
miRNA-mediated gene expression control. Here we 
highlight the latest findings on angiogenic and antian-
giogenic miRNAs and their targets as well as potential 
implications in ocular neovascular diseases. Emphasis is 
placed on how specific vascular-enriched miRNAs regu-
late cell responses to various cues by targeting several 
factors, receptors and/or signaling molecules in order 
to maintain either vascular function or dysfunction. Fur-
ther improvement of our knowledge in not only miRNA 
specificity, turnover, and transport but also how miRNA 
sequences and functions can be altered will enhance 
the therapeutic utility of such molecules. 
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Core tip: This review examines the critical regulatory 
role of microRNAs (miRNAs) in the process of normal 
and pathological angiogenesis and the prospects that 
they provide for the development of new treatments. 
miRNAs are both upstream and downstream of multiple 
growth factors in regulating endothelial proliferation, 
migration, and vascular patterning, processes critical 
for normal and abnormal formation of blood vessels. 
Emphasis in this review is placed on how specific vas-
cular-enriched miRNAs regulate cell responses to vari-
ous cues by targeting several factors, receptors and/or 
signaling molecules in order to maintain either vascular 
function or dysfunction.
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Abstract
Ischemic retinopathies are clinically well-defined chronic 
microvascular complications characterized by gradually 
progressive alterations in the retinal microvasculature 
and a compensatory aberrant neovascularization of the 
eye. The subsequent metabolic deficiencies result in 
structural and functional alterations in the retina which 
is highly susceptible to injurious stimuli such as diabe-
tes, trauma, hyperoxia, inflammation, aging and dys-
plipidemia. Emerging evidence indicates that an effec-
tive therapy may require targeting multiple components 
of the angiogenic pathway. Conceptually, mircoRNA 
(miRNA)-based therapy provides the rationale basis 
for an effective antiangiogenic treatment. miRNAs are 
an evolutionarily conserved family of short RNAs, each 
regulating the expression of multiple protein-coding 
genes. The activity of specific miRNAs is important 
for vascular cell signaling and blood vessel formation 
and function. Recently, important progress has been 
made in mapping the miRNA-gene target network and 
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INTRODUCTION
Angiogenesis is the generation of  new blood vessels 
from pre-existing ones, a process initiated by branch-
ing “decisions” of  endothelial cells (ECs) to undergo 
proliferation, guided migration, tubulogenesis, vessel 
fusion and pruning. Physiological angiogenesis is crucial 
in maintaining normal vascular growth and homeosta-
sis from embryogenesis to postnatal life, especially in 
instances of  fetal development, wound healing, trans-
plantation, post-ischemic tissue repair and the menstrual 
cycle[1-4]. However, excessive angiogenesis is a commonly 
occurring pathogenic condition in more than 30 diseas-
es, including eye diseases, cancer, rheumatoid arthritis, 
atherosclerosis, diabetic nephropathy, pathologic obesity, 
asthma, cystic fibrosis, inflammatory bowel disease, pso-
riasis, endometriosis, vasculitis and vascular malforma-
tions. In particular, the vascular beds supplying the retina 
often sustains injury as a result of  underlying diseases 
such as diabetes, trauma, hyperoxia, aging, dyslipidemia, 
or the interaction of  genetic predisposition, environ-
mental insults and age. The high metabolic and oxygen 
demands make the retina highly susceptible to these inju-
rious stimuli which lead to an arrest of  vascular develop-
ment, vaso-obliteration and/or vascular occlusion. The 
subsequent vascular pathological response observed, 
especially in intraocular vascular diseases, generates dis-
organized, leaky, and tortuous vessels that leak into the 
interface between the vitreous and the retinal tissue, at-
tracting fibroglial elements causing severe hemorrhage, 
retinal detachment, and vision loss. These are the char-
acteristic features of  neovascular and fibrovascular dis-
eases of  the eye such as retinopathy of  prematurity and 
proliferative diabetic retinopathy. The exudative or “wet” 
form of  age-related macular degeneration (AMD) which 
largely affects choroidal vessels and cause blindness in 
elderly populations is characterized by the overgrowth 
of  the choriocapillaris that invade the Bruch’s membrane 
and grow into subretinal spaces[5,6].

