
World Journal of
Stem Cells

ISSN 1948-0210 (online)

World J Stem Cells  2021 July 26; 13(7): 670-970

Published by Baishideng Publishing Group Inc



WJSC https://www.wjgnet.com I July 26, 2021 Volume 13 Issue 7

World Journal of 

Stem CellsW J S C
Contents Monthly Volume 13 Number 7 July 26, 2021

OPINION REVIEW

Epigenetic modulators for brain cancer stem cells: Implications for anticancer treatment670

Abballe L, Miele E

REVIEW

Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and 
perspectives for therapeutic targeting

685

Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR

Roles of mitochondrial unfolded protein response in mammalian stem cells737

Gu LF, Chen JQ, Lin QY, Yang YZ

Stem cell therapies in tendon-bone healing753

Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX

Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in neuroprotection776

Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A

Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: 
Importance of molecular variations, cellular heterogeneity, and cancer stem cells

795

Sukowati CHC, El-Khobar KE, Tiribelli C

Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and 
tissue repair

825

Menarim BC, MacLeod JN, Dahlgren LA

Stem cell therapy: A paradigm shift in breast cancer treatment841

Khan S, Suryavanshi M, Kaur J, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S

Reporter gene systems for the identification and characterization of cancer stem cells861

Salinas-Jazmín N, Rosas-Cruz A, Velasco-Velázquez M

Role and mechanism of neural stem cells of the subventricular zone in glioblastoma877

Zhang GL, Wang CF, Qian C, Ji YX, Wang YZ

Effects of shear stress on differentiation of stem cells into endothelial cells894

Huang Y, Qian JY, Cheng H, Li XM

Current advances of stem cell-based therapy for kidney diseases914

Wong CY



WJSC https://www.wjgnet.com II July 26, 2021 Volume 13 Issue 7

World Journal of Stem Cells
Contents

Monthly Volume 13 Number 7 July 26, 2021

MINIREVIEWS

Alternative models of cancer stem cells: The stemness phenotype model, 10 years later934

Kaushik V, Kulkarni Y, Felix K, Azad N, Iyer AKV, Yakisich JS

CASE REPORT

First immunohistochemical evidence of human tendon repair following stem cell injection: A case report 
and review of literature

944

Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C



WJSC https://www.wjgnet.com III July 26, 2021 Volume 13 Issue 7

World Journal of Stem Cells
Contents

Monthly Volume 13 Number 7 July 26, 2021

ABOUT COVER

Editorial Board Member of World Journal of Stem Cells, Nowruz Najafzadeh, PhD, Professor, Department of 
Anatomy, Faculty of Medicine, Ardabil University of Medical Sciences, Daneshghah Street, Ardabil 55136, Iran. 
n.najafzade@arums.ac.ir

AIMS AND SCOPE

The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is to provide scholars and readers from 
various fields of stem cells with a platform to publish high-quality basic and clinical research articles and 
communicate their research findings online. WJSC publishes articles reporting research results obtained in the field 
of stem cell biology and regenerative medicine, related to the wide range of stem cells including embryonic stem 
cells, germline stem cells, tissue-specific stem cells, adult stem cells, mesenchymal stromal cells, induced 
pluripotent stem cells, embryonal carcinoma stem cells, hemangioblasts, lymphoid progenitor cells, etc. 

INDEXING/ABSTRACTING

The WJSC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation 
Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Scopus, PubMed, and PubMed Central. The 2021 
Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJSC as 5.326; IF without journal self cites: 
5.035; 5-year IF: 4.956; Journal Citation Indicator: 0.55; Ranking: 14 among 29 journals in cell and tissue engineering; 
Quartile category: Q2; Ranking: 72 among 195 journals in cell biology; and Quartile category: Q2. The WJSC’s 
CiteScore for 2020 is 3.1 and Scopus CiteScore rank 2020: Histology is 31/60; Genetics is 205/325; Genetics (clinical) 
is 64/87; Molecular Biology is 285/382; Cell Biology is 208/279.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yu-Jie Ma; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Stem Cells https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-0210 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

December 31, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Shengwen Calvin Li, Tong Cao, Carlo Ventura https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-0210/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

July 26, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-0210/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJSC https://www.wjgnet.com 685 July 26, 2021 Volume 13 Issue 7

