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Abstract
The glucocorticoid receptor (GCR) and the mineralocorticoid receptor (MR) are 
members of the steroid receptor superfamily of hormone-dependent transcription 
factors. The receptors are structurally and functionally related. They are localized 
in the cytosol and translocate into the nucleus after ligand binding. GCRs and 
MRs can be co-expressed within the same cell, and it is believed that the balance 
in GCR and MR expression is crucial for homeostasis and plays a key role in 
normal adaptation. In critical illness, the hypothalamic-pituitary-adrenal axis is 
activated, and as a consequence, serum cortisol concentrations are high. However, 
a number of patients exhibit relatively low cortisol levels for the degree of illness 
severity. Glucocorticoid (GC) actions are facilitated by GCR, whose dysfunction 
leads to GC tissue resistance. The MR is unique in this family in that it binds to 
both aldosterone and cortisol. Endogenous GCs play a critical role in controlling 
inflammatory responses in critical illness. Intracellular GC concentrations can 
differ greatly from blood levels due to the action of the two 11β-hydroxysteroid 
dehydrogenase isozymes, type 1 and type 2. 11β-hydroxysteroid dehydrogenases 
interconvert endogenous active cortisol and intrinsically inert cortisone. The 
degree of expression of the two isozymes has the potential to dramatically 
influence local GC availability within cells and tissues. In this review, we will 
explore the clinical studies that aimed to elucidate the role of MR and GCR 
expression in the inflammatory response seen in critical illness.

Key Words: Mineralocorticoid receptor; Glucocorticoid receptor, Critical illness; 11beta-
hydroxysteroid dehydrogenase; Aldosterone; Cortisol
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Core Tip: Endogenous glucocorticoids (GCs) play a critical role in controlling inflam-
matory responses in critical illness. Intracellular GC concentrations can differ greatly 
due to the action of the two 11β-hydroxysteroid dehydrogenase isozymes. The degree 
of expression of the two isozymes has the potential to dramatically influence local GC 
availability. The GC receptor and the mineralocorticoid receptor are members of the 
steroid receptor superfamily of hormone-dependent transcription factors. The study of 
the mineralocorticoid receptor and GC receptor expression and function in the inflam-
matory response seen in critical illness might aid in identifying the patients who will 
benefit from exogenous corticosteroid administration.

Citation: Vassiliou AG, Athanasiou N, Vassiliadi DA, Jahaj E, Keskinidou C, Kotanidou A, 
Dimopoulou I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A 
narrative review. World J Crit Care Med 2021; 10(4): 102-111
URL: https://www.wjgnet.com/2220-3141/full/v10/i4/102.htm
DOI: https://dx.doi.org/10.5492/wjccm.v10.i4.102

INTRODUCTION
The glucocorticoid receptor (GCR) and the mineralocorticoid receptor (MR) are 
members of the steroid receptor superfamily of hormone-dependent transcription 
factors. The receptors are structurally and functionally related. They are localized in 
the cytosol and translocate into the nucleus after ligand binding. GCRs and MRs can 
be co-expressed within the same cell, and it is believed that the balance in GCR and 
MR expression is crucial for homeostasis and plays a key role in normal adaptation.

In critical illness, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and as 
a consequence, serum cortisol concentrations are high. However, in a number of 
patients cortisol levels are relatively low for their illness severity. Glucocorticoid (GC) 
actions are mediated by GCR, whose dysfunction leads to GC tissue resistance. The 
MR is unique in this family in that it binds to both aldosterone and cortisol.

Endogenous GCs play a critical role in controlling inflammatory responses in critical 
illness. Intracellular GC concentrations may be greatly different compared to blood 
levels due to the action of the 11β-hydroxysteroid dehydrogenase (11β-HSD) 
isozymes, type 1 and type 2. 11β-HSDs interconvert endogenous active cortisol and 
intrinsically inert cortisone. The degree of expression of the two isozymes has the 
potential to dramatically influence local GC availability within cells and tissues.

