice traveled a significantly 
greater ambulatory distance (naïve control = 9466 ± 208, VEH + ALC = 7019 ± 720; 
CAE + VEH = 6592 ± 340; CAE + ALC = 6517 ± 817; P < 0.05, one-way ANOVA), 
reared significantly more often (naïve control = 176 ± 11, VEH + ALC = 97 ± 24; CAE + 
VEH = 102 ± 8; CAE + ALC = 116 ± 27; P < 0.05, one-way ANOVA), and spent 
significantly less time resting (naïve control = 282 ± 20 s, VEH + ALC = 579 ± 78 s; CAE 
+ VEH = 606 ± 37 s; CAE + ALC = 588 ± 98 s; P < 0.05, one-way ANOVA). 
Thigmotaxis, a tendency to stay in the periphery close to the walls typically 
interpreted as an anxiety measure, was not detected in experimental groups.

Pancreas morphology
In both cohorts, pancreata were excised after perfusion with heparinized 0.9% saline 
and photographed floating in 0.9% saline (Figure 3A). Pancreas dissection occurred 
either one day (Figure 3A, top row) or two days (Figure 3A, bottom row) after the final 
CAE injection day. On day 1 after the final CAE injections, pancreata excised from 
animals with CAE-induced pancreatitis were significantly more translucent compared 
to both control groups (Figure 3B). The charcoal stained Sylgard filling in the 
dissection dish was more readily visible through the translucent tissue, and tissue 
brightness was reduced in pancreata from mice with CAE-induced pancreatitis (CAE 
+ VEH = 146 ± 8 arbitrary units (a.u.); CAE + ALC = 151 ± 7 a.u.) compared to the two 
control groups (VEH + ALC = 171 ± 3 a.u.; naïve control = 194 ± 4 a.u., P < 0.01, one-
way ANOVA, Tukey post hoc test). Treatment with ALC thus did not prevent the 
effect of CAE-induced pancreatitis when observed immediately post-treatment. 
However, when animals were dissected on day 2 after the final CAE injection, this 
translucence was significantly improved in pancreata from mice with CAE-induced 
pancreatitis (CAE + VEH = 192 ± 6 a.u.; CAE + ALC = 202 ± 3 a.u.). No difference of 
tissue opacity was determined in pancreata dissected on day 2 during group 
comparison (Figure 3C).

Histological staining of pancreatic tissue sections using Sirius Red and Fast Green 
(Figure 3D) identified extensive fibrosis and acinar cell atrophy in pancreata from mice 
of both groups with CAE-induced pancreatitis (Figure 3D). Histopathological scores of 
pancreatic tissue sections (Figure 3E) were significantly higher in CAE + VEH (CAE + 
VEH = 4.7 ± 0.4 a.u.) compared to both control groups (naïve control = 1.8 ± 0.2, VEH + 
ALC = 1.9 ± 0.7). While treatment with ALC reduced tissue damage (CAE + ALC = 3.8 
± 0.6 a.u.), the histopathological score remained significantly increased compared to 
both control groups and was not significantly different from the CAE + VEH group.

Histologically determined microglial responses
Post-mortem immunohistochemical detection of Iba1 staining, a biomarker for 
microglia and macrophages, was used to study several different higher brain regions 
involved in pain processing and anxiety. Due to the limited efficacy of ALC to reduce 
pain- and anxiety-related behaviors, the histological study was conducted solely on 
brain sections from animals with CAE-induced pancreatitis and naïve controls. 
Microglial morphology was quantified by measuring somal and convex hull area, the 
smallest convex polygon needed to surround the whole cell shape, soma and 
processes[49], and intensity of Iba1 immunostaining. In the following histological 
figures (Figure 4-8), the mouse brain atlas section at bregma -2.18 mm, interaural 1.62 
mm[50,51] is shown as a reference with the analyzed area outlined in yellow.

