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Abstract
Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for 
gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is 
hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell 
fusion. Here, we systemically evaluate the evidence that supports or opposes the 
hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We 
review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in 
vivo fused cells. Under this restriction, there is currently little evidence 
demonstrating that giTICs originate from cell-cell fusion in vivo. However, there 
are many reports showing that tumor generation in vitro occurs with more than 
5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell 
fusion are poorly understood, and thus, we propose its potential mechanisms of 
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action. We suggest that future research should focus on giTIC origination from 
cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating 
capabilities with 5000 or less in vivo fused cells, and further clarification of the 
underlying mechanisms. Our review of the current advances in our 
understanding of giTIC origination from cell-cell fusion may have significant 
implications for the understanding of carcinogenesis and future cancer 
therapeutic strategies targeting giTICs.

Key Words: Gastrointestinal tumor-initiating cell; Stem cell; Bone marrow-derived cells; In 
vivo; Cell-cell fusion; In vitro

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Currently, there are many controversial hypotheses concerning the generation 
of gastrointestinal tumor-initiating cells (giTICs). Here, we mainly review the current 
advances in the understanding of giTIC origination from the cell-cell fusion of cancer 
cells and bone marrow-derived cells.

Citation: Zhou Y, Cheng JT, Feng ZX, Wang YY, Zhang Y, Cai WQ, Han ZW, Wang XW, 
Xiang Y, Yang HY, Liu BR, Peng XC, Cui SZ, Xin HW. Could gastrointestinal tumor-
initiating cells originate from cell-cell fusion in vivo? World J Gastrointest Oncol 2021; 13(2): 
92-108
URL: https://www.wjgnet.com/1948-5204/full/v13/i2/92.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i2.92

INTRODUCTION
Tumors are composed of cells with different levels of differentiation, and tumor-
initiating cells (TICs) are the least differentiated cancer cells, which are then capable of 
giving rise to other cancer cells[1,2]. TICs are the source of gastrointestinal tumor 
initiation, progression, metastasis, and drug and radiation resistance. Moreover, they 
are capable of self-renewal, can differentiate into multiple cell lineages (such as cancer 
cells), and can undergo asymmetric cell division. TICs are the most carcinogenic 
subpopulation of cells in most cancer types[3-5], including gastrointestinal cancers[6]. The 
origin of TICs remains unknown; however, many hypotheses[7] have been proposed to 
explain it, including those involving gene mutations[8], endogenous reprogramm-
ing[9,10], and cell-cell fusion[11-14].

Gastrointestinal TICs (giTICs) may originate from gene mutations[15]. Some 
hypothesized that gastrointestinal stem cells, similar to other types of stem cells, have 
protective mechanisms that reduce tumorigenesis. These mechanisms include 
asymmetric cell division via chromosomal segregation and relatively slow cell 
cycles[16], which can protect cells from DNA damage and cellular stress[17]. To form 
giTICs, these mechanisms must be circumvented. The development and progression of 
colorectal cancer (CRC) are associated with a number of identified gene mutations, in 
genes such as KRAS, adenomatous polyposis coli (APC), and p53, that promote the 
conversion of normal epithelial mucosal tissue to cancerous tissue[18,19]. The tumor 
suppressor gene p53 ensures the genomic stability of stem cells, and can therefore act 
as a barrier to the formation of TICs[20]. Wild-type p53 can be experimentally replaced 
with a mutant version of p53 via PCR, CRISPR/Cas9, and knock-in techniques. When a 
related gene mutation occurs, p53 loses its tumor-suppressing ability and acquires 
additional carcinogenic capabilities. This process is termed as mutant p53 gain of 
function (GOF). Experimental evidence suggests that mutant p53 GOF can mediate 
cancerous properties, such as cell death resistance, sustained proliferation, metastasis 
and invasion, and tumor-promoting inflammation[21-23]. Mutant p53 is highly expressed 
in colorectal TICs and CRC tissues[8]. Most evidence that supports this hypothesis 
arises from the observation that common mutations in CRC would affect normal stem 
cell behavior. For example, deletion or inactivation of the APC gene is often the 
initiating step in colorectal carcinogenesis[18] and as such, acts as a gatekeeper in CRC. 
The absence of APC is rare and APC is commonly found in gastrointestinal cells, 
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P-Editor: Li JH including normal populations of gastrointestinal stem cells, as it plays a major role in 
regulating normal stem cell function[24]. There is little direct evidence demonstrating 
that giTICs originate from gene mutations in stem cells. Regardless, it is generally 
believed that giTICs originate from mutated stem cells because stem cells are long-
lived gastrointestinal cell types. Thus, there is sufficient time for them to accumulate 
oncogenic mutations[19]. In addition, TICs and normal stem cells have many identical or 
similar properties, indicating that they have a common source or originate from the 
same ancestor.

Another hypothesis is that giTICs may originate from endogenous reprogramming. 
A specific combination of transcription factors can reprogram differentiated cells into 
pluripotent stem cells[25]. Following the same reasoning, gastrointestinal epithelial cells 
can be dedifferentiated into progenitor/stem cells via specific matched signal 
transduction pathways. Notably, bidirectional transformation between TICs and non-
TICs was observed in intestinal tumors. Nuclear factor kappa-B (NF-κβ) induces the 
stabilization of β-catenin and activation of the β-catenin/T-cell factor transcription 
complex, which, together with the cancer-causing Kras, can induce dedifferentiation of 
non-stem colon cancer cells into stem-like cancer cells[9,26] or TICs[27,28]. However, the 
mechanisms underlying their regulation remain unclear[28]. Epithelial-mesenchymal 
transition (EMT) may also be involved in endogenous reprogramming[29] by inducing 
overexpression of the transcription factors Snail[30-33] and zinc finger E-box-binding 
protein 1 (Zeb1)[34-37]. It is worth noting that Zeb1 activation is associated with Slug 
(Snai2) in TICs[36]. Zeb1, a transcription factor known to be involved in EMT, is 
necessary for the conversion of non-TICs to TICs. EMT in TICs also induces the 
expression of CD44, which was shown to be highly expressed in giTICs[36].

