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Abstract
Artificial intelligence (AI) demonstrated by machines is based on reinforcement 
learning and revolves around the usage of algorithms. The purpose of this review 
was to summarize concepts, the scope, applications, and limitations in major 
gastrointestinal surgery. This is a narrative review of the available literature on 
the key capabilities of AI to help anesthesiologists, surgeons, and other physicians 
to understand and critically evaluate ongoing and new AI applications in periop-
erative management. AI uses available databases called “big data” to formulate an 
algorithm. Analysis of other data based on these algorithms can help in early 
diagnosis, accurate risk assessment, intraoperative management, automated drug 
delivery, predicting anesthesia and surgical complications and postoperative 
outcomes and can thus lead to effective perioperative management as well as to 
reduce the cost of treatment. Perioperative physicians, anesthesiologists, and 
surgeons are well-positioned to help integrate AI into modern surgical practice. 
We all need to partner and collaborate with data scientists to collect and analyze 
data across all phases of perioperative care to provide clinical scenarios and 
context. Careful implementation and use of AI along with real-time human 
interpretation will revolutionize perioperative care, and is the way forward in 
future perioperative management of major surgery.

Key Words: Algorithms; Artificial intelligence; Big data; Data management; Machine 
learning; Perioperative care
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Core Tip: Artificial intelligence (AI) has revolutionized the way surgery and anesthesia 
are taught and practiced. Applications of AI in anesthesia are risk prediction, control of 
anesthesia by closed-loop anesthesia delivery systems, monitoring the depth of 
anesthesia, robotic intubation, monitoring cardiac output based on algorithms and 
ultrasound guidance. In surgery, AI focuses on generating evidence-based, real-time 
clinical decision support designed to optimize patient care and surgeon workflow. AI 
can be used to appropriately convey the results of prognosis and treatment algorithms 
to patients. Nevertheless, there is a lack of problem-solving by AI and a continuing 
dependence of human analysis.

Citation: Solanki SL, Pandrowala S, Nayak A, Bhandare M, Ambulkar RP, Shrikhande SV. 
Artificial intelligence in perioperative management of major gastrointestinal surgeries. World J 
Gastroenterol 2021; 27(21): 2758-2770
URL: https://www.wjgnet.com/1007-9327/full/v27/i21/2758.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i21.2758

INTRODUCTION
Artificial Intelligence (AI) which means intelligence demonstrated by machines is 
based on reinforcement learning and revolves around the usage of algorithms. AI has 
already found an irreplaceable place in our lives with it use by smartphones, personal 
assistants like Alexa and many other applications. AI derives inspiration from the 
brain's complex neural network and uses artificial “neurons” that learn by comparing 
themselves to the desired output and "reinforce" connections that are useful, thus 
creating the basis of the artificial neural network approach. The healthcare field 
generates vast medical databases, also known as “big data” that include healthcare 
records, imaging, pathology, and surgical videos. Analysis of big data with the help of 
AI can help diagnose diseases early as well as predict outcomes better, which will 
eventually lead to effective and economical healthcare. Involvement of AI in periop-
erative management includes preoperative assessment with accurate risk predictions, 
intraoperative management includes intubating and operating robots, infusion 
devices, monitoring the depth of anesthesia (DOA), and early detection of anesthesia 
and surgical complications. The vast spectrum of AI and the ability of deep neural 
networks (DNN) to analyze intraoperative videos, the learning curve, and near misses 
may be reduced in minimally invasive surgery[1]. Postoperatively, AI has shown a 
role in reducing surgical site infections (SSI), intra-abdominal SSI after gastrointestinal 
(GI) surgeries[2,3], and identifying anastomotic leaks from electronic health records 
(EHRs)[4,5]. The applications of AI in the near future are expected to be significantly 
practice-changing, hence it becomes essential for surgeons and anesthesiologists to be 
updated with current applications and possible future uses.