Immunohistochemical localization of the microglial biomarker Iba1 in the 
basolateral (BLA) amygdala (Figure 4A) is shown in sample brain sections from naïve 
controls (Figure 4B) and CAE + VEH (Figure 4C). The microglial convex [Figure 4D; 
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Figure 2 Anxiety-like behavior was measured in week 6 of caerulein-induced pancreatitis but acetyl-L-carnitine treatment only increased 
the number of rearing events. A: Mice with caerulein- (CAE) induced pancreatitis spent significantly more time in the closed arm, and less in the center and 
open arm of the plus maze compared to naïve control animals. Treatment with acetyl-L-carnitine (ALC) had no effect; B: Mice with CAE-induced pancreatitis reared 
significantly less compared to naïve control animals. This was alleviated after 3 wk of treatment with ALC; C: No differences were detected between groups in the 
number of entries to the different zones of the elevated plus maze. n = 6/group; aP < 0.05 compared to naïve control; cP < 0.05 compared to CAE + ALC; two-way 
ANOVA with Newman-Keuls post hoc test. ALC: Acetyl-L-carnitine; CAE: Caerulein; VEH: Vehicle.

CAE + VEH (n = 59) = 2157 ± 89 µm2, naïve control (n = 52) = 1493 ± 89 µm2, P < 0.001, 
Student’s t-test] and somal areas (Figure 4F; CAE + VEH = 38.0 ± 1.4 µm2, naïve control 
= 32.2 ± 1.7 µm2, P < 0.01, Student’s t-test) in CAE + VEH animals were significantly 
increased compared to controls. However, while microglial staining intensity for Iba1 
was significantly increased when comparing the convex area (Figure 4E; CAE + VEH = 
206 ± 1, naïve control = 181 ± 1, P < 0.001, Student’s t-test), the somas alone were not 
different (Figure 4G and Supplementary Table 1).

The analyzed area in the dentate gyrus of the hippocampus (Figure 5A) and sample 
histological images are shown in the top of Figure 5. Microglial convex [CAE + VEH (n 
= 57) = 2355 ± 117 µm2, naïve control, (n = 54) = 1833 ± 86 µm2, P < 0.001] and somal 
areas (CAE + VEH = 38.5 ± 1.2 µm2, naïve control = 33.1 ± 2.2 µm2, P < 0.05) were 
significantly increased in the dentate gyrus of CAE + VEH animals compared to naïve 
controls (Figure 5). However, staining intensity for Iba1 was not different between 
groups (Figure 5D and F and Supplementary Table 1).

In the central lateral (CL)/paraventricular thalamus, the convex and somal areas 
were both significantly increased after CAE-induced pancreatitis (Figure 6C and E; 
convex area: CAE + VEH = 2674 ± 143 µm2, naïve control = 2201 ± 108 µm2, P < 0.01; 
somal area: CAE + VEH = 36.9 ± 1.3 µm2, naïve control = 24.9 ± 1.2 µm2, P < 0.001). The 
Iba1 staining intensity in the convex area was significantly increased while the soma in 
CAE-induced pancreatitis animals had decreased staining compared to naïve controls 
(Figure 6D and F; convex staining: CAE + VEH = 211 ± 1, naïve control = 192 ± 1, P < 
0.001; somal staining: CAE + VEH = 36.9 ± 1.3, naïve control = 24.9 ± 1.2, P < 0.001).

In the arcuate hypothalamic (Arc)/dorsomedial nuclei, both convex hull and somal 
area were significantly increased after CAE-induced pancreatitis (Figure 7C and E: 
convex area: CAE + VEH = 2512 ± 122 µm2, naïve control = 1941 ± 101 µm2, P < 0.01; 
somal area: CAE + VEH = 35.7 ± 1.7 µm2, naïve control = 28.6 ± 1.3 µm2, P < 0.001), 
while Iba1 staining intensity was not different (Figure 7D and F and Supplementary 
Table 1).