GROWTH FACTOR EXPRESSION AS A 
DETERMINANT FACTOR OF NORMAL 
AND PATHOLOGICAL ANGIOGENESIS IN 
THE RETINA
The formation of  an aberrant and dysfunctional vas-
culature is commonly initiated by the uncontrolled 
expression or, lack thereof  of  growth factors includ-
ing vascular endothelial growth factor (VEGF), Notch 
and Wnt signaling components, bone morphogenic 
protein, thrombospondins and insulin-like growth fac-
tors (IGFs)[7-11]. In particular, VEGF, a highly specific 
mitogen for ECs, is a major determinant of  normal and 
pathological formation of  the retinal vasculature[12]. Loss 
of  VEGF attenuates blood vessel formation in mice 
embryos leading to early embryonic lethality and causes 
defective vascularization in adults[13-16]. Conversely, high 
expression of  VEGF is common in avascular peripheral 

hypoxic regions of  the retina compared to already vascu-
larized areas[17]. Under conditions of  oxygen deprivation, 
hypoxia-inducible factor 1α (HIF-1α) is activated and 
binds to its responsive elements in the promoter region 
of  VEGF and other hypoxia-responsive genes, caus-
ing their upregulation and subsequent abnormal vessel 
growth[18]. Anti-VEGF treatments have been useful in 
reducing neovascularization of  the eye. However, not 
all patients have achieved an optimal response. Safety 
data from several studies identified ocular and systemic 
adverse events including subretinal fibrosis, endophthal-
matis, traumatic cataract, non-ocular hemorrhage, etc. 
Additionally, the use of  anti-VEGF treatments, in the 
case of  AMD in diabetic patients, interfered with myo-
cardial revascularization and, in some cases, worsened 
the pathology in the diabetic eyes as a result of  VEGF-
dependent loss of  neurotrophic and vasculotropic fac-
tors[19].

There are numerous other factors that contribute 
to neovascular growth. The erythropoietin (Epo) and 
VEGF genes, for instance, exhibit a similar expression 
pattern during both physiological and pathological vessel 
growth and inhibition of  Epo suppressed retinal neo-
vascularization both in vivo and in vitro[20,21]. Other factors 
such as basic fibroblast growth factor (bFGF), platelet 
derived growth factor (PDGF), transforming growth fac-
tor alpha, interleukin 8 (IL-8), connective tissue growth 
factor (CTGF), pigment epithelium-derived factor, 
IGF-Ⅰ, and matrix metalloproteinase (MMP)-2 were 
similarly implicated in the neovascular response and are 
considered as potential therapeutic targets. In addition, 
inflammation-mediated cyclooxygenase-2 (COX-2) can 
modulate angiogenesis via its interaction with VEGF[22] 
and important pro-angiogenic and neovascular functions 
have been associated with the activation of  the renin-
angiotensin system, ephrins, tyrosine kinase receptors 
and ligands (e.g., tie/angiopoietin receptors). Together, 
all these factors form a well-coordinated and functional 
network of  molecules affecting the process of  normal 
and pathological angiogenesis. Emerging evidence indi-
cates that antiangiogenic therapy may require therapeutic 
approaches that target multiple components of  the an-
giogenic pathway[23-26]. Conceptually, microRNA-based 
approaches may potentially provide the rationale basis for 
such approaches.

MICRORNA BIOGENESIS AND FUNCTION 
IN THE MODULATION OF GENE 
EXPRESSION 
Key events in gene regulation depend on specific small 
non-coding RNA-guided posttranscriptional regulators, 
commonly referred to as miRNAs that target a “mixture” 
of  diverse growth and differentiation factor mRNAs 
encoding networks[27]. MicroRNAs are a relatively abun-
dant class of  gene expression regulators that function 
as “micromanagers” of  gene expression[28]. These are 
short non-coding RNAs (18-25 nucleotides) which work 
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post-transcriptionally to negatively regulate gene expres-
sion through translational inhibition or degeneration of  
mRNAs. They might act as on-off  switches to eliminate 
mRNAs that should not be expressed in a particular cell 
type or at a particular moment. MicroRNAs can also 
act to fine tune mRNA abundance and adjust the levels 
of  their mRNA targets within a physiological range in 
response to environmental cues. A single miRNA has 
the capacity to target multiple target mRNAs, which can 
themselves be targeted by numerous other miRNAs. 
To date, 1186 mouse miRNA and 1872 human miRNA 
sequences have been noted on the miRBase database 
and may control at least 30% of  all the protein-coding 
genes[29]. 