Cell-cell fusion can be easily induced in vitro by physicochemical or biological 
molecules but also occurs in vivo, such as the fusion of sperm and egg cells. Cell fusion 
is an essential physiological process, which plays a role in fertilization, virus entry, 
muscle differentiation, and placenta development. It was also reported to be closely 
associated with the occurrence and development of cancer. Fused cells display the 
genotype and phenotype of the maternal cells, and hybrids produced by the fusion of 
different cell types have distinct properties. Cell-cell fusion can be identified by cell 
size and shape, karyotypes, DNA, gene expression, cell-specific markers, and other 
properties. Both fused cells and TICs display aneuploidy, such as being tetraploid, and 
chromosomal instability, as well as have the ability to induce metastasis and drug 
resistance[38], which suggests that cell-cell fusion may produce TICs. In other words, 
cell-cell fusion may be a better explanation of TIC generation than the aforementioned 
conventional gene mutation and endogenous reprogramming hypotheses. In addition, 
cell-cell fusion may play a role in giTIC formation by introducing endogenous 
reprogramming, as cell fusion hybrids retain transcripts from both parental cells and 
also express a unique subset of transcripts[39].

Cell-cell fusion in vivo and tumor-initiating capacity in vivo should be the criteria 
used to determine whether giTICs originate from cell-cell fusion. Non-tumor initiating 
cancer cells can also proliferate and generate tumors when enough of such cells are 
used. However, theoretically, only TICs can initiate tumor formation using a limited 
number of cells. Generally, unsorted cancer cells contain both TICs and non-TICs. 
Therefore, it is difficult to determine which cells are responsible for tumor initiation. 
Here, we review giTICs that can initiate tumors in vivo using 5000 or fewer in vivo 
fused cells, as well as tumor-initiating like cells (TILCs) that can generate tumors using 
more than 5000 fused cells. However, we do not exclude the possibility that more than 
5000 hybrid cells may be needed to initiate tumors when cell-cell fusion occasionally 
induces rare genetic changes that lead to tumor development.

GiTICs originate from cell-cell fusion: Supporting and opposing evidence
The fusion of human cells in vivo was confirmed by reports describing the fusion of 
melanoma cells and osteoclasts in 2007 and the fusion of BRAF mutated melanoma 
and stromal cells in 2016[40,41]. The fusion of macrophages and peripheral blood 
melanoma cells, which was discovered in 2015, also provided evidence for human cell 
fusion in vivo. Moreover, studies have shown that fusion cells exhibit high expression 
levels of cell fusion factors, including the cell fusion molecule chemokine receptor 4 
(CXCR4), as well as that fusion cells may cause tumor metastasis. However, in the 
tumorigenic experiments described, 5 × 106 fusion cells were inoculated into mice to 
generate primary tumors at a number that was much higher than the 5000 cells criteria 
used for in vivo tumor generation. Therefore, the fusion cells were not concluded to be 
TICs when using the aforementioned restrictions[42].

Currently, there are no reports of giTICs originating from cell-cell fusion in vivo[43]. 
We summarize the reports regarding giTICs originating from cell-cell fusion, 
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including the fusion of gastrointestinal cells with various cell types, the study methods 
used (in vitro or in vivo), evidence of cell-cell fusion, tumorigenic and tumor-initiating 
properties of the fused cells, and possible mechanisms of cell-cell fusion (Table 1).

Cell fusion between gastric cells and stem cells may generate giTICs
Xue et al[44] fused DIO-labeled (green) HGC-27 gastric cancer cells with DID-labeled 
(red) human umbilical cord mesenchymal stem cells (hucMSCs) using polyethylene 
glycol (PEG) 1500 in vitro. The fused cells with double nuclei were then stained with 
Hoechst 33342 (blue) and DIO-GC and DID-hucMSC double labels (yellow) were 
observed after 7 d by sorting via flow cytometry. Then, 20 male BALB/C nude mice 
were injected subcutaneously with 2 × 106 gastric cancer cells or fused cells. Mice in the 
fusion group exhibited tumor nodules at 4 d post-injection, while mice in the gastric 
cancer group showed no tumor nodules. Moreover, the fusion cells were shown to 
form more colonies than their parental cells and had higher Cyclin D1 and 
proliferating cell nuclear antigen (PCNA) expression levels. Cyclin D1 and PCNA 
expression in tumor tissues is usually positively correlated with cancer cell 
proliferation. The expression levels of the stem cell transcription factors Sox2, Oct4, 
Nanog, and Lin28, as well as those of the cancer cell markers CD133 and CD44, were 
also shown to be increased in the fused cells[44]. In addition, real-time RT-PCR analysis 
revealed that E-cadherin mRNA expression was decreased in fused cells, whereas that 
of mesenchymal markers, such as α-SMA, FAP, vimentin, snail, N-cadherin, slug, and 
twist, was significantly increased, indicating that the fused cells underwent EMT. EMT 
is associated with the metastatic ability and invasiveness of cancer cells. As such, the 
obtained fusion cells were shown to have EMT properties, which is similar to 
TICs[44-46]. Cell fusion in vitro between gastric epithelial cells and MSC also resulted in 
fusion cells with tumorigenic capabilities that underwent EMT[47]. However, these 
hybrid cells were formed in vitro and the number of cells used for the tumorigenic 
experiments was much higher than 5000 cells.