BASICS OF AI IN A NUTSHELL
AI is a vast field in which machine learning (ML) forms a subfield (Figure 1). ML 
enables machines to learn from experience just as humans do. ML depends on the 
ability to perform tasks based on algorithms without actual programming and can be 
divided into supervised, unsupervised, and reinforcement learning[6]. Supervised 
learning enables the ML algorithm to achieve a predesigned outcome, unsupervised 
ML does not have prescribed output categories and can detect subtle patterns in large 
datasets that are imperceptible to human analysis. In supervised ML, datasets are 
divided into a training set and a test set to test the algorithm using the new dataset. 
Reinforcement learning is similar to conditioning and involves repeated trial and error 
situations that lead to a reward. DNN or deep learning involves multiple layers of the 
network that allow for the learning of more complex patterns (Figure 2). In DNN, to 
achieve the best association between the input and output layer, there are multiple 
intermediate hidden layers in that are fed data by their previous layers and thus 
influence the outcome. DNN can use EHR variables and accurately predict 
anastomotic leaks or mortality in postoperative patients[4,5]. Conventional neural 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i21/2758.htm
https://dx.doi.org/10.3748/wjg.v27.i21.2758
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Figure 1 Machine learning is a subfield of artificial intelligence; deep neural networks in turn form a subfield of machine learning. AI: 
Artificial intelligence; DNN: Deep neural networks; ML: Machine learning.

Figure 2  Deep neural networks have multiple intermediate layers that are hidden between the input and output layers.

networks, recurrent neural networks, and residual neural networks are currently 
commonly used architectures in deep learning. Techniques used by AI include 
computer vision (CV) and natural language processing (NLP). CV allows AI to 
identify objects through the processing of patterns and images; NLP allows machines 
to analyze human language beyond their machine language or code. CV and NLP 
have diverse applications in surgery and anesthesia.

PREOPERATIVE MANAGEMENT AND PLANNING
Preoperative planning of GI surgeries includes the combined use of pathological 
diagnosis, endoscopy, and imaging to identify patients at risk of complications, for 
early detection, and for timely treatment. Digital pathology with the transfer of slide 
images is in practice to report them remotely and can help obtain second opinions by 
remote centers with pathological dilemmas. Due to the sheer volume of specimen and 
ability to focus the microscope in an area of the field, even expert pathologists are 
bound to miss areas of interest. AI helps to analyze the whole field as well as to detect 
subtle changes[7,8]. AI algorithms can identify celiac disease[9], Helicobacter pylori[10], 
grade liver fibrosis[11], classify colonic polyps[12], grade dysplasia[13], predict 5-year 
overall survival in colorectal cancer from pathology[14], and predict microsatellite 
instability[15]. The drawbacks include large data storage and the need for an efficient 
network, computer, and equipment. ML learns from the data feed and because of 
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baseline inter-individual variability amongst pathologists, there is a grey zone 
regarding a 100% precision. Endoscopists have embraced AI and currently used it 
increase detection of polyps as well as to differentiate hyperplastic from adenomatous 
polyps based on endoscopic images[16,17]. However, most of the additional polyps 
detected by trained DNN are sub-centimetric adenomas[17]. It can also be used to 
differentiate malignant vs nonmalignant tissue, identify the depth of invasion, and 
margins of endoscopic resection[18,19]. An important feat achieved through AI is the 
evaluation of huge numbers of endoscopic images obtained by wireless capsule 
endoscopy[20] as well as an integrated ultrasound system in the capsule for evaluation 
as described by Sonopill[21]. Owing to the problem of organ deformation in the 
abdomen, integration of AI in imaging of GI pathologies has not been as fast as in 
breast or lung diseases. However, for a complex solid organ like the liver AI has 
expanded the scope of complex surgeries by three-dimensional (3D) visualization, 
virtual simulation surgery[22-24] and navigation-assisted surgery (see below). With 
that technology, it is possible to assess patients with large tumors initially considered 
inoperable[25]. The ability of 3D imaging to assess biliary anatomy and the liver 
remnant helps to predict the optimal surgical path to avoid residual tissue in complex 
hepatolithiasis[26-28]. 3D imaging has helped to better understand pancreatic vascular 
anatomy and determine the resectability of tumors[29-31]. Photoacoustic imaging 
combines optical imaging with high resolution ultrasound and large penetration 
depth. This has shown promise in Crohn's disease to assess intestinal hemoglobin 
levels and differentiate between active and inactive disease to avoid unnecessary 
invasive procedures[32].