GCR
During critical illness the HPA axis is activated, resulting in increased serum adreno-
corticotropic hormone and cortisol concentrations[1-4]. However, a subset of patients 
present with low serum cortisol levels despite their illness severity[5,6]. Critical illness-
related corticosteroid insufficiency (CIRCI) is characterized by the organism’s inability 
to produce adequate cortisol or tissue resistance to its actions, or both[7].

Sepsis and septic shock are the most common causes of mortality in critically-ill 
patients. GCs, the end-products of the HPA axis, have been used for over 40 years in 
the treatment of sepsis. The Surviving Sepsis Campaign Guidelines 2016 recom-
mended hydrocortisone administration when despite adequate fluid resuscitation and 
vasopressor therapy, the hemodynamic stability in septic shock cannot be restored[8]. 
However, not all patients benefit from their administration, and as yet the patients 
who would benefit from their use cannot be accurately identified[9-12].

Cortisol signaling is mediated by GCR, a ubiquitous intracellular receptor protein. 
Alternative splicing of the primary transcript gives rise to two highly homologous 
GCR isoforms[13]. GCR-α is the functionally active receptor; once it binds to cortisol, 
the receptor-cortisol complex translocates from the cytosol to the nucleus. In the 
nucleus, the complex exerts transcriptional activation or repression by directly binding 
to genes that contain GC responsive elements[14], resulting in the inhibition of the 

http://creativecommons.org/Licenses/by-nc/4.0/
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inflammatory response[15,16]. On the contrary, the function of GCR-β has not been 
well-explored. It is known to suppress GCR-α activity and is unable to bind both 
natural and synthetic ligands[17-19]. Figure 1 diagrammatically represents cortisol 
signaling via GCR.

The Sepsis-3 guidelines suggest the use of hydrocortisone in septic shock patients 
who are resistant to fluid administration and vasoactive agents[20]. Not all patients 
respond to this therapy, suggesting the existence of GC resistance. GC resistance is 
defined as the inability of GCs to exert their effects on target tissues[21]. It is charac-
terized by decreased sensitivity of immune cells to GCs, which under normal 
conditions terminate the inflammatory response[22]. Therefore, it becomes apparent 
that apart from cortisol levels, how tissues respond to cortisol is as important. It has 
been suggested that the extent of cortisol’s effect might be analogous to GCR 
expression, subtype and affinity in a specific target cell[23]. Such an example is the 
increased expression of GCR-β in certain tissues in inflammatory diseases, which has 
been associated with decreased sensitivity to GCs[24].

GC resistance may be a consequence of decreased GCR expression, GCR affinity for 
the ligand, nuclear translocation and DNA binding or may be due to altered 
transcription factor interaction. Most data on GC resistance in critical illness originates 
from experimental models involving sepsis-induced injury[25-29]. Essentially these 
studies have shown downregulation of GCR-α and induction of GCR-β expression[30-
33].

Human clinical studies in critically-ill patients have mostly investigated cortisol 
availability, while only a few have explored the role of GCR. GC resistance has been 
described in a cohort of septic patients, demonstrating reduced GCR-α and elevated 
GCR-β expression levels in septic patients compared to healthy subjects; these results 
suggest that treatment with steroids might aggravate GC resistance in patients with 
increased GCR-β levels[34]. A transient, increased GCR-β expression has been reported 
in sepsis; moreover, the septic patients’ sera could induce GC resistance in vitro[35]. 
Another study reported reduced GCR-α expression levels in sepsis[36], and diminished 
GCR protein levels have also been described in various organs during sepsis[37]. A 
decreased number of GCR-α and increased GCR-β receptors has been shown in heart 
and liver biopsies in the context of sepsis[25]. It has been shown that in septic shock, 
GCR expression increased, while GCR binding capacity decreased, proposing that it is 
the decreased GCR binding capacity and not the number of receptors that interferes 
with the response to exogenous or endogenous GCs[38]. In contrast, GCR number and 
affinity in septic patients did not differ from control subjects, suggesting that GCs 
could be effective in the hemodynamic compensatory phase of sepsis[39]. Increased 
GCR-α expression has been shown in the acute phase of sepsis, questioning the need 
for exogenous steroids at this phase[40]. Only one study has demonstrated downregu-
lation of cortisol binding in critically-ill, ventilated patients[41]. Finally, our group was 
able to demonstrate that critically-ill steroid-free patients have a highly variable 
expression of both GCR isoforms in peripheral polymorphonuclear cells. Moreover, 
GCR expression and HPA axis function undergo a biphasic response during acute or 
subacute critical illness; this dissociation of reduced GCR expression and elevated 
cortisol might imply an abnormal stress response[42,43].