Since the discovery of  miRNAs, their biogenesis has 
been thoroughly examined and it is now known that both 
miRNAs and small interfering (si) RNAs share the same 
cellular machinery[4,30]. Most miRNA genes are transcribed 
by RNA polymerase Ⅱ, which is usually responsible for 
the transcription of  protein coding genes, to yield several 
kilobase-long primary miRNA (pri-miRNA) transcripts 
(Figure 1). Pri-miRNAs have characteristic loop stem (or 
hairpin) morphology and contain the mature miRNA 
sequence in the stem portion near the loop. The micro-
processor, containing the endonuclease Drosha, cleaves 
the pri-miRNA into shorter pre-miRNAs that are trans-
ported to the cytoplasm by exportin-5. Once in the cy-

toplasmic compartment, pre-miRNAs undergo the final 
steps towards maturation. The first step involves “dicing” 
of  the loop portion of  the molecule by another endo-
nuclease, Dicer and the transactivation response RNA 
binding protein (TRBP). A miRNA-miRNA duplex that 
is unwound is released together with the single-stranded 
mature miRNA. The latter is then passed to Argonaute 
to from a functionally mature, approximately 22 nucleo-
tide miRNA. The 2-8-bp “seed” region in the 5’ end of  
miRNAs binds to target 3’UTR of  mRNA sequences and 
inhibits translation if  base-pairing is imperfect or initiates 
mRNA cleavage if  base-pairing is perfect.

REGULATION OF ANGIOGENESIS BY 
MICRORNAS
The first studies of  the functional significance of  the 
miRNA pathway in angiogenesis were performed using 
conditional deletion of  Dicer alleles, as complete loss 
of  Dicer resulted in a significant reduction of  the ma-
ture miRNA profile and early embryonic lethality[31,32]. 
Yang et al[32] have shown that mice with Dicer gene dele-
tion lack adequate blood vessel formation in embryos 
and yolk sacs and die between 12.5 and 14.5 d post-
gestation, thus implicating Dicer-dependent miRNA 
genesis in the regulation of  blood vessel formation. De-
fects in these mice were due to dysregulation of  VEGF 
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Figure 1  Schematic representation of microRNA (miRNA) biogenesis. miRNA genes are transcribed into large pre-miRNA (capital R) that are cleaved by a protein 
complex containing the endonuclease Drosha into shorter pre-miRNAs. The latter are then transported to the cytoplasm by exportin-5. A complex containing the endonucle-
ase, Dicer, then cleaves the loop portion of the pre-miRNA (capital R) to form a short duplex molecule that is unwound, and the single-stranded mature mirNA is then passed 
to Argonaute to from a functional mature, approximately 22 nucleotide, miRNA that inhibit translation after base-pairing with the 3’ UTR of the miRNA (capital R) target.
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and its receptors, KDR and FLT-1, along with Tie-1, an 
angiopoietin-2 receptor[32]. Similarly, silencing of  Dicer 
or Drosha in (ECs) using siRNA significantly inhibited 
capillary sprouting and altered expression patterns of  
Tie-2, VEGF receptor 2 (VEGFR2/KDR), Tie-1, endo-
thelial nitric oxide synthase (eNOS) and IL-8 in vitro[33,34]. 
Another study by Otsuka et al[35] showed that in female 
Dicer hypomorphic mice, infertility ensued from lack of  
angiogenesis in the ovaries. Further analysis revealed that 
impaired angiogenesis resulted from the absence of  two 
pro-angiogenic miRNAs, miR17-5p and let-7b, which 
target anti-angiogenic factors[35]. Additionally, nude mice 
subcutaneously injected with siRNA-transfected ECs 
showed reduced angiogenic sprouting of  transplanted 
cells[33]. In two EC-specific Dicer knock-out mouse mod-
els generated by Suarez et al[34], postnatal angiogenesis 
significantly decreased in response to multiple stimuli. 
In this study, transfection of  cells with miR-18a, miR-
17-5p, and miR-20a (collectively forming the miR-17-92 
cluster) restored normal angiogenesis in Dicer knockout 
mice[34]. Taken together, these studies established a role 
of  Dicer-dependent miRNA biogenesis in the control 
of  angiogenesis in vitro and in vivo.