The other aspect of perioperative planning is decision making and risk assessment. 
The surgical decision is not made only by the surgeon, a shared-decision includes 
patient involvement in the management, increases patient satisfaction, compliance and 
allows the patient to cope up with any unfortunate complications[33]. IBM Watson 
Oncology was built to help oncologists to keep up to date with current evidence and 
guide decision making. Despite the associated hype, it has not been able to deliver 
well for GI cancers[34,35]. Unfortunately, the available risk assessment models like 
major adverse cardiac events, the Revised Cardiac Risk Index, and Gupta Periop-
erative Risk for Myocardial Infarction or Cardiac Arrest underestimate the risk 
involved[36-38]. The American Society of Anesthesiologists (ASA) classification, which 
is used widely is also not devoid of subjective assessment errors[39]. AI and ML 
platforms that are fed data from vast databases of patients outcomes can identify and 
accurately predict risk based on the variables available EHRs. The MySurgeryRisk 
platform uses EHR data of 285 variables and has been shown to predict perioperative 
risk with better accuracy than clinical judgement[5]. It utilizes the big data from EHRs 
and obviates manual input of variables to give accurate mortality prediction. ML has 
been shown to accurately predict mortality, sepsis, and acute kidney injury using 
intraoperative data[40-43]. The Predictive OpTimization Trees in Emergency Surgery 
Risk (POTTER) calculator is an ML platform based on the American College of 
Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database to 
calculate perioperative risk and mortality[44]. POTTER is accurate, user-friendly and 
can be integrated with EHR data to identify and prevent risks like SSI, sepsis, 
pneumonia, urinary tract infection, cardiac complications, and prolonged intensive 
care unit (ICU) stay in postoperative patients. Similarly, for the prevention of 
anesthesia-related complications, ML algorithms can interpret data from previous 
surgery that includes both patient risk factors and postoperative outcomes to 
recommend the anesthetic drugs to be used[45].

INTRAOPERATIVE MANAGEMENT
AI has led to several advancements for the induction and maintenance of anesthesia in 
the current era. Intubation robots like the Kepler intubation system, which uses a 
video laryngoscope and a robotic arm to place the endotracheal tube, has shown a 91% 
success rate[46]. Monitoring DOA requires the assessment of a multitude of 
parameters and is a complex task to be converted in real-time to an ML algorithm. AI 
utilizes the bispectral index (BIS), which is derived from electroencephalogram data, to 
maintain tight feedback and control of DOA[47]. McSleepy automated intravenous 
infusion machines use the BIS along with vital signs to maintain DOA by adminis-
tering propofol, narcotics, and muscle relaxants[48]. The maintenance of DOA is a 
critical balance between infusion and assessment of parameters and under-dosing or 
excessive DOA may be caused by equipment imbalance, therefore automated 
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anesthesia is still in its infancy and not ready to be adopted in general practice. Closed-
loop anesthesia delivery systems which are another automated delivery system based 
on BIS have been shown to be effective and efficient[49].