World Journal of 

Stem CellsW J S C
Submit a Manuscript: https://www.f6publishing.com World J Stem Cells 2021 July 26; 13(7): 685-736

DOI: 10.4252/wjsc.v13.i7.685 ISSN 1948-0210 (online)

REVIEW

Mechanisms involved in selecting and maintaining neuroblastoma 
cancer stem cell populations, and perspectives for therapeutic 
targeting

Antonietta Rosella Farina, Lucia Annamaria Cappabianca, Veronica Zelli, Michela Sebastiano, Andrew Reay 
Mackay

ORCID number: Antonietta Rosella 
Farina 0000-0001-0962-6088; Lucia 
Annamaria Cappabianca 0000-0002-
9112-1750; Veronica Zelli 0000-0002-
0047-2919; Michela Sebastiano 0000-
0002-5022-7428; Andrew Reay 
Mackay 0000-0001-7096-3759.

Author contributions: Mackay AR 
and Farina AR were responsible 
for several articles reviewed in this 
manuscript and co-wrote this 
review; Cappabianca LA was 
involved in several articles 
reviewed in this manuscript; Zelli 
V researched literature for this 
manuscript; Sebastiano M was 
involved in research in an article 
reviewed in this manuscript, 
researched literature for this 
manuscript and revised the 
manuscript; All authors have read 
and approved the final manuscript.

Conflict-of-interest statement: The 
authors of this manuscript declare 
no conflicts of interest.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 

Antonietta Rosella Farina, Lucia Annamaria Cappabianca, Veronica Zelli, Michela Sebastiano, 
Andrew Reay Mackay, Department of Applied Clinical and Biotechnological Sciences, 
University of L'Aquila, L'Aquila 67100, AQ, Italy

Corresponding author: Andrew Reay Mackay, PhD, Associate Professor, Department of 
Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 
L'Aquila 67100, AQ, Italy. andrewreay.mackay@univaq.it

Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant 
embryonal tumours that originate from cells of neural crest (NC) origin and in 
particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. 
Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB 
progression are driven primarily by cancer stem cell (CSC)-like subpopulations, 
which through their self-renewing capacity, intermittent and slow cell cycles, 
drug-resistant and reversibly adaptive plastic phenotypes, represent the most 
important obstacle to improving therapeutic outcomes in unfavourable NBs. In 
this review, dedicated to NB CSCs and the prospects for their therapeutic 
eradication, we initiate with brief descriptions of the unique transient vertebrate 
embryonic NC structure and salient molecular protagonists involved NC 
induction, specification, epithelial to mesenchymal transition and migratory 
behaviour, in order to familiarise the reader with the embryonic cellular and 
molecular origins and background to NB. We follow this by introducing NB and 
the potential NC-derived stem/progenitor cell origins of NBs, before providing a 
comprehensive review of the salient molecules, signalling pathways, mechanisms, 
tumour microenvironmental and therapeutic conditions involved in promoting, 
selecting and maintaining NB CSC subpopulations, and that underpin their 
therapy-resistant, self-renewing metastatic behaviour. Finally, we review 
potential therapeutic strategies and future prospects for targeting and eradication 
of these bastions of NB therapeutic resistance, post-therapeutic relapse and 
metastatic progression.

Key Words: Neural crest; Neuroblastoma; Cancer stem cells; Polyploid giant cancer cells 
molecular mechanisms; Therapeutic targeting; Tumour microenvironment
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Core Tip: Cancer stem cells promote tumour-heterogeneity, post-therapeutic relapse and 
metastatic progression in neuroblastomas (NBs), by way of their drug-resistant, self-
renewing and reversibly plastic phenotypes, and are, therefore, critical targets to 
eliminate if improvements in therapeutic outcomes are to be realized. Despite progress 
in understanding the molecular mechanisms that underpin NB cancer stem cell (CSC) 
selection, promotion and maintenance, efficacious CSC targeting remains difficult. 
Here we review the molecular mechanisms considered to regulate NB CSCs, together 
with the therapeutic strategies and future prospects for their eradication, highlighting 
the need for a better understanding and targeting of polyploid giant cancer cell states, 
future prospects for chimeric antigen receptor (CAR) cell immunotherapies, the need to 
identify additional functional cell surface NB CSC-specific targets and to develop 
better models for NB CSC experimental therapeutics.