MICRORNA SIGNATURE IN NORMAL 
AND PATHOLOGICAL ANGIOGENESIS
Recent studies have examined miRNA expression pro-
files and patterns during retinal angiogenesis[8,36-38]. More 
than 250 miRNAs have been enumerated in the retina 
and new information on the regulation and mode of  
action of  those miRNAs is progressively emerging[38]. 
Specific functions have been attributed to individual an-
giogenic miRNAs, although the challenge still remains in 
validating their protein targets[23,36,39-46]. Similarly, differen-
tial expression of  miRNAs during retinal neovasculariza-
tion has been studied in the mouse model of  oxygen-in-
duced retinopathy (OIR). In this model, seven miRNAs 
were upregulated, including miR-451, -424, -146, -214, 
-199a, -181 and -106a, when compared to control reti-
nas, while miR-31, -150 and -184 were downregulated. 
However, this study provided only an exhaustive list of  
potentially key angiogenic miRNAs whose expression 
patterns, localization, and actual targets remain unclear. 

Greater insights on angiogenic and antiangiogenic 
miRNA expression and function have been obtained 
from in vitro studies and other in vivo models of  pathologi-
cal angiogenesis. Poliseno et al[47] have performed the first 
large-scale analysis of  miRNA expression in human um-
bilical vein endothelial cells using miRNA arrays. Twenty 
seven highly expressed miRNAs were identified, 15 of  
which were predicted to regulate the expression of  re-
ceptors for angiogenic factors (e.g., Flt-1, Nrp-2, FGF-R, 
c-Met, c-Kit). Additional studies from other groups have 
identified a total of  200 miRNAs that are expressed in 
ECs[4,24]. Overall 28 endothelial-specific miRNAs were 
highly expressed in 5 out of  8 of  the profiling studies in-
cluding miR-221/222, miR-21, the let-7 family, miR-126, 

miR-17-92 cluster, and the miR 23-27-24 cluster[4,24,25]. 
Angiogenic factors and receptors are putative targets of  
those miRNAs[1,7,48,49]. However, it should be noted that 
both abundantly expressed miRNAs as well as the rarely 
expressed ones play important regulatory roles and the 
exact in vivo relevance of  all miRNAs expressed in ECs 
remains to be determined. Since angiogenesis involves 
complex and intertwined pathways, we have classified the 
currently known endothelial-specific miRNAs based on 
the context/conditions of  their expression (Figure 2). 

Hypoxia-sensitive miRNAs
Microarray-based expression profiling revealed that 
specific miRNAs are induced under hypoxic condi-
tions and target angiogenic factors produced by ECs[50]. 
In particular, miR-15b, -16, -20a and -20b were shown 
to be upregulated under hypoxic conditions and target 
VEGF[50]. Additionally, miR-15b and miR-16 are predict-
ed to be putative regulatory miRNAs of  uPAR, COX2, 
and c-MET, which themselves are induced in response 
to hypoxic conditions[50]. Upregulation of  these miR-
NAs is p53- and HIF-1α-dependent. Other microarray-
based expression profiles have also revealed a set of  
hypoxia-induced miRNAs which are also over-expressed 
in tumors[51]. In particular, miR-210 is hypoxia-induced 
in all cell types tested[41,52]. In ECs subjected to hypoxia, 
miR-210 regulates the tyrosine kinase receptor eph-
rin-A3 that contributes to vascular remodeling. miR-210 
promotes the formation of  capillary-like structures in 
cultured ECs but, under hypoxic conditions, it decreases 
ECs tube formation and migration[52,53]. miR-100 is an-
other hypoxia-sensitive miRNA that was shown to be 
significantly down-regulated after hind-limb ischemia[54]. 
Under these conditions, miR-100 repressed the expression 
of  an angiogenic serine/threonine protein kinase targeted 
by rapamycin[55]. Furthermore, Shen et al[39] reported a dra-
matic increase in the expression of  miR-106a, -146, -181, 
-199a, -214, -424 and -451 in a model of  retinal ischemia 
suggesting their potential roles in the pathogenesis of  
neovascular diseases of  the eye. Similarly, the hypoxia-
induced miR-424 and miR-200 target the protein complex 
that stabilizes HIF-α and promote angiogenesis[56,57].