In a report by Yan et al[48], the bone marrow of green fluorescent protein (GFP) 
transgenic female C57BL/6 mice was transplanted into irradiated male homologous 
mice (68/68), all of which survived. Then, the transplanted bone marrow-derived cells 
(BMDCs) became the main bone marrow cells of the chimeric mice. Tumors were 
induced using the tumor-causing drug 3-methylcholanthrene. Three of the 12 treated 
mice successfully developed tumors. Hematoxylin & eosin staining showed two 
diffuse-type carcinomas in the glandular stomach and one squamous cell carcinoma 
(SCC). Analysis of CK-18 (mostly expressed in epithelial cancer cells and determined 
via immunohistochemistry staining) and GFP expression (fluorescence microscopy) 
showed that cells derived from both cancer types were positive for CK-18 and GFP 
expression, indicating that they are epithelial tumors originating from BMDCs. 
Moreover, co-expression of the Y chromosome and GFP in the cytoplasm was detected 
in a large number of adenocarcinoma cells via fluorescence in situ hybridization (FISH) 
and immunofluorescence microscopy. In SCC tissues, GFP expression was mainly 
detected in the interstitium and keratin pearl, but FISH did not detect the presence of 
the Y chromosome. Instead, the Y chromosome and GFP were co-expressed in the 
epithelial cells surrounding the SCC. Gastric cancer may originate from the BMDCs of 
transplant donors and develop initially via trans-differentiation and then cell-cell 
fusion[48-50]. These authors revealed that BMDC-gastric epithelial cell fusion may 
contribute to the renewal of the gastric mucosa and lead to increased carcinogenesis 
potential. Additionally, the aforementioned experiments demonstrated that fusion 
cells exhibit stem cell and cancer cell markers in chemical-induced tumor tissues in 
vivo but did not prove that fusion cells can initiate tumors. As such, it is not possible to 
distinguish between drug-induced tumors or fusion cell-induced tumors.

Cell fusion between CRC cells and stem cells 
In a previous study[51], researchers directly co-cultured PM7 cells, which are eGFP-
labeled bone marrow-derived MSCs, with the DsRED-labeled colon cancer cell line 
HT-29. After co-culture, some cells showed eGFP and DsRED double-positive labels 
and these fused cells were shown to be positive for epithelial-specific antigen (ESA) 
and cytokeratin expression. However, the authors did not investigate the tumorigenic 
capacity and other stemness properties of the fused cells. Other reports have found 
similar results[52,53].

Notably, a study revealed that the fusion of intestinal epithelial cancer cells and 
macrophages from BMDCs in vivo leads to nuclear reprogramming and the authors 
suggested that the fusion cells may play a role in tumor development and 
metastasis[39].
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Table 1 Tumor initiating cell origination from cell-cell fusion

Cell I Cell II Cell fusion method Cell fusion evidence Tumor initiating method Tumor initiating evidence Mechanism Ref.

Colorectal cancer cell Human dendritic cell In vitro. DCs and cancer cells 
fused using PEG

Purified cells Enhanced induction of antigen-
specific CTL

Streptococcal preparation OK-
432 promotes fusion efficiency

[69]

Human esophageal 
carcinomas cell

Human dendritic cell In vitro. ECs and DCs fused using 
PEG

Co-expression of MHC class II, 
CD86, and MUC1

Induced specific antitumor 
response

[55]

Human gastrointestinal 
cancer cell

Human dendritic cell In vitro. Fusion via PEG and 
electroporation

Th1/Th2 and Tc1/Tc2 balance 
improved

[73]

Human gastric cancer cell Human dendritic cell FACS analysis Induced CTLs, reduced 
metastases

[56]

Human gastric cancer cell 
(HGC-27 or SGC-7901)

hucMSC In vitro. GC-DIO and hucMSCs-
DID fusion using PEG

Double positive cells BALB/C nude mice (2 × 106 
cells)

In vivo. Tumors formed from 
fused cells 

[44]

Human breast cancer cell 
(MDA-MB-231)

Human MSC In vivo. 2 × 106 MSC300415-GFP 
and 2 × 106 MDA-MB-231-cherry 
subcutaneously injected into 5 
female NOD/SCID mice

Hybrid cells GFP/cherry 
fluorescence

1 × 106 MDA-hyb3-
GFP/cherry cells were 
injected subcutaneously into 
3 female NOD/SCID mice

In vivo. Tumors formed from 
fused cells 

[80]

Human colon 
adenocarcinoma cell

Human HeLa cell (D98OR) In vitro. Fused using PEG, 
isolation of hybrid cells by 
selecting isolated colonies

Flow cytometry analysis had 
more DNA than expected. A 
range of 71–140 chromosomes

Fusion cell characteristics were 
consistent with cancer cells

[75]

Human colon cancer cell 
(SW480)

Human dendritic cell In vitro. Tumor cells- PKH26-red 
and DCs- PKH67-green fused 
using PEG

Dual red and green fluorescence 
and highly expressed CD80, 
CD86, and HLA-DR

CD8+ T lymphocytes co-
cultured with dendritic cells 
at a ratio of 10:1

CTLs were activated to 
proliferate and the number of T 
cells increased

[55]

Human colon cancer cell 
(SW620)