Citation: Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms 
involved in selecting and maintaining neuroblastoma cancer stem cell populations, and 
perspectives for therapeutic targeting. World J Stem Cells 2021; 13(7): 685-736
URL: https://www.wjgnet.com/1948-0210/full/v13/i7/685.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i7.685

INTRODUCTION
Cancer stem cells (CSCs) are subpopulations of aggressive, undifferentiated, 
multipotent, self-renewing tumour cells with similar behaviour and gene expression 
patterns to normal stem cells. In pediatric neuroblastomas (NBs), CSCs are considered 
to be responsible for tumour heterogeneity, genetic instability, therapeutic resistance, 
post-therapeutic relapse and metastatic progression, making them critical therapeutic 
targets, the eradication of which will improve therapeutic outcomes. In this review, 
dedicated to NB CSCs and the prospects for their therapeutic eradication, we provide 
initial descriptions of the unique transient vertebrate embryonic neural crest (NC) 
structure and salient molecular protagonists involved in NC formation and migratory 
behaviour, in order to familiarise the reader with the embryonic cellular and molecular 
origins and background to NB. We follow this with an introduction to NBs and their 
potential cellular origins, describe salient molecules, signalling pathways, mechanisms 
and conditions involved in promoting, selecting and maintaining NB CSC subpopu-
lations, and that underpin their self-renewing, therapy-resistant and metastatic 
behaviour. We also review potential therapeutic strategies and future prospects for 
targeting and eradication of these bastions of therapeutic resistance, post-therapeutic 
relapse and metastatic progression.

THE NEURAL CREST
The unique vertebrate embryonic NC structure was first described by Wilhelm His in 
1868 as a band of particular material lying between the presumptive epidermis 
“Hornblatt” and the neural tube, termed the “Zwischenstrang”, and the origin of 
spinal ganglia[1]. The NC, composed of multipotent NC cells, appears in humans 
towards the end of gastrulation at the dorsal edges of the neural folds and neural plate 
(NP) along the entire neuro-axis[2-5]. Once formed, NC cells undergo epithelial to 
mesen-chymal transition (EMT), delaminate and migrate throughout the embryo to 
form pigment cells, myelinating Schwann cells, neurons and glia of the peripheral 
nervous system, craniofacial skeletal cells including osteoblasts and chondrocytes, 
mesenchymal cells including connective tissue cells, smooth muscle cells, adipocytes, 
cardiac cells of the outflow tract, secretory adrenal medulla chromaffin cells, for 
reviews see[2-6] , and form Schwann cell progenitor cells, a second source of 
multipotent progenitors, that associate with and migrate along nerve fibres to provide 
cells for tissue homeostasis and repair during late embryogenesis and in adults[7-9] 
(Figure 1).

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Neural crest formation and behaviour. Initiation, formation and delamination of the neural crest (red). A: This process initiates during early 
gastrulation with specification of the neural plate border (orange) that separates the neural plate and non-neural ectoderm; B: As the neural folds form, the process 
proceeds through phases of neural crest (NC) induction; C: NC Specification; and D: Terminates upon neural fold closure and neural tube formation, with NC cell 
epithelial to mesenchymal transition, delamination and migration. NP: neural plate; NPB: neural plate border; NC: Neural crest; NF: neural fold; NT: neural tube; EMT: 
Epithelial to mesenchymal transition; non Neural Ecto: non-neural ectoderm.

During development, ectoderm regional patterning forms the NP border and NP, 
from which the NC, neural tube (NT), nonneural ectoderm and placodes subsequently 
form[4,10]. This process is regulated by a morphogenic gradient of bone morphogenic 
protein (BMP) activity within the ectoderm, fibroblast growth factor and wingless/Int-
1 (Wnt) signalling pathways[4,10,11]. Subsequent NC specification is an ordered 
multistep process[4,5], involving Snai2, FoxD3, Ets-1, Sox8, Sox9, Myc, Id2 and later 
Sox10 transcription factors[12-14], followed by EMT transition[6,10], delamination and 
NC cell migration throughout the developing embryo, for reviews see[4,6,11,15] 
(Figure 2).