Growth factor-sensitive miRNAs
The effects of  several angiogenic factors are mediated by 
miRNAs such as miR-155, -191, -21, -18a, -130a, -17-5p, 
-20a, -296, -101, -125b and -132[58]. In particular, serum, 
VEGF, and bFGF increased the expression of  miR-
130a, which enhances angiogenesis by downregulating 
the expression of  anti-angiogenic homeobox proteins 
such as growth arrest-specific homeobox and Homeo-
box protein Hox-A5[52,59]. In the presence of  VEGF or 
epidermal growth factor (EGF), the levels of  miR-296 
were significantly up-regulated in primary human brain 
microvascular ECs[60]. miR-296 was also found to be up-
regulated in tumors and targets the hepatocyte growth 
factor-regulated tyrosine kinase substrate that inhibits 
degradation of  key angiogenic growth factor recep-
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tors such as VEGF receptor 2 and PDGF receptor β[60]. 
Conversely, miR-101 was found to be down-regulated 
by VEGF which then allows the expression of  histone-
methyltransferase enhancer of  zest homolog 2, increasing 
methylation of  histone H3 and enhancing a pro-angio-
genic response[61]. miR-125b was induced transiently by 
VEGF and negatively regulates vascular endothelial (VE)-
cadherin to suppress tube formation in vitro and tumor 
growth in vivo[62]. A prolonged over-expression of  miR-
125b in vivo resulted in blood vessel regression. Trans-
forming growth factor β (TGF-β) which is best known 
for its profibrotic activities, is a potent inducer of  VEGF 
gene expression in retinal pigment epithelial cells[63]. How-
ever, numerous miRNAs have also been found to regulate 
and participate in TGF-β-induced VEGF expression[64]. 
Such effect is mediated by miR-29a which targets the 
phosphatase and tensin homolog (PTEN) gene, leading to 
the activation of  the protein kinase B pathway, increased 
VEGF expression and angiogenesis[64]. Similarly, miR-132, 
which is undetectable in normal endothelium, was shown 
to be induced by VEGF and FGF in ECs and trigger neo-
vascularization in the retina[65,66]. 

Inflammation and cytokines
Inflammation typically has beneficial effects on an acute 
basis, but it produces undesirable effects if  persist-
ing chronically. Angiogenesis sustains inflammation by 
providing oxygen and nutrients for inflammatory cells 
which, in turn, stimulates pathological angiogenesis[67]. 
The increased expression of  many inflammatory pro-
teins such as IL-1, IL-3 and tumour necrosis factor-alpha 
(TNF-α), is regulated at the level of  gene transcription 

through the activation of  proinflammatory transcription 
factors, including nuclear factor-kappa-B (NF-κB). In 
retinal ECs of  diabetic rats, the expression of  miR-146, 
-155, -132 and -21 up-regulates NF-κB gene expression 
and activity[67]. In contrast, miR-146 negatively regulates 
IL-1 receptor-associated kinase 1 and TNF receptor-
associated factor 6 which are themselves induced follow-
ing NF-κB activation[52,67]. Thus, targeting miR-146 may 
have an anti-inflammatory potential. 

Meanwhile, T cell derived cytokine IL-3, a pro-inflam-
matory and a pro-angiogenic cytokine, was reported to 
down-regulate the expression of  miR-296, miR-126, and 
-miR-221/222 in ECs[68]. The miR-222 exhibited anti-
angiogenic effects by negatively regulating STAT5A in a 
mouse model of  retinal neovascularization[68]. miR-126 
has been portrayed as an anti-inflammatory molecule 
because it suppresses TNF-α mediated vascular cell ad-
hesion molecule 1 (VCAM-1) expression and leukocyte 
interactions with ECs[26,31,52]. 

Reactive oxygen species as inducers of EC senescence
There is considerable evidence that increased production 
of  reactive oxygen species (ROS) in the retina affects 
retinal vessel formation, although the mechanisms by 
which this occurs are not fully understood[69]. ROS such 
as superoxide anions such as H2O2 inhibit EC growth 
and increased cell death which are commonly associ-
ated with vaso-obliteration preceding ischemia[70]. Over-
expression of  miR-23a from the miR-23-27-24 cluster 
inhibits H2O2-induced apoptosis in retinal pigment epi-
thelial cells from AMD patients via the repression of  Fas, 
an activator of  the apoptotic pathway[71]. Similarly, the 
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Figure 2  Overview of major angiogenic and antiangiogenic miRNAs and their targets in promoting or suppressing retinal neovascularization. VEGF: Vas-
cular endothelial growth factor; IGFs: Insulin-like growth factors; HIF-1α: Hypoxia-inducible factor 1α; bFGF: Basic fibroblast growth factor; PDGF: Platelet derived 
growth factor; IL-8: Interleukin 8; MMP: Matrix metalloproteinase; ICAM-1: Intercellular adhesion molecule-1; TNF-α: Tumour necrosis factor-alpha; MAPK: Mitogen-
activated protein kinase.
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miR-200c is up-regulated in ECs by oxidative stress and 
affects EC proliferation and death by inhibiting ZEB1[72]. 