Human dendritic cell In vivo. DCs and tumor cells 
fused using PEG

Fusion efficacy was evaluated by 
FM and FC

In vivo. 1 × 107 fusion hybrids 
injected intraperitoneally

Cellular immune responses, 
significant inhibition of tumor 
growth

[55]

Human colon carcinoma 
line (VACO-411)

Human breast cancer line 
(MCF-7)

In vitro. VACO-411 (1 × 106 cells) 
and MCF-7 (1 × 106 cells) fused 
using PEG

Morphology of VACO-411 × 
MCF-7 fused cells

In vitro. The fused cells were 
treated with TGF-β

Fusion cells were inhibited by 
TGF-β

[76]

Human colon epithelial 
cancer cell

Human normal colon cell In vitro. Cancer cells and normal 
cells (1:10) fused using PEG 

Comparison of DNA synthesis (
P < 0.01)

Male mice nu/nu injected 
subcutaneously with1 × 106 
fused cells

The fused cells could not grow 
into tumors

[77]

Human colorectal 
carcinoma cell

Human dendriticcell In vitro. DCs-CMFDA-
green,colorectal carcinoma-
CMTMR-red cells fused using 
PEG/electrofusion

Double-positivecells Efficiently activated autologous 
tumor-specific T cells

[68]

Human esophageal cancer 
cell (EC109)

Human dendritic cell In vitro. DCs and ECs (5:1-10:1) 
fused using PEG

Co-expression of MHC-CiaSSII 
and CD86 and MUC1 antigens

Cytotoxic T lymphocytes Antitumor capabilities [60]

Human esophageal cancer 
cell (EC9706)

hucMSC In vitro. ECs-DiO hMSCs- DiD 
fused using PEG 

Double positive hybrids are 
yellow and multinuclear

In vivo. Xenograft assays in 
immunodeficient mice

Both ECs and their self-fusion 
groups developed tumors
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Human esophageal 
carcinoma cell (EC9706)

Human hemopoietic stem 
cell 

In vitro. ECs and HSCs (10:1) 
fused using PEG

CD34+CD38-Scal+ cells isolated 
using immunomagnetic beads; 
HSCs cannot grow in DMEM 
supplemented with 10% FBS

In vivo. 5 × 105 fused cells 
injected into 12 NOD/SCID 
mice

All mice formed tumors; 
however, the tumor weight of 
the fused cell group was lower 
than that of the EC9706 group

[54]

Human esophageal 
carcinoma cell

Human dendritic cell In vitro. DCs and ECs (5:1) fused 
using PEG; incubated with FA-
FITC and CD80-PE

Analysis using FATICan In vivo. Fusion vaccine (0.2 
mL; 1 × 106 cells) injected

Anti-tumor effects [58]

Human esophageal 
carcinoma cell (EC109)

Human dendritic cell In vitro. DCs and ECs (5:1) fused 
using PEG. FA-FITC CD80-PE 
mAbs-CD80, CD83 and CD86

FC In vitro. Cytotoxicity assays Antitumor activity [59]

Human female pancreatic 
adenoepithelial neoplasm 
cell 

Human male BMDC In vivo. 4 female pancreatic cancer 
patients transplanted with male 
BMDCs 

Peripheral blood cell: EpCAM 
(yellow)/CD45 (green), Y 
chromosome, CK+/CD45+, MФ 
proteinsCD14, CD16, CD11c, 
CD163 MUC4

[43]

Mouse colon cancer cell 
(MC38)

Mouse R26R- YFP Cre 
mice

In vivo. MC38 cells were injected 
ventrally into r26R-YFP Cre mice

RFP+ YFP+ [51]

Mouse primary melanoma 
cell

Mouse MФ Melanoma cells were injected 
into mice intradermally

RFP and GFP cells 300 and 3000 cells, 
respectively injected into 
mice (n = 9, 3)

Tumor initiation The characteristics of parental 
cells provided adhesive affinity

[51]

Human gastric cancer cell 
(MKN-1)

Dendritic cell In vitro. DCs- PKH-26 and GC 
cells-PKH-67 fused via 
PEG/electrofusion 

Double positive cell populations In vitro. Co-cultured DCs (1 × 
105 cells) with 1 × 106 T cells

Induced tumor antigen-specific 
CD8+ T cells

[70]

Human gastric epithelial 
cell (GES-1)

CM-MSC In vitro. GES-1- PHK-26 (2 × 106 
cells) and CM-MSCs- CFSE (1 × 
107) cells fused using PEG

Most cells express PKH26 and 
CFSE

In vivo. The fused cells (1 × 
107cells) were injected into 8 
BALB/c nude mice

Tumors from the fused cells 
formed in vivo

[47]

Human gastric cancer cell 
(SGC7901)

Human dendritic cell In vitro. SGC7901 and DCs fused 
using PEG 

Pure fused cells were obtained 
by selective culture with 
HAT/HT culture system

In vivo. Fusion cells (5 × 108) 
were injected into BALB/c 
mice

In vivo. The fused cells could not 
grow into tumors

[61]

Human gastric cancer cell 
(SGC7901)

Human dendritic cell In vitro. SGC7901 and DCs fused 
using PEG 

Selective culture with the 
HAT/HT culture system

In vivo. Fused cells (5 × 106

/mL) + T cells (5 × 106/mL)
In vivo. The fused cells could not 
grow into tumors

[62]

Human hepatobiliary 
stem/progenitor cell

Human hematopoietic 
precursor-derived myeloid 
intermediate

In vitro. Cultures of CD34+ LTICs 
and xenograft cells (the 
xenografts were produced by 
CD34+ hybrid cells)