NC cell EMT involves the loss of apical/basal polarity, altered expression of type 1 
(E-cadherin and N-cadherin) and type 2 cadherins (cadherins 6, 7 and 8)[16-19], 
cytoskeletal reorganisation and proteolytic activity. It is initiated by Snai2, FoxD3, 
Sox9, Sox10 and Twist transcription factors, regulated by BMP, Wnt-planar cell 
polarity, Frizzled, RhoA-ROCK signalling in coordination with surrounding tissue 
morphogenesis[4,6,16], and involves: connexin-43[20], clatherin-mediated endocytosis
[21]; cadherin 6B proteolysis[21-23] ; hypoxia-inducible factor (HIF)-a[24-26] ADAMs, 
γ-secretase and matrix metalloproteinases (MMPs) and matrix components, including 
collagen, fibronectin, laminin, tenascin, collagen IX, chondroitin-6-sulphate, aggrecan 
and versecan, which combine to lower intracellular adhesivity and increased motility
[27-30]. With respect to the formation of NBs that originate from trunk NC cells, trunk 
NC cells that delaminate and migrate ventro-laterally via contact inhibited locomotion, 
co-attraction and chemotaxis, accumulate at the dorsal aorta, mix and then form bi-
lateral sympathetic ganglia that go on to innervate various organs and skin[6,28-31].

NC stem cells
The term NC stem cells (NCSCs) was introduced in 1992 by Stemple and Anderson
[32], who demonstrated in vitro that rodent NC cells, in addition to differentiating into 
autonomic and sensory neurons, glia and smooth muscle cells, also exhibited self-
renewing capacity[32]. At that time, NCSCs were considered a transient population in 
vivo and to be in vitro equivalents of embryonic stem cells from blastomeres. NCSCs 
were subsequently identified in post-natal sciatic nerve, dorsal root ganglion, the gut, 
bone marrow, cornea, heart, carotid body, dental pulp and periodontal ligament and 
skin tissues[15,33,34], as a multipotent self-renewing NCSC population resembling 
embryonic NCSCs in the adult organism[35]. This indicates that, despite the transient 
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Figure 2 Neural crest transcriptional networks. Interactions between fibroblast growth factor, wingless/Int-1 and bone morphogenic protein signalling 
pathways and associated transcriptional networks that regulate, A: Neural crest specification within the neural plate border; B: Induction and behaviour of the pre-
migratory neural crest; and C: Migratory neural crest cell behaviour.

nature of the NC, the low self-renewal capacity of NC cells and rapid transition from 
multipotency to fate and differentiation restriction, undifferentiated NCSCs also 
populate migrating NC cell streams and post-embryonic tissues, providing an 
additional population of self-renewing NCSCs that, when necessary, can be called 
upon to differentiate into specific cell types in response to microenvironmental factors
[36,37] and growth factor receptor activation[38], with self-renewal regulated by Wnt 
and BMP in early migratory NCSCs and later by responses to growth factors[39,40], 
representing a 4th germinal layer[15]. Multipotent NCSCs can be isolated from 
embryos and generated from human embryonic and pluripotent stem cells, with 
important implications for regenerative medicine and disease modelling[41-43]. Post-
migratory NCSCs resemble embryonic counterparts in differentiation capacity, with 
stemness, migratory behaviour in migrating NC cell populations demonstrated at the 
single cell level by tracking, and purified cephalic NCSCs have been shown to differ-
entiate into neurons, glia, melanocytes, chondrocytes, osteoblasts and smooth muscle 
cells[44,45]. A considerable fraction of the NC exhibits an SC phenotype, with fate 
decisions regulated later by environmental factors, including oxygenation status[46-
49], exemplified by: Shh promotion of NC progenitors with mesenchymal skelet-
ogenic, chondrogenic and neurogenic potential; stem cell factor promotion of NCSC 
survival and melanocyte lineage trophism, when combined with the neurotrophins 
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and NT3; 
endothelin-3 promotion of glial and melanocyte progenitor proliferation and survival, 
and basic fibroblast growth factor promotion of NCSC proliferation[46,47,50,51].

Although there are no specific individual markers for NC cells or NCSCs[4], gene 
expression patterns that identify potential NCSC populations, include VE-cadherin/ 
CD144, the epidermal growth factor (EGF) family member CFC1/Cripto, transcription 
factors Pax, Sox10, Hox, mash1, Phox2b; neurotrophic factor receptors p75NTR, RET and 
EDNRB, and the nerve-related proteins NF, NC-1, E/C8, HNK1, nestin and α4-
integrin. RET expression identifies NCSCs within ganglia and is crucial for vagal NC 
development, P75NTR is used widely to purify NCSCs, Sox10 is considered to be a 
relatively specific and sensitive NCSC marker, and NSCSs in vitro express Sox10, 
P75NTR and RET[4,15,52,53].