The miRNA profiling of  aging human primacy ECs 
revealed that miR-17,-21,-216,-217,-31b, and-181a/b are 
highly expressed[73]. In particular, miR-217 is progres-
sively expressed in response to EC stimulation by ROS 
and targets Sirt1 (silent information regulator 1) that 
regulates angiogenic gene expression via deacetylation 
of  histones[31,73]. Inhibition of  miR-217 in ECs reduced 
senescence and enhanced angiogenesis[73]. Likewise, miR-
34a targets Sirt1 and impairs angiogenesis which leads to 
the onset of  senescence[31,74].

OTHER MIRNAS WITH POTENTIALLY 
IMPORTANT ANGIOGENIC FUNCTIONS 
IN THE RETINA 
Other miRNAs with potentially important angiogenic 
functions in the retina were shown in Figure 2.

miR-221/222
miR-221 and miR-222 are two paralogue miRNAs 
located in close proximity to one another on Xp11.3 
chromosome[26,47]. Over-expression of  miR-221/222 
reduced EC growth in vitro by targeting the c-Kit re-
ceptor, a tyrosine kinase receptor for stem cell factor 
which regulates EC migration, and survival as well as 
tube formation[47,52]. EC transfection with miR-221/222 
inhibits tube formation, migration, and wound heal-
ing[47,52]. Conversely, miR-221/222 positively regulates 
proliferation and migration of  cultured vascular smooth 
muscle cells, suggesting a cell type-specific function[68,75]. 
The proangiogenic effects of  miR-221/222 in smooth 
muscle cells are p27 and p57-dependent. A recent study 
in zebra fish showed that miR-221 deficiency resulted 
in drastic developmental vascular defects which un-
derscore an important function of  miR-221/222 in 
angiogenesis[11]. In the latter study, miR-221 acts autono-
mously on the VEGF-C/Flt4 signaling pathway, altering 
endothelial tip and stalk cell phenotypes[11]. miR-221 
promotes tip cell migration and proliferation by nega-
tively regulating cyclin dependent kinase inhibitor 1b 
and phosphoinositide-3-kinase regulatory subunit 1[11]. 
The discrepancy between the in vitro and in vivo activities 
of  miR-221/222 may be due to a differential effect on 
the mature and non-mature circulatory system. Further 
studies are needed to ascertain the regulation and func-
tion of  miR-221/222 in developmental and pathological 
angiogenesis in the retina. 

miR-17-92 cluster
The miR-17-92 cluster is a polycistronic miRNA gene 
located in intron 3 of  chromosome 13 in humans, and 
contains six mature miRNAs, miR-17, -18a, -19a, -19b-1, 
-20a and -92a[3,4,26]. This cluster is highly expressed in 
ECs and tumor cells and is strongly up-regulated by 
ischemia[28,31,52,76]. Ectopic expression of  the miR-17-92 
cluster partially rescued the angiogenic phenotype of  

Dicer-deficient ECs[58]. Similarly, restoration of  miR-17 
in combination with let-7b in Dicer knockout mice also 
partially normalized corpus luteum angiogenesis by tar-
geting the tissue inhibitor metalloproteinase-1, an anti-
angiogenic factor[35]. The pro-angiogenic function of  this 
cluster is due to the inhibition of  the anti-angiogenic 
molecules thrombospondin-1 and CTGF by miR-18 and 
miR-19, respectively[58]. However, the function of  this 
miRNA cluster in retinal angiogenesis remains to be elu-
cidated. 