Surprisingly, microglia in the primary sensory cortex (S1) after CAE-induced 
pancreatitis had significantly smaller somal areas compared to naïve controls 
(Figure 8E; CAE + VEH = 37.2 ± 1.0 µm2, naïve control = 42.4 ± 1.7 µm2, P < 0.01) and 
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Figure 3 Caerulein-induced pancreatitis caused tissue translucence of the pancreas that was reversed within 2 d in the absence of 
pharmacological intervention as well fibrosis and acinar cell atrophy. A: Top row shows pancreata excised at experiments end in week 6, one day after 
the final injections. Bottom row shows pancreata excised at experiments end two days after final injections. On the far right is an opaque pancreas from a naïve 
control animal that was never injected; B: Tissue from caerulein (CAE) + vehicle (VEH) and CAE + acetyl-L-carnitine (ALC) were significantly darker, revealing the 
charcoal stained Sylgard in the dissection dish below, shining through the translucent pancreas compared to naïve controls when excised 1 d after the last injection 
days in week 6. Naïve control n = 6; VEH + ALC n = 3/timepoint; CAE + VEH n = 3/timepoint; CAE + ALC n = 3/timepoint; C: No group differences were noted on day 
2 post final injection day in week 6; D: Pancreatic tissue sections stained with Sirius Red and Fast Green identified wide-spread fibrosis (red) and atrophy of the 
acinar parenchymal tissue only in CAE + VEH and CAE + ALC samples. Scale bar 50 μm; E: Average scores (1 = no damage to 5 = severe damage) of Sirius Red 
and Fast Green-stained pancreatic tissue sections were significantly higher in CAE + VEH and CAE + ALC samples compared to both control groups. Naïve control n 
= 4; VEH + ALC n = 4; CAE + VEH n = 3; CAE + ALC n = 3; aP < 0.05; two-way ANOVA with Newman-Keuls post hoc test. A: Adiposita; C: Colon; P: Pancreas; S: 
Spleen; ALC: Acetyl-L-carnitine; CAE: Caerulein; VEH: Vehicle.

were otherwise not different from naïve controls (Supplementary Table 1).
The number of microglia was not different between the two groups in any of the 

sampled brain regions (amygdala, hippocampus, thalamus, hypothalamus, primary 
sensory cortex).
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Figure 4 Microglia in the basolateral amygdala were activated only in mice with caerulein-induced pancreatitis. A: Overview of the mouse brain 
shown at bregma -2.18 mm, interaural 1.62 mm[50,51]. The quantified area, the basolateral amygdala (BLA), is outlined in yellow; B and C: Examples of BLA from naïve 
control and vehicle treated caerulein- (CAE) induced pancreatitis mice were stained for ionized calcium-binding adaptor molecule 1; D and E: The convex area, the 
hull region of the microglia (samples outlined in red in B and C), was significantly enlarged and more intensely stained in mice with CAE-induced pancreatitis; F and 
G: Similarly, the somal area was significantly enlarged in tissue from mice with CAE-induced pancreatitis, though, the intensity of staining was not different. Naïve 
control n = 4, CAE + VEH n = 5, aP < 0.05 Student’s t-test. CAE: Caerulein; VEH: Vehicle.

DISCUSSION
The present study identified microglial activation in supraspinal regions of the central 
nervous system in mice with CAE-induced recurrent AP pain and anxiety-like 
behaviors which were attenuated by ALC. Recurrent bouts of AP were modeled by 
repeated CAE injections into the abdomen[39-42] which caused extensive fibrosis and 
acinar cell atrophy in the pancreas. The number of weekly injection days in the present 
study was increased from the commonly used two to three days as the observed effect 
was too unstable using only two weekly injection days based on a previous report[41]. 
However, 3 wk of repeated control saline vehicle injections were also able to induce 
secondary mechanical and heat hypersensitivity measured on the hindpaws when 
compared to naïve control animals, despite conscious attempts to avoid repeated 
injections at the same site. This suggests that while the CAE-induced pancreatitis 
model induces inflammation in the pancreas[52,53], repeated abdominal injections alone 
can cause a painful, structural injury in the abdominal wall[54]. This chronic abdominal 
wall pain caused weight loss (Supplementary Figure 1) and induced pain-related 
behaviors that were similar to animals injected with CAE. Clinical reports estimate 
that approximately 2% of emergency room patients have abdominal wall pain caused 
by incisional or abdominal wall hernias which usually have a small trigger point[54,55]. 
These patients are typically treated with lidocaine and analgesics to block the 
development of chronic pain suggesting a potentially similar pain mechanism may 
contribute to hypersensitivity caused by repeated abdominal injection in the CAE-
induced pancreatitis model[53,56].