In coronavirus disease 2019 (COVID-19), results from the RECOVERY trial 
suggested significant benefits of steroid administration in critically-ill COVID-19 
patients[44]. Specifically, the trial demonstrated that dexamethasone reduced 
mortality risk by 17%. A study in noncritically-ill COVID-19 patients showed that the 
HPA axis was activated. Patients exhibited an increase in cortisol, which was 
significantly higher than in those without COVID-19 infection, and these cortisol levels 
were associated with higher mortality rates[43]. Another study found that cortisol 
levels were lower in critically-ill COVID-19 patients compared to critically-ill non-
COVID-19 patients[45]. In fact, nearly 70% of the COVID-19 critically-ill patients had 
plasma cortisol concentrations < 10 μg/dL, meeting CIRCI criteria. However, so far, 
data on COVID-19 and GCR-α expression are lacking.

Ascorbic acid (vitamin C) levels are depleted in critically-ill patients. This vitamin 
has been shown to play a crucial role in HPA axis function. The adrenal glands contain 
very high concentrations of ascorbic acid and use it to synthesize cortisol[46]. At the 
cellular level, vitamin C works synergistically with corticosteroids by restoring GCR 
function. Specifically, ascorbic acid reverses GCR oxidation, restoring GC-respons-
iveness in oxidant conditions. The end result is increased GC availability and GCR-α 
activation[47].

Overall, it seems that during critical illness GCR expression is independently 
regulated. This might explain the different responses seen in patients to exogenously 
administered steroids or endogenously secreted cortisol. Apart from GCR expression, 
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Figure 1 Cortisol signaling through the glucocorticoid receptor. Cortisol signaling is mediated by a ubiquitous intracellular receptor protein, the 
glucocorticoidreceptor (GCR). Once it binds to cortisol, the receptor-cortisol complex translocates from the cytosol to the nucleus. In the nucleus, the complex exerts 
transcriptional activation or repression by directly binding to genes that contain glucocorticoid (GC) responsive elements (GREs), resulting in the inhibition of the 
inflammatory response. GC-GCR: Cortisol-glucocorticoid receptor complex.

the role of post-translational modifications, GCR complex components and the 
efficiency of nuclear translocation of the GCR complex should be the focus of future 
clinical studies.

MR
The MR is, along with the GCR, a member of the steroid receptor superfamily of 
hormone-dependent transcription factors. The receptors are structurally and 
functionally related. Similar to GCR, MR is also localized in the cytosol and 
translocates into the nucleus after ligand binding. In the nucleus, the ligand-receptor 
complex recognizes specific DNA regions and activates target gene expression[48]. 
While GCR is relatively ubiquitously expressed and exclusively binds GCs, the MR 
shows a more restricted expression pattern, and can bind both aldosterone and 
cortisol. MR is mostly expressed in epithelial cells of renal distal tubules, colon, sweat 
and salivary glands, and is implicated in sodium reabsorption, water homeostasis and 
potassium secretion[49]. The classical ligand for MR is aldosterone, the main mineralo-
corticoid steroid hormone, through activation of the renin-angiotensin system. 
Aldosterone is the principal regulator of salt and water balance but can also act on 
nonepithelial sites, contributing significantly to cardiovascular disease[50].