miR-126
miR-126 is the best characterized EC-specific miRNA 
and is known to be highly conserved among species[1,26]. 
It is encoded by intron 7 of  the EGF-like domain 7. 
miR-126 enhanced VEGF signaling by directly targeting 
the 3’UTR of  Sprouty-related EVH1 domain contain-
ing protein-1 and phosphoinositol-3-kinase regulatory 
subunit 2[1,7,26,31,49]. Thus, miR-126 promotes angiogen-
esis by targeting negative regulators of  the angiogenic 
pathway. miR-126 affects cell migration, reorganization 
of  the cytoskeleton, capillary network stability, and cell 
survival in vitro[7]. It also altered developmental angiogen-
esis and vascular integrity. Fifty percent of  miR-126 null 
mice died as a result of  severe systemic edema, ruptured 
blood vessels and multifocal hemorrhages[49]. Vascular-
ization of  the retina was shown to be severely impaired 
in mice that survived the miR-126 deletion[49]. An intra-
vitreal injection of  miR-126 in the retina reduced the 
levels of  VEGF, IGF-2, and HIF-1α[77]. Additionally, 
miR-126 exhibited tumor suppressor functions in lung 
cancer cells by negatively regulating VEGF both in vivo 
and in vitro[26,78]. Hence, strategies to modulate miR-126 
levels may hold a great therapeutic value against retinal 
neovascular diseases. 

miR-200b
The miR-200 family is up-regulated by stimuli such as 
TGF-β1 and PDGF and suppresses growth of  human 
microvascular ECs[57]. Hypoxia inhibits miR-200b ex-
pression, prompting an elevated Ets-1 gene expression 
and its downstream target genes such as MMP1 and 
VEGFR2[57]. Intravitreal injection of  miR-200b mim-
icked reduced elevated levels of  VEGF and prevented 
angiogenesis in a model of  diabetic retinopathy[79]. Thus, 
the regulation of  miR-200b in retinal neovascular diseas-
es may prevent the aberrant expression of  critical factors 
associated with pathological angiogenesis. 

miR-214
miR-214 is located on a non-coding intronic Dynamin-3 
gene sequence and its expression is controlled by the 
transcription factor Twist-1. HIF-1α mediates Twist-1 
transcription, which then allows miR-214 expression[80]. 
Concordantly, miR-214 was shown to be up-regulated 
in ischemic conditions when HIF-1α was stabilized[80]. 
A recent study has shown that miR-214 directly targets 
Quaking (QKI) and regulates the expression and secre-
tion of  angiogenic growth factors such as VEGF, bFGF 
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and PDGF[81]. Quaking plays an essential role in vascular 
development[82]. In vivo silencing of  miR-214 enhanced 
the formation of  blood vessels on Matrigel plugs and 
increased the secretion of  pro-angiogenic growth fac-
tors[81]. Additionally, miR-214 is substantially increased 
in the mouse model of  OIR[39]. Inhibition of  miR-214 
enhanced normalization of  the vascularization of  the 
retina through the expression of  QKI, suggesting that 
miR-214 may function directly to either block pathologi-
cal neovascularization or prevent hyperoxia-induced va-
soobliteration[81]. 

miR-329
miR-329 targets the important pro-angiogenic gene, 
CD146, and inhibits angiogenesis in vitro and in vivo[83]. 
CD146 is an adhesion molecule and an endothelial 
biomarker which actively participates in the angiogenic 
process[83,84]. CD146 functions as a co-receptor for 
VEGFR2 and activates the p38/IκB kinase/NF-κB 
signaling pathway leading to increased EC migration 
and tube formation. A study by Wang et al[83] has shown 
that exposure of  ECs to VEGF represses endogenous 
miR-329 expression, resulting in the simultaneous up-
regulation of  CD146 and treatment with miR-329 sig-
nificantly reduced retinal neovascularization. miR-329 is 
thought to inhibit the expression of  many downstream 
pro-angiogenic genes including intercellular adhesion 
molecule-1 (ICAM-1), IL-8, and MMP-2, among others. 
Thus, miR-329 serves as a potential therapeutic target in 
pathological retinal angiogenesis. 

miR-21
miR-21 is located on chromosome 17q23.2 within the 
protein-coding region of  the transmembrane protein 
49[85]. miR-21 promotes angiogenesis by inhibiting phos-
phate and tensin homolog deleted on chromosome 10 
(PTEN), a potent negative regulator of  the phosphatidyl 
inositol-3 kinase/AKT signaling pathway. By blocking 
Akt signaling, PTEN decreases both eNOS activity and 
VCAM-1 expression[31,86,87]. In tumor cells, overexpres-
sion of  miR-21 significantly increased the levels of  
HIF-α and VEGF. In primary bovine retinal microvas-
cular ECs, inhibition of  miR-21 drastically reduced pro-
liferation, migration, and tube-forming capacity reinforc-
ing the important pro-angiogenic role of  miR-21 in the 
retinal microvasculature[88]. 