The CAE-induced pancreatitis model produced secondary mechanical and heat 
hypersensitivity measured on the hindpaws that was attenuated by prolonged post 
treatment with the nutraceutical ALC in weeks 4-6. A previous study demonstrated 
that daily 7-d pre-treatment with ALC prior to induction of AP with CAE alleviated 
biochemical and histological symptoms[22]. ALC acts not only as an antioxidant but also 
increases/restores mitochondrial function in models of AP[23,24]. Other studies using 
CAE to induce pancreatitis have shown mitochondrial damage in parenchymal acinar 
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Figure 5 Enlarged microglial cells were measured in the dentate gyrus of mice with caerulein-induced pancreatitis compared to control 
samples. A: The analyzed area is outlined in yellow in an overview of the mouse brain at bregma -2.18 mm, interaural 1.62 mm[50,51]; B and C: Microglia in the 
dentate gyrus of naïve control and in the caerulein- (CAE) induced pancreatitis mice were measured; D-G: Microglial convex (examples circled in red in B and C) and 
(F) somal area were significantly enlarged after 6 wk of CAE-induced pancreatitis while (E and G) intensity of ionized calcium-binding adaptor molecule 1 (Iba1) 
immunoreactivity was unchanged. Naïve control n = 4, CAE + VEH n = 5, aP < 0.05 Student’s t-test. CAE: Caerulein; VEH: Vehicle.

cells and the release of reactive oxygen species[18-20]. Part of the pathogenesis of 
pancreatitis includes mitochondrial dysfunction and endoplasmatic reticulum stress 
which can progress to pancreatic cell death, fat vacuolization/necrosis, and fibrosis 
also observed here, symptoms of chronic pancreatitis[57,58]. Treatment with ALC 
attenuated pain-related behaviors, reducing them to the level equivalent to control 
animals injected with vehicle. The remaining hypersensitivity may reflect the 
contribution of the abdominal wall injury induced by the repeated i.p. injections 
needed for the CAE-induced pancreatitis model. However, since pancreatic tissue 
damage was not significantly improved in CAE-ALC mice compared to CAE-VEH 
animals, this may be an indicator of the low efficacy of ALC in this long-term model.

In the present study we used two different tests of anxiety-like behaviors in the 
CAE-induced recurrent AP model and received differing results. Anxiety-like 
behaviors were measured in both ALC and vehicle treated mice with CAE-induced 
pancreatitis with the elevated plus maze. However, only the number of rearing events 
was restored in the CAE + ALC group, likely due to the reduced hypersensitivity. The 
decrease in rearing events in the CAE-induced pancreatitis group is likely relevant to 
gravity pressure increase in abdominal hypersensitivity that is relieved by the ALC, 
rather than anxiety level. No differences were detected between the two control 
groups, VEH + ALC and naïve controls. However, in the open field test and all 
animals that received repeated injections had altered general ambulatory behavior 
compared to naïve control mice, while none displayed thigmotaxis, i.e., avoidance of 
the arena center, an indicator of anxiety-like behavior. Differences in ambulatory 
behavior measured in the open field test is interpreted to be associated with 
abdominal wall injury pain caused by the repeated injections.