CD34+ LTICs co-expressed liver 
stem cell and myelomonocytic 
cell markers

HSPCs were fused with a 
CD34+ hematopoietic 
precursor-derived myeloid 
intermediate to form CD34+ 
hybrid cells

Human hepatocellular 
carcinoma cell (HepG2)

Human embryonic stem 
cell 

In vitro. HepG2-red 
mitochondrion selective probe 
and hESCs-Oct-GFP cells fused 
via laser-induced single-cell 
fusion 

Transfer of cytoplasmic GFP 
from hESCs to HepG2 cells

In vivo. HepG2 cells and the 
fused cells (5 × 104 and 1 × 105 
cells, respectively) were 
injected into nude mice

Tumors were generated from 
fused cells

Human hepatocellular In vitro. MSCs- DiI (5 × 105 cells) In vivo. The fused cells were Tumors were formed from Mouse MSC Dual fluorescence, two nuclei
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carcinoma cell (HepG2) and HepG2-eGFP (1 × 105 cells) 
fused using PEG

injected into 7 nude 
mice/group with 2.4 × 107 
cells/group

fused cells 

Human intestinal cancer 
cell (HT-29)

Human MSC In vitro. PM7-eGFP and HT-29-
DsRED cells were cocultured

eGFP and DsRED double 
positive cells

Acquired epithelial 
characteristics

[51]

Human intestinal epithelial 
cells 

Human hematopoietic cell In vitro. X- and Y-chromosome 
determined by FISH. Female 
recipients of hematopoietic cell 
transplant from male donors

Stained for X- (green) and Y- 
(red) chromosomes and Lamin 
B1 (white)

In mice, hematopoietic fusion 
with non-hematopoietic cell 
types occurs endogenously in 
the absence of disease

[86]

Mouse intestinal epithelial 
cell

Mouse bone marrow-
derived cell

In vivo. CMV-CreGFP+ mice BM 
were transplanted into iDTR mice

Co-staining for GFP and 
EpCAM.GFP+ cells in the 
intestine

Cell fusion is dispensable for 
tissue homeostasis

[52]

Mouse intestinal stem cell Human bone marrow-
derived cell

In vivo. Donor female mice 
BMDCs-GFP, male recipient mice

EGFP expression in all principal 
intestinal epithelial lineages

[63]

Mouse colon 
adenocarcinoma cell 
(CT26)

Mouse dendritic cell In vitro. Tumor cells- PKH67-
Green and DCs fused using PEG 

Assessedvia the trypan-blue 
exclusion test

In vivo. BALB/c mice injected 
with 5 × 105 cells 

The fused cells could not 
generate tumors

[64]

Mouse colon 
adenocarcinoma cell line 
(CT26)

Mouse dendritic cell In vitro. DCs-anti-CD11cmAb and 
tumor cells- CFSE fused using 
PEG 

Analyzed by FC In vivo. Injection of 1 × 104, 
105, or 106 cells/mouse

The fused cells did not generate 
tumors. CTL anti-tumor effects

[72]

Mouse colon carcinoma 
cells (CT26CL25)

Allogeneic and semi 
allogeneic dendritic cells

In vitro. DCs-PKH26-red 
andCT26CL25-PKH67-green 
fused using PEG 

Analyzedby FC In vivo. 1 × 106 fused cells and 
5.0 × 105 CT26CL25 cells

Anti-tumor effects in vivo [65]

Mouse colon epithelial cell Mouse BMDC In vivo. Female mice BMDCs-GFP 
(1 × 107 cells) transplanted into 
irradiated male mice 

Co-expression of GFP and the Y 
chromosome

In vivo. Parabiosis surgery 
(GFP and ROSA mice)

Bone-marrow/epithelial cell 
fusion causes genetic 
reprogramming

Inflammation and proliferation 
act together to mediate 
intestinal cell fusion

[87]

Mouse gastric epithelial 
cell

Mouse BMDC In vivo. Male irradiated C57BL/6 
mice received female C57BL/6 
mice BMDC-GFP 

Direct. Positive for the Y 
chromosome and expressed GFP 
as determined by FM

In vivo. GCs were induced 
with a carcinogen 

Tumor formed from fused cells 
in vivo

Chronic inflammation 
(adenocarcinoma, glandular 
stomach, not squamous cell 
carcinoma)

[48]

Mouse hepatocellular 
carcinoma cell

Mouse dendritic cell In vitro. HCCs PKH-26-red and 
DCs-PKH-2-green fused using 
PEG

The fusion cells were yellow 
under the confocal microscope

In vitro. CTL assay In vitro. Activated cytotoxic T 
lymphocytes

[66]

Mouse hepatoma cell line 
(Hepa1-6)

Mouse embryonic stem 
cell

In vitro. Cancer cells-GFP and ES 
cells-RFP fused using PEG

Double fluorescence-positive In vivo. 1 × 106 ES-cancer 
fused cells injected into nude 
mice

Tumor formed from fused cells 
in vivo

Mouse intestinal epithelial 
cancer cell

Mouse WBM 
(macrophage)

In vivo. WBM-GFP (5 × 106 cells) 
injected in recipient mice (male 
WT, ApcMin/+, ROSA26, 
ROSA26/ApcMin/+). Parabiosis

Co-localization of GFP (green) 
and β-galactosidase (red)

Nuclear reprogramming Fusion between circulating 
blood-derived cells and tumor 
epithelium origin at the natural 
course of tumorigenesis

[39]