Hyperreninemic hypoaldosteronism may occur during critical illness and has been 
associated with a greater proinflammatory status, a higher degree of acute organ 
failure, and worse prognosis. It has been attributed to impaired adrenal response to 
increasing renin levels[51-53]. The recent demonstration of the reduced mortality in 
septic shock patients treated with adjunctive GCs combined with fludrocortisone[9], 
and the effectiveness of angiotensin II in treating vasodilatory shock[54] has renewed 
interest in the role of the MR in critical illness[55].

The MR, originally thought to be expressed only in kidneys, is now known to have a 
wider distribution. At the organ level, it is expressed in heart, vessels, brain, and 
adipose tissue[56]. MR signaling induces inflammation, oxidative stress, and 
fibrosis/remodeling, thereby causing tissue and organ damage, particularly in the 
heart and vessels[49]. Furthermore, clinical studies have reported a beneficial outcome 
of MR antagonism in patients with cardiovascular diseases, mainly due to the 
prevention of inflammatory damage[57]. At the cellular level, MR is expressed in 
vascular cells, adipocytes, and immune cells[58]. This inflammatory involvement of 
MR and aldosterone in cardiovascular diseases suggests an association with immune 
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Figure 2 Mineralocorticoid signaling. The mineralocorticoid receptor is localized in the cytosol and translocates into the nucleus after ligand binding. In the 
nucleus, the aldosterone-mineralocorticoid receptor (MR) complex recognizes specific DNA regions, and activates target gene expression. MR signaling induces 
inflammation, oxidative stress, and fibrosis/remodeling, thereby causing tissue and organ damage. HRE: Hormone response element.

system changes. It has been consistently reported that aldosterone stimulation 
promotes proinflammatory responses[59,60]. In human leukocytes, MR expression has 
been shown in CD34+ hematopoietic progenitor cells, in peripheral blood T and B 
lymphocytes, macrophages, dendritic cells, and neutrophils[61]. In macrophages, 
lymphocytes and dendritic cells, MR signaling induces proinflammatory responses[62,
63]. The MR antagonist, spironolactone, was shown to have anti-inflammatory effects 
on cultured human peripheral blood mononuclear cells isolated from healthy subjects. 
Furthermore, angiotensin II induced aldosterone synthesis and enhanced cytokine 
production through an MR-dependent mechanism in human peripheral blood 
mononuclear cells[64,65]. In Figure 2, MR signaling is depicted.

11β-HSD 
Both the innate and adaptive immune responses depend on the adhesion and 
migration of leukocytes across endothelial cells towards the inflamed site, where they 
protect against invading pathogens and repair damaged tissue. At the inflamed site, 
neutrophils undergo constitutive apoptosis to be removed from the inflammatory 
environment. Normally, acute inflammation rapidly resolves. However, failure to 
rapidly remove apoptotic neutrophils prolongs the inflammatory response. As 
mentioned above, endogenous GCs play a critical role in controlling inflammatory 
responses. Although GCs have an immunosuppressive effect on immune cells, they 
exert contradictory effects on neutrophils. At the inflamed sites they exert an anti-
inflammatory effect by blunting neutrophil priming, whereas they increase circulating 
neutrophil count by delaying their apoptosis[66]. In circumstances of uncontrolled 
inflammation, polymorphonuclear cells can become detrimental by causing tissue 
injury and organ damage in critical illness[67].

Intracellular GC concentrations may vary compared to blood levels due to the 
action of the two 11β-HSD isozymes. 11β-HSD interconverts endogenous active 
cortisol and inert cortisone, which does not bind to GCR[68]. 11β-HSD2 (encoded by 
the HSD11B2 gene) inactivates GCs, while 11β-HSD1 (encoded by HSD11B1) 
regenerates active GCs from inert keto forms, and hence modulates GC-regulated 
functions. Moreover, 11β-HSD1 is widely expressed in tissues that express high levels 
of GCR, suggesting that 11β-HSD1 modulates ligand access to GCR-α[68]. The degree 
of expression of these two isozymes may drastically affect local GC availability within 
individual cells and tissues.