In the present study the elevated plus maze may have presented a more challenging 
situation to the animals. The plus maze is well established as a test well suited for the 
detection of anxiety-like behavior[59]. The use of this test in the recurrent AP model in 
week 6 may have been too early to detect anxiety-like behavior clearly. It is reported 
that anxiety- and depression-like behavior develop 6-8 wk after induction of animal 
models of chronic pain[60]. In many sciatic neuropathic pain models, pain behaviors 
resolve within 3-4 wk, so that anxiety- and depression-like behaviors have not yet 
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Figure 6 In the central lateral and paraventricular thalamic nuclei, microglial areas in mice with caerulein-induced pancreatitis were 
enlarged. A: An overview of the mouse brain at bregma -2.18 mm, interaural 1.62 mm[50,51] is shown with the analyzed central lateral and paraventricular thalamic 
nuclei thalamic area analyzed outlined in yellow. B and C: Examples of microglia of naïve control and caerulein- (CAE) induced pancreatitis mice with sample convex 
areas circled in red; D and E: Microglial convex area and ionized calcium-binding adaptor molecule 1 (Iba1) staining intensity were significantly enhanced in animals 
with CAE-induced pancreatitis; F and G: Similarly, somal areas were significantly enlarged, yet, their Iba1 staining intensity was decreased. Naïve control n = 4, CAE 
+ VEH n = 5, aP < 0.05 Student’s t-test. CAE: Caerulein; VEH: Vehicle.

developed sufficiently and pain is not yet chronic[61,62]. Implication of developing 
anxiety is that the recurrent bouts in the conditions reported here are approaching a 
chronic pancreatitis state. Pancreatitis is a progressive disease and despite the 
unwanted abdominal wall pain induced by repeated CAE or saline injections, the CAE 
model of acute and recurrent AP adapted here is progressing to chronic pan-
creatitis[1-3,39-41,63].

In the present study of persistent pancreatitis, whole pancreas tissue translucence 
was used as an indirect measure of tissue healing since serum lipase levels are only 
elevated in patients with AP and normal in chronic pancreatitis[64]. Pancreata excised 
one day post final CAE injections at experiment’s end were translucent, a sign we have 
previously reported for a model of chronic pancreatitis[58]. Two days after the final 
CAE injections, spontaneous healing even in the absence of pharmacological 
intervention was detectable as tissue opacity returned to normal. Pancreatic tissue 
regeneration after a single day of repeated CAE injections was demonstrated by 
reduced inflammatory cells within 2 d and healthy pancreatic morphology 7 d after 
injections[65]. In the present study, extensive fibrosis and acinar atrophy was detected in 
pancreata collected 2 d after the final CAE injections. The 3-wk treatment with ALC 
was not able to protect from CAE-induced pancreatic tissue damage, thus suggesting 
ongoing inflammation and tissue disruption in the pancreas was contributing to 
behavioral hypersensitivity.

Constant peripheral activation of nociceptors can lead to central sensitization, 
increase of ascending pain transmission and activation of numerous higher pain 
modulation center, as well as decreased descending pain inhibition and neurogenic 
inflammation. It is this combination that makes understanding the transition from 
acute to chronic pancreatitis pain so difficult to investigate and mitigate[66-68]. The 
present investigation focused on microglial activation as an indicator of regional 
central sensitization caused by persistent pancreatitis pain in the CAE-induced mouse 
model at 6 wk. Microglia had significantly increased Iba1 immunostaining with 
increased somal and convex areas, as well as a ramified appearance after 6 wk of 
untreated inflammation in the pancreas. These resident immune cells in the central 
nervous system have multiple functions including potential to increase neuronal 
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Figure 7 In the hypothalamic arcuate and dorsomedial nuclei, enlarged microglia were measured in mice with caerulein-induced 
pancreatitis. A: The analyzed area is outlined in yellow in an overview of the mouse brain at bregma -2.18 mm, interaural 1.62 mm[50,51]; B-D and F: Microglia in 
arcuate and dorsomedial nuclei of naïve control and (C) caerulein- (CAE) induced pancreatitis mice had (D) significantly different convex (samples circled in red in B 
and C) and (F) somal areas; E and G: Intensity of ionized calcium-binding adaptor molecule 1 (Iba1) immunoreactivity was not different. Naïve control n = 4, CAE + 
VEH n = 5, aP < 0.05 Student’s t-test. CAE: Caerulein; VEH: Vehicle.