Mouse intestinal epithelial Mouse intestinal epithelial In vitro. IEC-6- CFSE andIEC-6- The fused cell emits both CFSE In vivo. The IEC-6 fused cells Tumor formed from the fused [78]
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cells (IEC-6). Human 
cervical adenocarcinoma 
cells (HeLa)

cells (IEC-6) Human 
cervical adenocarcinoma 
cells (HeLa)

SNARF-1 (HeLa -Cy3-dUTP-red 
and HeLa- Cy5-dUTP-green) 
fused using PEG

and SNARF-1 fluorescence (IEC-
6). Eight daughter cells contain 
both dyes (HeLa)

(Two million cells) were 
injected in 18 mice

cells in vivo (n = 11 generated 
tumors)

Mouse intestine stromal 
cell

Mouse bone marrow-
derived macrophage

In vivo. Female mice BMDCs-GFP 
injected in male recipient mice

Co-localization of GFP and Y-
chromosome

Organ fibrosis Depleting macrophages 
genetically reduced the 
number of cells

[53]

Mouse prostate cancer cell 
(PCa)

Mouse BMDC In vivo. 2 × 106 cells/mice 
BMDCs-GFP transplanted into 10 
C57BL/6 mice

Co-expression of GFP and CK8 C57BL/6 mice-GFP, induced 
prostate cancer by MNU

GFP-positive cells in the 
prostate cancer tissue

[79]

Whole tumor cell Human dendritic cell In vitro. The purified DCs and 
tumor cells fused using PEG

[67]

BMDC: Bone marrow-derived cell; CAM: Cell adhesion molecules; CM-MSCs: Cord matrix-derived mesenchymal stem cells; CTL: Cytotoxic lymphocytes; DC: Dendritic cell; DMEM: Dulbecco's modified eagle medium; EC: Esophageal 
carcinoma; FACS: Fluorescence-activated cell sorting; FBS: Fetal bovine serum; FM: Fluorescence microscope; FC: Flow cytometry; GC: Gastric cancer; hucMSCs: Human umbilical cord mesenchymal stem cells; HSPC: Hematopoietic stem 
and progenitor cell; hESC: Human embryonic stem cell; HSC: Hematopoietic stem cell; HCC: Hepatocellular carcinoma; HLA: Human leukocyte antigen; LTICs: Liver tumor-initiating cells; MSC: Mesenchymal stem cell; MNU: N-methyl-
N-nitrosourea; PEG: Polyethylene glycol; WBM: Whole bone marrow; WT: Wild-type; IEC: Intestinal epithelial cell; HGC: Human gastric cancer cell; GFP: Green fluorescent protein; MDA: Malonaldehyde; TGF: Transforming growth 
factor; FITC: Fluorescein isothiocyanate; PE: Physical examination; CM: Chylomicron.

Cell fusion between liver cancer cells and stem cells may generate giTICs
In a previous study, human embryonic stem cells (hESCs) were labeled with Oct-GFP 
and HepG2 hepatocytes and stained with a mitochondrial (red) probe, and the cells 
were then fused via laser-induced fusion. Later, it was shown that GFP was transferred 
from hESCs (green) to liver cancer cells (red), confirming the successful generation of 
fusion cells. Subsequently, different amounts of 5 × 104 - 1 × 106 fused cells were 
injected subcutaneously into nude mice, and mice injected with normal liver cancer 
cells were used as controls. The fused cell group exhibited a tumor incidence of 9/12, 
while the liver cancer cell group had a tumor incidence of only 1/8. Moreover, a lower 
number of fused cells were necessary for tumor generation when compared to the liver 
cancer cell group. These results demonstrated that in vitro cell fusion between liver 
cancer cells and stem cells could generate cells with giTILC properties. The 
tumorigenicity of the fusion-generated giTILCs was also shown to be significantly 
higher than that of the maternal cancer cells. However, the number of cells used for 
tumorigenicity experiments was higher than 5000 and cell-cell fusion was induced in 
vitro. Similar reports have also shown that in vitro cell-cell fusion produces 
tumorigenic hybrid cells or giTILCs.

CD34+ hybrid cells extracted from liver cancer cell lines were shown to express high 
levels of hepatic stem cell and bone marrow mononuclear cell markers. The cells were 
also shown to be drug-resistant and express some TIC markers. As such, these results 
suggested that liver TILCs may be formed by the fusion of hepatobiliary 
stem/progenitor cells and hematopoietic precursor-derived myeloid cells.
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Evidence opposing or not supporting the hypothesis that giTICs originate from cell-
cell fusion
The fusion of gastrointestinal cells and dendritic cells does not produce giTICs or 
giTILCs, which is generally used to generate tumor vaccines[54-73]. In addition, it was 
shown that cell fusion in the pancreas and esophagus did not generate giTICs or 
giTILCs[54,74]. Moreover, in vitro fusion cells obtained from human colon adenocarci-
noma cells and metastatic human cervical cancer HeLa cells were shown to possess 
cancer cell properties but were not considered to be giTICs or giTILCs[75]. Currently, 
cell-cell fusion between tumor cells and tumor cells has not been shown to lead to the 
generation of TICs[76]. Notably, cell-cell fusion between human colon epithelial cancer 
cells and normal colon cells not only fail to induce TICs or TILCs but also to generate 
tumorigenic hybrids in some cases[77]. Similarly, cell-cell fusion between intestinal 
epithelium cells did not generate giTICs or giTILCs[78].