miR-23-27-24 cluster
The miR-23-27-24 cluster is highly enriched in ECs and 
is well conserved between rodent and humans[40]. There 
are two paralogs of  the clusters: an intergenic miR-23a-
27a-24-2 cluster and an intronic miR-23b-27b-24-1 clus-
ter on vertebrate chromosomes 8 and 13 respectively[40]. 
miR-27a/b and miR-23a/b mediate proper capillary 
formation in response to VEGF in vitro[40]. miR-27a/b 
and miR-23a/b repress anti-angiogenic gene expression 
such as SPROUTY2, SEMA6A and SEMA6D[40]. These 
anti-angiogenic genes inhibit the mitogen-activated pro-

tein kinase pathway and VEGF pathway[40]. Additionally, 
miR-23a/b and miR-27a/b also promote choroidal neo-
vascularization (CNV)[40]. Silencing of  miR-23a/b and 
miR-27a/b suppressed CNV in mice[40]. Thus, targeting 
the miR-23-27-24 cluster may have beneficial therapeutic 
applications in the treatment of  AMD. 

miR-132
miR-132 is highly up-regulated in human embryonic 
stem cells and tumors whereas it was undetectable in a 
normal endothelium[26,65]. However, stimulation of  ECs 
by growth factors increased the levels of  miR-132 which 
then activates quiescent endothelium by suppressing 
p120RasGAP[26,65,66]. Suppression of  p120RasGAP led 
to the activation of  Ras which then increases VEGF-
mediated phosphorylation of  mitogen-activated protein 
kinase extracellular related protein kinase kinase-1[65]. 
Ectopic expression of  miR-132 was sufficient to induce 
EC proliferation in vitro and its inhibition significantly 
reduced growth factor-mediated angiogenesis in vivo and 
in vitro[65]. Additionally, inhibition of  miR-132 also greatly 
decreased retinal neovascularization in mice[65]. Thus, 
early detection and modulation of  this miRNA may in-
hibit the onset of  neovascularization. 

CONCLUSION
Treatment and management of  neovascular diseases rely 
mainly on pharmacotherapy and/or surgical procedures. 
However, these treatments are seldom efficacious and 
they often are plagued by unwanted side effects and/or 
insurmountable complications. The use of  miRNAs that 
specifically target a set of  angiogenic genes appears to be 
a viable alternative approach. Currently, there are numer-
ous ongoing clinical trials designed to test the efficacy 
and effectiveness of  such approach in the treatment of  
various disorders (e.g., atherosclerosis, cancer, inflam-
matory diseases) and the preliminary results are promis-
ing[89-91]. Neovascular diseases including those of  the eye 
will likely test/use such approach in a near future as our 
understanding of  miRNA regulation and the molecular 
mechanisms underpinning their functions increases ev-
ery day. 

MicroRNAs are also increasingly considered as poten-
tial diagnostic markers of  disease stages. Indeed, miRNAs 
have been discovered in a wide variety of  extracellular 
body fluids such as saliva, serum, plasma, milk, and urine 
as nuclease resistant entities[24,31,92]. These extracellular 
circulating miRNAs enable cell-to-cell communication 
and also provide insight into the physiological states or 
progression of  pathological diseases within the secreting 
cells[92-94]. miRNAs are thought to be secreted from cells 
in three possible ways: (1) via passive leakage from cells 
resulting from injury, inflammation, apoptosis or necrosis; 
(2) via an active secretion method in membrane-bound 
vesicles such as exosomes, shedding vesicles and apoptotic 
bodies; and (3) via an active secretion method of  protein-
miRNA complexes[92]. Exosomes are 30 nm-100 nm ves-
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icles, arising from multivesicular bodies and their release 
is mediated by the enzyme sphingomyelinase-2[31,92-95]. 
Shedding vesicles, arising from the plasma membrane, is 
facilitated via a ligand-receptor method. Further insight 
into the exosomal miRNA formation and circulation may 
not only validate their prognostic potential in the slowly 
developing neovascular diseases of  the eye but, will also 
help design optimal delivery systems of  miRNAs in vivo.
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