activation. In their activated, pro-inflammatory M1 phenotype, they release cytokines 
and chemokines to attract other immune cells that alter neurogenesis and synaptic 
connectivity;  while the invading macrophage M2 phenotype is  anti-
inflammatory[28-30,69]. Previous reports demonstrated activated microglia in the spinal 
cord after 3-4 wk of experimental pancreatitis[27,31]. Studies on somatic pain have 
identified activated microglia in the spinal cord of rats as early as 3-7 d after partial 
sciatic nerve ligation. However, reports on supraspinal regions are controversial with 
some finding no activated microglia[32,34,70], while others have found activated 
microglia[71,72]. This may be due to the post injury time point studied or indicative of 
differences between somatic and visceral pain related stress mechanisms[73,74].

Here we demonstrated that microglial activation in the CAE-induced pancreatitis 
model occurs at several sites within the brain associated with pain modulation and 
affective disorders. The spinothalamic tract relays noxious information to the thalamic 
ventral posterolateral (VPL) nucleus. However, cognitive awareness of deep tissue and 
organ interoception is “silent” until inflammation, chemical or mechanical distention 
initiates a visceral pain sensation as experienced by many patients with pancreatitis. 
Pain arising from inflamed viscera is relayed not only to the VPL but also to brainstem 
sites, the ventromedial, intralaminar CL, and parafascicular thalamic nuclei[75,76]. The 
CL has connectivity with the parietal/frontal cortex playing a role in arousal and 
excitability, responding to a variety of stimuli including intrapancreatic bradykinin, 
intraperitoneal dilute acetic acid, noxious colorectal distention, and greater splanchnic 
nerve electrical stimulation[76]. Electrophysiological studies have revealed that CL in 
particular receives information about pancreatic pain when it is stimulated by noxious 
input[76]. In fact, most CL neurons (93%) have increased responsivity to noxious 
bradykinin stimulation of the pancreas but do not respond to somatic stimuli. 
Responses of some CL and other intralaminar thalamic neurons are reported that have 
both visceral and somatosensory input when a cutaneous search stimuli is used as the 
initial search stimulus[77-79]. Activated microglia have been detected in the thalamus of 
patients with chronic lower back pain[80]. The activated microglia in the CL thalamus of 
CAE-induced pancreatitis are reflective of this noxious stimulation.

Neural circuitry remodeling during chronic pain is accompanied by comorbid 
anxiety and depression[67,71]. Brain remodeling during chronic pain recruits limbic and 
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Figure 8 Microglia in the primary somatosensory cortex of mice with caerulein-induced pancreatitis were similar to those from controls. 
A: The analyzed area is outlined in yellow in an overview of the mouse brain at bregma -2.18 mm, interaural 1.62 mm[50,51]. B-E: Microglia in (B) naïve control and (C) 
caerulein- (CAE) induced pancreatitis mice had (D) similar convex areas and (E) staining intensity for ionized calcium-binding adaptor molecule 1 (Iba1); F and G: In 
fact, their somal areas were significantly decreased in animals with CAE-induced pancreatitis compared to naïve mice, and their Iba1 staining intensity was not 
different. Naïve control n = 4, CAE + VEH n = 5, aP < 0.05 Student’s t-test. CAE: Caerulein; VEH: Vehicle.

reward/aversion circuitries, integral components of the chronic pain syndrome that 
provide an emotional context and suffering[81]. This includes the amygdala which is 
comprised of several nuclei of which the BLA, central (CeA) and  lateral (LA) 
amygdala are centrally involved in modulating pain, emotional processing, the 
emotional aspect of pain, and neuropsychiatric disorders[82]. Activated microglia 
release pro-inflammatory cytokines and chemokines, contributing to physiological, as 
well as brain circuitry activation alterations during the chronification of pain[69]. 
Activated microglia provide indication that these limbic brain regions are activated by 
the ongoing pancreatic pain.