NEUROBLASTOMA
Neuroblastomas (NBs) are small round cell extracranial paediatric tumours that arise 
during embryonic development from trunk-derived NC cells of the sympathoadrenal 
lineage and account for approximately 15% of cancer-related childhood deaths. NBs 
develop anywhere along the sympathetic chain, are more frequent in the abdomen and 
adrenal medulla, exhibit broad clinical heterogeneity, ranging from spontaneous 
regression to aggressive metastatic disease and are highly refractory to therapy. Low 
and intermediate-risk NBs exhibit cure rates of 80%-90%, and < 50% for high-risk 
disease, with < 10% survival associated with relapsed recurrent disease, for recent 
reviews see[54,55].
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Chromosome aberrations associated with high-risk NB, include hemizygous or 
homozygous 1p deletions, heterozygous 11q deletions, 17q gains, 5p15.33 
rearrangements, and deoxyribonucleic acid (DNA) methylation[56,57]. Although NBs 
exhibit low somatic mutation rates and no single mutation can explain tumour 
initiation, activating mutations in the anaplastic lymphoma kinase (ALK) gene charac-
terise familial NBs and 7%-10% of non-familial NBs, activating PTPN11 mutations are 
associated with approximately 3% of NBs, activating N-Myc mutations with approx-
imately 2% of NBs and activating KRAS mutations with approximately 1% of NBs. 
Inactivating mutations that are associated with NB include, paired-like homeobox-2 
mutations in familial NBs and approximately 4% high-risk NBs, ATRX transcriptional 
regulator mutations in approximately 2.5% of NBs, p53 mutations in approximately 
2% of primary and approximately 10% of relapsed NBs, BRCA2 mutations in approx-
imately 1% of NBs and ARIDIA1A/1B mutations in approximately 3% of NBs[58-63]. 
Despite low level p53 mutation, p53 inactivation is common in NB[64], and several 
long non-coding ribonucleic acids (lncRNAs) have been implicated in NB progression
[65].

N-Myc overexpression combined with activating ALK mutations have been 
implicated in NB initiation. N-Myc regulates trunk NC cell migration, balances 
sympathoadrenal progenitor expansion with apoptosis and N-Myc gene amplification 
characterises approximately 50% of advanced stage high-risk NBs. Mice transgenic for 
tyrosine hydroxylase-promoted N-Myc expression form NBs in sympathetic ganglia
[66], N-Myc overexpression induces NBs in zebra fish[67], and mice transgenic F1174F 
mutation-activated ALK develop NBs in the presence of high-level N-Myc expression
[68]. Tyrosine kinase receptor A (TrkA) and tyrosine kinase B (TrkB) neurotrophin 
receptors have also been implicated in NB pathogenesis[16,69]. TrkA is required for 
sympathetic nervous system development and is expressed by NC cells in sympathetic 
ganglia where it regulates proliferation, survival, differentiation and culling under 
neurotrophin limiting conditions[16]. TrkA expression in NB associates with 
favourable prognosis, spontaneous regression and Schwann cell stroma-rich gangli-
oneuromas[16,69]. However, NBs exhibiting Ip36.2 deletions lose cell surface TrkA 
expression, in a potential tumour initiating mechanism based upon NC cell escape 
from neurotrophin-dependent differentiation and apoptosis[70]. Furthermore, 
oncogenic alternative TrkAIII splicing also represents a potential stress-regulated 
tumour promoting switch in NB, is exhibited by advanced stage metastatic and 
relapsed NBs, transforms NIH 3T3 fibroblasts and exhibits oncogenic activity in NB 
models. Both of which help to explain why TrkA expression is not always associated 
with a favourable prognosis in NB[16,69,71,72]. Other potential NB susceptibility 
genes include LIN28B, CASC15, NBAT-1, BARD1, DDX4, IL31RA, HSD17B12, HACE1, 
LIN28B and NEFL. Of these, LIN28B induces N-Myc expression and alters the 
expression of micro ribonucleic acids (miRNAs), RAN and Aurora A kinase, in a 
potential NB-inducing Lin28B-Ran-Aurora A kinase axis, BARD1 polymorphisms 
promote NB cell proliferation and invasiveness, identifying BARD1 as a potential NB 
tumour suppressor, and the lncRNAs CASC15 and NBAT1 interact with 17q gain-
associated Sox9 and USP36 to inhibit NB differentiation[65].