Apart from induction and maintenance, automated regional anesthetic blockade has 
been performed by the da Vinci® system, and the Magellan robot has been used to 
place peripheral nerve blocks[50,51]. Intraoperative intelligence can help to predict 
return of consciousness after general anesthesia, and neural networks can predict post-
induction hypotension as well as the rate of recovery from neuromuscular blockade 
[47]. Hatib et al[52] have utilized arterial waveforms to formulate a model that was 
able to predict hypotension 15 min before its occurrence using waveform analysis. In 
an unblinded randomized clinical trial (HYPE trial), the use of a ML-derived early 
warning system compared resulted in less intraoperative hypotension with standard 
care[53]. Neural networks can assist in the identification of vertebral level and 
epidural landmarks for postoperative pain from ultrasound images[47]. In supra major 
abdominal surgeries like cytoreductive surgeries or hyperthermic intraperitoneal 
chemotherapy, it is recommended to use cardiac output monitoring. Currently, 
noninvasive arterial pressure-based cardiac output monitoring is used in a majority of 
cases[54]. A noise-robust bioimpedance approach for cardiac output monitoring using 
a regression support vector machine and DNN is the most accurate and robust method 
for monitoring cardiac output, but it has not been used in surgical patients[55].

Today’s operation theater (OR) utilizes a multitude of anesthesia and surgical 
machines that provide a regular status report and adequate assistance. The hetero-
geneous sensors in the OR are known as “context-aware assistance” and help in the 
smooth functioning of the surgical procedures[56]. ML and data annotation can be 
used to identify the phases of surgery and apply them to identify any deviation or 
delay in surgical steps[57]. Surgical navigation technology or computer-assisted 
abdominal surgery use preoperative or intraoperative imaging to track surgical 
instruments and help to describe hidden surgical anatomy. These have been described 
in case reports in laparoscopic adrenalectomy[58], splenectomy[59], pancreatico-
duodenectomy[60], and esophagectomy[61]. However, integrating this entire system 
in current practice is difficult because of the effort required in the setup and the 
problem of organ deformation in the abdomen. Liver surgery, with its complex biliary 
and vascular anatomy, makes a perfect match for the use of navigation-assisted 
procedures[62-65]. Prediction of the resectability of peritoneal carcinomatosis often 
requires a laparotomy to assess the burden of disease. ML like the random forest 
model have been shown to predict resectability with an accuracy of 97.82% in 
peritoneal carcinomatosis[66] and could help prevent unnecessary laparotomies and to 
improve the efficiency of the OR.

The da Vinci Surgical System® (Intuitive Surgical, Sunnyvale, CA, United States) is 
the most commonly used robotic platform and is used for a majority of pelvic 
surgeries, where it has shown superior postoperative outcomes[67]. Robotic surgery 
gives surgeons full control with robotic arms, but there is an increase in operative time 
and cost. A standalone robotic camera can reduce costs and has been evaluated for 
pancreatic procedures[68] and for laparoscopic cholecystectomy[69]. In laparoscopic 
cholecystectomy, there was an increase in operating time, which was possibly caused 
by a lack of real autonomy or reinforced learning and needs to be controlled by the 
surgeon either verbally or by manual interaction. The human-machine interface can be 
controlled by gaze gesture recognition or recognition of the surgeon’s head movement 
to control the laparoscope or endoscope remotely[70-72]. As an alternative to 
automated anesthesia and robotic surgery, Jacob et al[73,74], designed Gestonurse, a 
robotic scrub nurse with a sensor that understands nonverbal hand gestures, can help 
to deliver surgical instruments to surgeons. The Smart tissue anastomosis robot is used 
for minimally invasive suturing and it has been shown in experimental models to have 
better accuracy and consistency than human surgeons[75,76]. Minimally invasive 
laparoscopic surgery is a continuously evolving process for surgeons, requires skill 
and has a learning curve. With AI it is possible to identify the real-time automatic 
surgical phase for real-time workflow recognition and teaching[77]. A DNN approach 
has shown an accuracy of 91.9% for the identification of surgical phases in 71 patients 
with laparoscopic sigmoidectomy[77]. With the help of AI and DNN, it will be 
possible to predict the occurrence of intrasurgical events and to avoid near-miss events 
in laparoscopic surgery[1].
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POSTOPERATIVE MANAGEMENT
A smooth postoperative recovery for all patients is the goal. NLP allows ML 
algorithms to understand EHR data and to utilize it to predict outcomes[5,78]. ML 
algorithms have been shown to accurately predict superficial SSI, organ space SSI, 
sepsis, and bleeding requiring transfusion after liver, pancreatic, or colorectal 
surgery[79]. Statistically, it has shown to outperform the ASA and ACS-Surgical Risk 
Calculator. One of the most undesirable complications after major GI surgeries is an 
anastomotic leak. Various clinical signs and biochemical and radiological investig-
ations are used to assess leaks. The use of NLP data from EHRs can predict 
anastomotic leaking after colorectal or bariatric surgery[5,80]. AI has been shown to 
predict the risk of postoperative pancreatic fistula (POPF) after pancreaticoduoden-
ectomy by using prediction platform algorithms. A patient’s predicted POPF risk 
could guide clinical management and prevent or mitigate untoward outcomes[81]. ML 
has been used in the postoperative period or in ICUs in patients with sepsis to predict 
urine output and fluid status after fluid administration and to help avoid fluid 
overload and oliguria[82].