TIC generation from cell-cell fusion in other tissue types
Gast et al[43] intradermally injected mouse primary melanoma cells (RFP+, actin–green 
fluorescent protein, 5 × 104 cells) into mice with GFP+ macrophages (actin–green 
fluorescent protein, n = 12). This resulted in tumor formation and mouse macrophages 
(MФ, GFP) and melanocyte fusion cells (RFP+GFP+) were detected in the tumors. The 
researchers then implanted 300 RFP+GFP+ cells, which were isolated by fluorescence 
activated cell sorting (FACS), into 19 recipient mice (300 cells per mouse) and found 
that the fusion cells led to tumor growth. Then, 3000 fusion cells per mouse were 
implanted into three mice for time-dependent analysis of tumor growth characteristics. 
It was found that the fusion hybrids obtained in vivo had different tumor growth rates, 
which indicated that the obtained hybrid cells had heterogeneous growth abilities. 
Therefore, the authors demonstrated that melanoma TICs originate from cell-cell 
fusion in vivo[43]. Notably, MФ-tumor fusion cells were found in the peripheral blood 
and were shown to have a stronger ability to metastasize and proliferate. Moreover, 
the authors showed that the presence of hybrid cells in the peripheral blood of female 
pancreatic cancer patients with bone marrow transplants from male donors was 
correlated with disease stage and patient survival.

Xie et al[79] reported that glioma stem cells reorganized the inflammatory 
microenvironment at the implanting site in mice. Cell-cell fusion between glioma cells 
and immunoinflammatory cells was also demonstrated in vitro and the fusion cells 
were shown to be tumorigenic in nude mice and have TILC characteristics.

The formation of cancer cell/MSC hybrids was observed in breast and prostate 
cancers. Researchers transplanted stem cells into experimental mice and identified in 
situ CK8+ prostate tumors derived from GFP-labeled transplanted stem cells. This 
demonstrates that 1 × 106 fusion cells formed from stem cells and breast cancer cells 
can generate tumors. However, due to the excessive number of cells used for the 
tumorigenesis experiment, these fusion cells may not be TICs[79,80].

GiTICs originate from cell-cell fusion: Possible mechanisms
Cell-cell fusion is a process involving cell chemotactic trafficking, membrane fusion, 
intramembrane structure fusion (including nucleus), and formation of functional 
fusion cells[81,82]. Moreover, it requires two or more cells to undergo cell membrane 
merging. However, nuclear fusion is not necessary for the formation of functional 
fused cells. After the first mitotic division, the binuclear hybrid may undergo nuclear 
fusion to produce mononuclear cells[43,48,83]. Membrane fusion involves the physical 
merging of membranes from different cells into a single bilayer, allowing for the 
exchange of cellular contents[84,85]. Generally, cells undergo cell fusion as an adaptation 
to unfavorable environments or factors and for the acquisition of favorable 
phenotypes.

Here, we summarize and hypothesize the mechanisms of giTIC generation from 
cell-cell fusion (Table 2 and Figure 1). The generation of TICs via cell-cell fusion may 
involve several fusion partners: (1) BMDCs fusing with local differentiated cells; (2) 
BMDCs fusing with local stem cells; (3) Local differentiated cells fusing with local stem 
cells; and (4) Migratory cells from different tissues fusing with local stem cells. In all 
cases, fusion cells may inherit the self-renewal ability of stem cells[7,11].

The mechanisms of giTIC generation via cell-cell fusion in vivo are very rarely 
elaborated. Cell-cell fusion between gastrointestinal cells and stem cells may be 
spontaneous[39,86], unexplained[44], or induced by carcinogens (carcinogenic chemicals) 
or carcinogenic factors[48,87], such as chronic inflammation and body damage. It is 
hypothesized that stem cells may initiate changes in the local microenvironment, 
which then recruits differentiated cells and leads to the fusion of local stem cells with 
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Table 2 Molecules potentially involved in gastrointestinal tumor-initiating cell generation from cell-cell fusion

Tumor type Cell surface molecules involved in 
cell fusion

Intracellular molecules 
involved in cell fusion

Signaling pathways 
involved in cell fusion giTIC molecules

Gastric CD44, CD133, EpCAM, CXCR4, Lgr5, 
CD54[3], ALDH1[3]

OCT4, SOX2[120], Twist, Slug[47], 
Nanog, Lin28[44]

CXCL12/CXCR4, Lgr5[3] CD44[3], CD133[111]

Colorectal CD44, CD133, EpCAM, CXCR4, 
CD166[3]. CD81, CD9, GTP-binding 
protein α13, radixin[85], Syncytin 1, CD47

APC, p53, Kras, NF-κB, OCT4, 
SOX2[3]. ADAM10, myosin 
regulatory light chain, RhoA[85]

CXCL12/CXCR4, Wnt/β-
catenin[3], c-Jun

CD133, CD44, ALDH1, 
EpCAM, CD44, CD166, 
CD24, LGR5, CD26[3]

Liver CD44, CD133, CD13, EpCAM, CD24, 
CD90[3], E-cadherin, matrix 
metalloproteinase

p53[3], OCT4, SOX2[119]. 
Vimentin, Twist, Snail[113]

CXCL12/CXCR4[77], Wnt, 
TGF-β, Notch, Hedgehog[3]

CD133, CD49f, CD90, 
CD13[3]

Esophageal CD44, CD133, EpCAM[115], CXCR4[3] OCT4, SOX2 Lgr5[3], CXCL12/CXCR4 CD44, ALDH1[3]

Pancreatic CD44, CD133, EpCAM, CXCR4, CD24[3], 
ALDH1[3]

KRAS, TP53, SMAD4, OCT4, 
SOX2[116]

CXCL12/CXCR4[3], Lgr5[118] CD133, CD44, CD24, ESA, 
CXCR4[3]

giTIC: Gastrointestinal tumor-initiating cell; CD44 and CD133: Cell surface glycoproteins; CXCL12: Chemokine; CXCR4: Chemokine receptors 4; EpCAM: 
Epithelial cell adhesion molecule, transmembrane glycoprotein; ALDH: Acetaldehyde dehydrogenase; NF-κB: Nuclear factor kappa-B; APC: Adenomatous 
polyposis coli; GTP: Guanosine triphosphate; ESA: Epithelial-specific antigen; TGF-β: Transforming growth factor-β.