The cellular origins of neuroblastoma: With respect to the cellular origins of NBs, NC 
progenitors and NCSCs have both been identified as potential origins by their 
behaviour in vitro and in vivo, by Myc or tamoxifen-inducible Myc-ERT gene expression 
patterns in immortalized murine NC progenitor cells engineered to express mutated 
ALK oncogenes[73,74] and by enforced N-Myc transformation of wild-type NC cells 
grown from murine NT explants, into NB forming cells[75]. A central nervous system 
(CNS) neural stem cell-like origin has also been proposed as an origin for some N-Myc 
amplified NBs, as ectopic N-Myc expression in avian NC cells promotes NC cell 
conversion to neural stem cells (SCs) that exhibit trunk migration and inadvertent 
colonization of sympathetic chain ganglia, as a potential primed NC origin for NB, 
helping to explain gene expression patterns in some N-Myc amplified NBs[76]. A 
sympathoadrenal progenitor origin for NB is supported by transgenic mouse models 
of NC targeted N-Myc and ALKF1174L expression, which results in perinatal lethality, 
indicating the NC cannot support oncogenic transformation in vivo, and the absence of 
the NCSC marker Sox10 and NSCS gene regulatory network expression in human NBs 
and NB cell lines, contrasting with Sox9 and Sox9-regulated gene expression, 
consistent with a sympathoadrenal (SA) rather than NC progenitor origin[77]. 
Furthermore, the migratory behaviour of human NB grafts in avian embryonic NC 
recapitulates the collective migratory behaviour of SA progenitors, avoiding 
endogenous no go areas and coalescing in sympathetic ganglia and adrenal medulla, 
which are SA progenitor target sites[78,79]. A potential Schwann cell progenitor origin 
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for some NBs has also been proposed, considering that > 50% of NBs arise in the 
adrenal medulla and in sympathetic ganglia Schwann cell progenitor target sites, and 
exhibit distinct features[80]. This suggests different origins for NBs that develop 
within the sympathetic chain and adrenal medulla, further supported by differences in 
dissemination and migratory behaviour, illustrated by the migratory behaviour of NB 
cells transplanted onto the avian embryo NC, which migrate to form primary tumours 
in sympathetic ganglia, then exhibit secondary migration along nerves and blood 
vessels, reminiscent of Schwann progenitor migratory behaviour[9,78,79,81]. Malig-
nant Sox10 expressing Schwann cell progenitor subpopulations with stem cell-like 
features have also been reported in human NBs, connecting adrenergic and 
mesenchymal compartments through transitions, reminiscent of Schwann cell 
progenitors[82], and may or may not be involved in the formation of the Schwannian 
stroma that characterises favourable NBs and benign ganglioneuromas[83,84]. 
Therefore, NBs originate from either NCSCs, SA or Schwann cell progenitors or from 
NC cells converted into CNS SCs by aberrant N-Myc expression with full transfor-
mation within target tissues (Figure 3).