As has been recently published, an ML algorithm performed by the DASH 
Analytics High-Definition Care Platform can use EHR data predict the risk of SSI and 
suggest ways to reduce the risk in real-time during the closure. The platform reduced 
SSIs by 74% in 3 years at the University of Iowa Hospitals and Clinics[83]. AI research 
has also focused on minimizing postoperative pain and maximizing patient comfort. 
Postoperative pain after abdominal surgeries was studied in a randomized controlled 
trial (RCT) involving 50 patients using the Nociception Level (NOL) index, a 
multiparameter AI-driven index designed to monitor nociception during surgery. That 
study found no differences in perioperative opioid (fentanyl and morphine) 
consumption, but there was a 1.6-point improvement in postoperative pain scores in 
the NOL-guided group[84] (Figure 3).

EDUCATION AND TRAINING
AI can help in the training of anesthesiologists by recreating realistic case scenarios not 
encountered in routine training, which makes them more prepared for possible 
situations in the OR. Virtual reality (VR) uses computer technology to simulate the real 
environment. Minimally invasive surgeries or liver surgeries that require a high level 
of skill or expertise, are performed better by surgeons who have been trained by 
VR[85,86]. Currently, there is no robust objective assessment tool to assess competency 
in advanced laparoscopic colorectal surgery. Observational clinical human reliability 
analysis and assessment of errors in laparoscopic videos may potentially be useful for 
specialist recertification and revalidation[87,88].

ROLE IN THE CORONAVIRUS DISEASE 2019 PANDEMIC
The coronavirus disease 2019 (COVID-19) pandemic has changed lives worldwide and 
has affected healthcare delivery to a great extent. Elective major surgeries were put on 
hold because of the sudden need of beds and the risk of postoperative infection with 
the virus, which could lead to adverse outcomes[89]. Healthcare workers were at high 
risk for infection along with the elderly and individuals with comorbidities. As of July 
2020, more than 1800 healthcare workers from 64 countries had died of COVID-19[90]. 
Intubation generates aerosols that increase the risk of infection, and the use of 
intubation robots might reduce exposure of healthcare workers. The da Vinci® system, 
the most widely used surgical robot can reduce exposure allowing minimal contact 
with the patient. Robotic surgeries require fewer OR personnel than open surgeries, 
require less intrabdominal pressure than laparoscopic surgery, which reduces aerosol 
generation[91,92]. Robotic procedures are moving towards contactless surgeries with 
the help of magnetic navigation systems, which require an external magnet placed on 
the patient’s body[93]. Delaying elective surgery has resulted in a patient backlog. 
Clearing the backlog requires the efficient use of OR time and resources. An ML 
algorithm with a custom Python script has been shown to optimize the efficiency of 
operating room booking times that resulted in a reduction in nursing overtime of 21%, 
which was equivalent to saving of half a million dollars[94]. Robots can be used to 
perform surgery on weekends and after hours under supervision that will help to clear 
the surgical backlog and mitigate surgeon fatigue[95]. Training programs have also 
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Figure 3  Comprehensive view of areas that reflect the benefits of artificial intelligence in management of major gastrointestinal surgery.