Figure 1 Origins of gastrointestinal tumor-initiating cells. Gastrointestinal tumor-initiating cells may originate from gene mutations, endogenous 
reprogramming, or cell-cell fusion. GICC: Gastrointestinal cancer cell; CMG: Cell membrane glycoprotein; CAMs: Cell adhesion molecules; TIC: Tumor-initiating cells; 
APC: Adenomatous polyposis coli; NF-κβ: Nuclear factor kappa-β; CXCR4: Chemokine receptor 4; CXCL12: Chemokine.

differentiated cells, thereby generating TICs via cell-cell fusion. Similarly, Helicobacter 
pylori can cause chronic inflammation leading to gastric epithelial mucosal damage, 
which may recruit BMDCs. These BMDCs can differentiate through cell fusion with 
local gastric epithelial cells, leading to giTIC formation via cell-cell fusion and 
adenocarcinoma development[49].

Fusion proteins, also called fusogens, play an important role in mediating 
membrane fusion[84,85]. Cell adhesion molecules (CAMs) and cell membrane 
glycoproteins can mediate cell fusion. Most CAMs are involved in the process of 
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membrane fusion and some in cell transfer[88,89]. CAMs, such as CD44, EpCAM[89,90], and 
cell membrane glycoprotein CD133, are highly expressed in gastrointestinal tumors, 
especially in giTICs or giTILCs[3,91].

CXCR4, which is a receptor of the chemokine CXCL12, is preferentially expressed in 
gastrointestinal tumors and promotes invasion and metastasis of gastrointestinal 
cancer cells[92-103]. The binding of CXCL12 to CXCR4 promotes the directed migration 
and homing of BMDCs[104,105]. Moreover, CXCL12 was shown to attract organ-specific 
metastases of CXCR4-expressing tumor cells[106,107] and CXCR4-positive MSCs were 
shown to migrate to the destination area, such as the stem-cell initiated tumor 
microenvironment[108]. Moreover, CXCL12 was shown to attract organ-specific 
metastases of CXCR4-expressing tumor cells and CXCR4-positive MSCs were shown 
to migrate to the destination area, such as the stem-cell initiated tumor 
microenvironment, thereby clarifying the mechanism of the induction/activation-cell 
migration-adhesion-cell fusion process[82,109]. Fujita et al[110] found that diffuse-type 
gastric cancer-derived CXCR4-positive stem-like cells penetrate into the gastric wall 
and migrate to the CXCL12-expressing peritoneum, resulting in the formation of 
peritoneal tumor lymph nodes and malignant ascites in an immunodeficient mouse 
model[110], which were also found to contain tumorigenic hybrid cells. Many factors, 
such as inflammatory factors, exosome secretion, cancer-related signal transduction 
pathways, and chemokines (such as CXCR4/CXCL12), can promote or cause cell 
chemotaxis; however, no report has shown that these factors are actually involved in 
the membrane fusion process[111].

In 2019, the cell-cell fusion of two colon cancer cell lines (HCT116 and LoVo) using 
cobalt chloride showed that syncytin 1, CD9, CD47, and c-Jun were overexpressed in 
the polyploid giant cancer cells (fusion cells), while PKARIα and JNK1 expression was 
decreased. Molecules that mediate cell fusion are usually highly expressed in fusion 
partner cells and hybrid cells. These highly expressed molecules or molecular 
pathways may be further studied as candidate cell fusion molecules that mediate cell-
cell fusion.

The molecules or molecular pathways summarized in Tables 1 and 2 are likely 
involved in cell-cell fusion processes and the properties of TICs. As such, they may 
have potential as cell-cell fusion and TIC markers[112-118].

CONCLUSION
Understanding giTIC generation from cell-cell fusion may have significant 
implications for the understanding of carcinogenesis and the development of future 
cancer therapeutic strategies targeting giTICs. Under the aforementioned restrictions 
for giTICs and TILCs, to date, there is little evidence demonstrating that giTICs 
originate from cell-cell fusion in vivo, although there are reports showing that giTILCs 
and mouse TICs can form in vivo via the cell-cell fusion of melanoma cells and 
macrophages[4,5,43]. Human cell-cell fusion in vivo has also been reported, namely, the 
fusion of stem cells with microglia and mature neurons after the transplantation of 
bone marrow-derived stem cells[119]. In addition, the mechanisms of giTIC generation 
via cell-cell fusion are poorly understood. As such, we propose potential mechanisms 
involving a multi-step cell fusion process of different cell fusion partners, which is 
mediated by chemokine and fusogen molecules. Studies on in vitro cell-cell fusion may 
promote our understanding of the possible mechanisms of giTICs generation via cell-
cell fusion in vivo. We suggest that future research should focus on giTIC generation 
via cell-cell fusion in vivo, isolation of giTICs that have tumor-initiating capabilities 
when using 5000 or less in vivo fused cells, and the understanding of their underlying 
mechanisms.
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