11β-HSD1 is widely distributed, with its expression being highest in the liver, but is 
also expressed in adipose tissue, vessels, brain, and immune cells. In immune cells, 
11β-HSD1 is primarily expressed in macrophages and lymphocytes, especially during 
inflammation[56,62,69]. 11β-HSD1 activates functionally inert GC precursors 
(cortisone) to active GCs (cortisol) within target tissues, and amplifies local GC actions. 
11β-HSD2, except being expressed in the classical aldosterone-target tissues, is also 
expressed in the pancreas and the reproductive system[68]. 11β-HSD2 protects the MR 
from illicit occupancy by cortisol by inactivating cortisol within cells.
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Figure 3 Glucocorticoid and mineralocorticoid receptor function, and the role of 11β-dehydrogenase isozymes. The ubiquitous glucocorticoid 
receptor (GCR) binds exclusively to cortisol, whereas the mineralocorticoid receptor (MR) is a receptor with equal affinity for mineralocorticoids and glucocorticoids. In 
epithelial tissues, MR activation leads to the expression of proteins regulating ionic and water transports, resulting in the reabsorption of sodium, and as a 
consequence an increase in extracellular volume, increase in blood pressure, and excretion of potassium to maintain a normal salt concentration in the body. The MR 
is activated by aldosterone and cortisol. Target cells for aldosterone express the enzyme 11β-dehydrogenase (11β-HSD) 2 that has no effect on aldosterone, but 
converts cortisol to cortisone, which has only a very weak affinity for the MR In essence, this enzyme “protects” the cell from cortisol and allows aldosterone to act 
appropriately. 11β-HSD1 activates functionally inert cortisone to active cortisol within target tissues and amplifies local glucocorticoid actions.

Aldosterone and cortisol bind the MR and have a similar affinity for the MR. The 
binding of cortisol or aldosterone to the MR results in different cellular responses[55]. 
Under physiological conditions, plasma cortisol levels are 100 × higher than 
aldosterone levels, and most MRs are occupied by GCs. The 11β-HSD enzymes 
regulate whether cortisol or aldosterone will bind to the MR. 11β-HSD type 2 
metabolizes cortisol to inactive cortisone. Cortisone is unable to bind or activate the 
MR, and aldosterone occupies the MR. When 11β-HSD2 is not present or not 
functional, the ligand binding site on the MR is occupied by cortisol.

11β-HSD2 is mainly expressed in the classical aldosterone (mineralocorticoid)-target 
tissues, including the distal nephron, sweat and salivary glands, and colonic 
epithelium. 11β-HSD1 catalyzes the regeneration of active GCs, particularly in GC-
target tissues, where it amplifies GC actions. In vitro, colocalization of the two enzymes 
within a cell results in their reciprocal regulation to minimize simultaneous expression
[68]. Figure 3 diagrammatically shows the interplay between the corticoid receptors, 
their ligands and the 11β-HSD isozymes.

Although the immunosuppressive and anti-inflammatory activities of GCs are well 
documented, the expression of 11β-HSD enzymes in immune cells, and in particular 
polymorphonuclear cells, is not well understood. Overall, an anti-inflammatory role 
for 11β-HSD1 has been proposed in leukocytes, while studies have suggested that 11β-
HSD2 is not expressed in these cells[70]. In human T-lymphoblastic leukemia cells, 
both 11β-HSD2 expression and reciprocal regulation of 11β-HSD1 and 11β-HSD2 have 
been shown to be associated with GC resistance[71,72].

Data for tissue resistance to GC activity are limited in critical illness. Indirect 
evidence suggesting altered tissue 11β-HSD activity comes from studies that found 
increased plasma cortisol:cortisone ratio in critically-ill septic and trauma patients[73,
74]. A recent study showed that in septic shock patients, sensitivity to GCs does not 
appear to be mediated by changes in the expression of the 11β-HSD2 isozyme[75]. 
Whether the reciprocal change in 11β-HSD1/11β-HSD2 is part of an adaptive response 
to inflammation or contributes to GC resistance remains to be established.

CONCLUSION
Studies on the expression of GCR, MR, 11β-HSD1 and 11β-HSD2 in critically-ill 
patients may allow a better understanding of homeostatic regulations of GCR and MR.
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