The spinoparabrachial pathway relays noxious information to the CeA, also called 
the nociceptive amygdala, where strengthening of this synaptic connection has been 
shown to contribute to neuropathic somatic pain[70,83,84]. However, the CeA forms a 
circuit with LA/BLA that has been shown to modulate pain related behaviors and 
affective behaviors. Activated microglia within the BLA in the CAE pancreatitis model 
may be an indirect indicator of dysfunctional neuronal activity within the BLA or the 
driving force for neuronal hyperexcitability through pro-inflammatory mediator 
release and thus contributing to anxiety-like behavior after 6 wk (Figure 4). Increased 
neuronal activity within the BLA has been recorded during chronic visceral 
hypersensitivity in rats[85]. During somatic neuropathic pain, the excitability of the 
synaptic connection from BLA to CeA has been shown to be increased and the 
reduction of this dysfunctional hyperexcitability alleviated pain-related behaviors[84]. 
In contrast, the inhibitory BLA-prefrontal cortex connection is increased during 
persistent pain which impairs emotion-based decision making, decreasing the ability 
to assess risk-benefit outcomes[82,86]. Most recently it was demonstrated that the BLA 
encodes the negative affective quality of chronic pain as opposed to only mediating 
the withdrawal from a noxious stimulus[87].

The BLA has direct, excitatory synaptic connections to the hippocampus, a brain 
structure involved in emotionality, learning, and memory[88]. In the spared-nerve 
injury rodent model pain behaviors were correlated with increased pro-inflammatory 
cytokines in the hippocampus[89]. Activated microglia as seen in our experiments in the 
dentate gyrus (Figure 5) could be contributing to this and result in aberrant behaviors. 
Chronic mild stress exposure causes hippocampal microglia activation and increased 
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pro-inflammatory mediators concurrent with anxiety- and depression-like 
behaviors[90]. Activated hippocampal microglia during sciatic nerve injury induced 
chronic stress have been proposed to suppress neurogenesis in the dentate gyrus[72]. 
Animals in the present study were unintentionally stressed by the repeated abdominal 
injections, possibly directly contributing to microglial activation in the hippocampus. 
Hippocampal abnormalities have been reported in an animal model of peripheral 
neuropathic pain[91]. In a previous study, persistent neuropathic pain influenced ability 
of animals to adapt to environmental demands suggesting impaired cognitive 
ability[92]. In patients with chronic back pain, the hippocampal volume was shown to 
be decreased using magnetic resonance imaging (MRI)[93]. These patients also had 
altered connectivity of amygdala, medial prefrontal cortex/anterior cingulate gyrus, 
and hippocampus evident with MRI have been demonstrated to be correlated with 
pain level and duration contributing not only to the chronification of pain but also to 
the development of comorbid anxiety[94-96].

Absence of microglial activation in S1 cortex in CAE-induced pancreatitis in the 
present study may be indicative of its normalized neural activity in persistent pain. 
This is in contrast to acute pain models which found increased neuronal activity at rest 
in the barrel field of S1 after chronic constriction of the infraorbital trigeminal nerve 
branch using the immunohistochemical neuronal activity biomarkers cFOS and 
pERK[97]. However, decreased regional cerebral blood flow, an indirect measure of 
neuronal activity, has been recorded in the cortex of clinical patients with 
longstanding trigeminal neuropathic pain reportedly associated with grey matter 
volume decrease in these regions[98,99]. Youssef et al[100] reported decreased regional 
cerebral blood flow in patients with chronic posttraumatic neuropathy compared to 
healthy subjects using the more accurate arterial spin labeling MRI technique, 
suggesting that dysfunctional central changes and loss of descending inhibition may 
be essential for maintenance of chronic pain[101].