been transformed by the pandemic is the surgical. Conversion of hospitals to 
dedicated COVID-19 centers, halting of non-urgent surgeries, and reallocation of space 
to ICU services have drastically hampered the training of surgery residents[96]. VR 
can allow residents to engage in minimally invasive surgeries amongst others rather 
than experiencing a complete void in surgical training[85,86]. AI can help to resolve 
and provide alternative solutions to a few of the problems resulting from the 
pandemic.

LIMITATIONS
AI should not be looked upon as the answer to all problems. AI can help identify 
subtle differences in large datasets, but there are certain instances where traditional 
methods perform better. AI is as good as the data that is used to generate the answers. 
The results will depend on the questions asked, the variables labelled, and the datasets 
that are available. Any glitches in those components will result in an incorrect 
algorithm. Also, the generalizability of the algorithm is dependent on the data that is 
used to generate it. If the algorithm has been derived from data extracted from an 
Asian population, then it cannot be generalized and used to predict accurate answers 
for white Americans. Similarly, there unknown confounders might be present. For 
example, in one study, an algorithm was more likely to classify a skin lesion as 
malignant if an image had a ruler in it[97]. The practice of evidence-based medicine 
has been built upon strictly regulated RCTs. To adopt AI as standard, it will need to 
undergo vigorous RCTs to confirm their performance in a blinded fashion. Lack of 
transparency because of multiple layers in a neural network becomes problematic and 
may not be considered trustworthy or accepted in healthcare because wrong results 
can lead to devastating consequences[98].

LEGAL IMPLICATIONS
Ethicos is a Greek word meaning a way of conduct accepted in society. Moralis is a 
Latin word that denotes judgement of the appropriateness of a given action. Most of 
the time, ethics and morality are used interchangeably. The ethical and legal implic-
ations of AI are heavily debated. It has already been explained that if the algorithm is 
flawed, AI will generate inaccurate results. Those errors are different from ones that 
occurring because of network loss or computer malfunction. AI was initially used only 
to augment clinical decision making but with its current development and autonomy, 
flaws in the device that harm patients, resulting in medical negligence, require that 



Solanki SL et al. Artificial intelligence in perioperative management

WJG https://www.wjgnet.com 2765 June 7, 2021 Volume 27 Issue 21

responsibility needs to be predetermined. The allocation of responsibility was 
traditionally to the surgeon, but with the self-learning capability of AI, it may not be 
possible for the surgeon to override certain procedures. Legal implications have still 
not reached a consensus regarding allocation. O’Sullivan et al[99] have classified the 
responsibility of AI and autonomous robotic surgery as (1) accountability; (2) liability; 
and (3) culpability. Accountability means the capacity of a system to explain its 
actions, liability is subject to action by the legal system, and culpability relates to 
punishment. Accountability can be determined by recording the actions, but the issues 
of liability and culpability require a consensus to adapt to the scenario of AI and 
robotics.

CONCLUSION
AI is emerging as a powerful tool in healthcare, with the ultimate aim of achieving 
better patient outcomes. However, we have not yet achieved that goal. Many aspects 
need to be refined or addressed, beginning with algorithm development and 
extending to legal and ethical issues. Future advances could definitely allow patients 
entering the clinic to be given accurate perioperative risks related to both anesthesia 
and surgery derived from previous surgical experience and patient histories. Intraop-
eratively along with automated anesthesia and robotic surgery, AI could help predict 
events like hypotension or delay in surgical steps or to avoid near misses. AI could 
identify the risk of postoperative complications like sepsis or renal failure as well as 
anastomotic leak to plan for early intervention. The use of AI in the OR is not intended 
to replace the surgeon or the anesthesiologist but to expand human capacity and 
capability through enhanced vision, dexterity, and complementary machine 
intelligence for improved surgical safety and outcomes.
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