Chronic pain can also be amplified through physiological stress caused by aberrant 
hypothalamic signaling[102]. Observed activated microglia in Arc and dorsomedial 
nuclei (DM) may be indicative of reduced descending pain control as has been 
reported in an arthritis model when the DM is activated[103]. Nociceptive spinal 
projection neurons synapse in the hypothalamus and thalamus[104]. Thalamus and 
hypothalamus are reciprocally connected. Excitatory connectivity from midline 
hypothalamic Arc and DM to the paraventricular nucleus in the thalamus also 
contributes to fear and anxiety-like behaviors. During chronic stress, the 
paraventricular nucleus regulates hypothalamic-pituitary-adrenal (HPA) axis and 
stress hormone release via CeA[105]. Activation of Arc neurons can suppress pain 
responses to acute noxious stimulation in rats[106]. However, enhanced synaptic 
connectivity was identified in hypersensitive rats with chemically induced persistent 
pancreatitis[107]. Patients with fibromyalgia suffering from chronic wide-spread pain 
were reported to have aberrant activation of the HPA axis. Their cortisol levels were 
significantly higher after stress tests than in healthy subjects, demonstrating 
dysfunction of the HPA axis in chronic pain[108].

CONCLUSION
The findings presented here identify multiple contributors to the CAE-induced 
recurrent AP model. These include continued activation of pro-nociceptive signaling 
caused by the repeated abdominal injections themselves, continued inflammation and 
resulting tissue damage in the pancreas, and activation of microglia in brain sites that 
signal persistent pain. Treatment with ALC significantly attenuated CAE-induced 
hypersensitivity but did not attenuate pancreatic histopathology. The activation of 
supraspinal microglia in pain and anxiety brain circuitry may be major contributors to 
the enhancement and perpetuation of a chronic pain state.

ARTICLE HIGHLIGHTS
Research background
Pancreatitis is a multifactorial, progressive disease developing from acute to recurring 
and chronic pancreatitis with increased risk of pancreatic cancer. Chief clinical 
complaint is intractable abdominal pain that does not respond to medication/ 
narcotics.
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Research motivation
Pancreatitis-induced pain is driven by peripheral tissue damage, inflammation, and 
oxidative stress. This abdominal pain is only poorly alleviated with present 
pharmacological interventions, including opioid analgesics, which pose a high risk of 
addiction and other serious adverse events such as bowel dysfunction, increasing of 
abdominal pain, and respiratory suppression.

Research objectives
The present investigation had two aims: (1) Can the antioxidant and mitochondrial 
enhancer ALC attenuate pain- and anxiety-like behavioral changes during 6 wk of 
recurrent acute pancreatitis; and (2) Does recurrent acute pancreatitis activate brain 
microglia along the pain neuraxis and contribute to central sensitization and the 
initiation/maintenance of chronic pain.

Research methods
The CAE-induced pancreatitis model with progression to chronic pancreatitis was 
employed in male C57BL/6J mice to investigate pain- and anxiety-like behaviors 
during a 6-week time course and the efficacy of ALC to alleviate them determined. 
Post-mortem analysis of microglial activation in pain- and anxiety-related brain 
regions from naïve animals was compared to vehicle-treated mice with CAE-induced 
pancreatitis.

Research results
The persistent recurring pancreatitis model induces mechanical and heat 
hypersensitivity, as well as pain related anxiety measures. Vehicle-treated animals 
with CAE-induced pancreatitis developed pain- and anxiety-like behaviors. Treatment 
with ALC attenuated hypersensitivity but had limited efficacy in reducing anxiety-like 
behaviors. Activated microglial were identified in hippocampus, thalamus, 
hypothalamus and amygdala of vehicle-treated mice with CAE-induced pancreatitis, 
but not in the somatosensory cortex.

Research conclusions
Acute recurrent pancreatitis is accompanied by brain microglia activation along the 
limbic pain- and anxiety-neuraxis in response to the persisting pancreatic pain.

Research perspectives
Pharmacological approaches to reduce microglial activation may identify novel non-
opioid approaches for pain treatment during pancreatitis.
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