Neuroblastoma cancer stem cells: Consistent with potential NCSC, CNS SCs, 
sympatho-adrenal and/or Schwann cell progenitor origins, NC cell multipotency 
maintenance during migration and reversible phenotypic plasticity at early target 
sites, NB CSC subpopulations may either represent the original transformed 
population, or may arise easily through flexible phenotypic plasticity and adaptive 
stemness signalling within the ever changing tumour microenvironment, as they are 
only a relative “stone’s throw” away from stemness at the outset[85]. Initial reports of 
CSC-like subpopulations in NBs, include coordinated expression of stem cell factor 
and c-kit receptor, which regulate the hematopoietic stem cell niche[86,87] , the charac-
terisation of reversible S (adherent) Schwann cell-like, N (less-adherent) neuronal-like 
and I (intermediate adherent) neuroblast CSC-like phenotypes in NB cell lines in vitro
[88,89], and demonstrate that I-type CSC-like NB cells exhibit higher malignant 
clonogenic and tumourigenic activity in vitro and in vivo, reminiscent of malignant 
NCSCs, and in NBs correlate with disease progression[89-92]. I-type multipotency has 
been demonstrated by reversible spontaneous or induced differentiation to N-type 
and/or S-type phenotypes[88,93], and an I-type sympathoadrenal CSC-state suggested 
by CD133, c-kit (CD117), Sox2, GPCRC5C, NOTCH-1, p75NTR, TrkA, TrkB and tyrosine 
kinase C (TrkC) expression[92,94]. I-type CSC-like NB cells also exhibit enhanced 
levels of activated guanosine triphosphate (GTP)-bound N-Ras, compared to S or N 
phenotypes, associated with reduced expression of the Ras GTPase activating factor 
neurofibromin, resulting in augmented tumourigenic activity[95]. More recently, a 
PHF20/PARP1 axis has been identified in NB I-type cells that modulates H3K4 
trimethylation, inducing Sox2 and Oct4 expression, leading to Nanog expression, Wnt 
signalling and N-Myc expression, involved malignancy regulating CSC self-renewal 
and EMT traits[96]. CSC-like SP NB populations, detected by double-labelling of 
neuronal specific neurofilament and calcium binding protein S100A6 have also been 
identified, that exhibit Hoechst dye exclusion, express GD2, cKit, CD133, CD71, CD56 
and ABCG2, comprise from 0.8% to 50% of total viable cell numbers in NBs, and are 
present in high-risk unfavourable primary NBs and bone marrow metastases[97-99]. In 
micro-array analyses, I-type CSC-like NB cells exhibit constitutive elevated expression 
of CD133, c-kit, GPRC5C, Notch1, Pigf2, TrkA, TrkB, TrkC and p75NTR[89,92]. CD133 
and c-kit are considered to be markers of NB CSCs, CSC survival, growth regulation 
and poor clinical outcome[12,100]; GPRC5C is considered to indicate neuroectodermal 
origin and a differentiated embryonic stem cell state; Notch is involved in neural SC 
maintenance[101-103]; Pigf2 is involved in tumour angiogenesis growth and survival
[104], and neurotrophin receptors are involved in NB growth, invasion and survival
[16,100]. Other reverse transcription-polymerase chain reaction studies have reported 
increased CD133, Sox2, Bmi1 and Msi1 expression in immature NB CSC-like cells
[105], and genome-wide microarray analysis of CSCs enriched from NB cell lines have 
identified Wnt, Notch, Shh and TGFβ signalling pathways in self-renewing CSC-like 
phenotypes, with TGFβ activation associated with repression of SMAD6 and SMAD7 
TGFβ signalling repressors, Shh signalling associated with expression of Patched, Gli1 
and smoothened, and CD133 and CD15 expression enriched in CSC-like neurospheres
[106].
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Figure 3 Genetic alterations that characterise neuroblastomas: Illustration of some of the genetic alterations, N-Myc amplification, anaplastic lymphoma 
kinase amplification and mutation, alternative TrkAIII splicing, p53 functional repression; chromosome 1p36 and 11q deletions; chromosome 17q gains; chromosome 
5p rearrangements; mutations in PHOX2B and PTEN and brain derived neurotrophic factor/tyrosine kinase B activation, involved in neuroblastoma formation from 
trunk neural crest cells of the sympathoadrenal lineage, at sympathetic chain and adrenal medulla target sites, with the differentiated cell types that form from 
multipotent trunk neural crest cells. NC: Neural crest; ALK: Anaplastic lymphoma kinase.

MOLECULES AND MECHANISMS THAT PROMOTE, SELECT AND MAIN-
TAIN NB CSCS
CSC markers differ between tumour types, many are also expressed by normal cells 
and cell surface molecular markers can be used for targeted therapy. It is important, 
therefore, to understand markers and patterns of marker expression that specifically 
define NB CSC populations, since private highly specific functional CSCs cell surface 
markers represent the best targets for monoclonal antibody and chimeric antigen 
receptor T-cell immunotherapy (CAR-T) therapy, and CSC-specific intracellular 
markers and signalling pathways may provide targets for small molecular inhibitors.

Cell surface and membrane-associated molecular protagonists
CD133, CD44 and CD24: The 5 transmembrane domain cell surface 120 kDa 
glycoprotein CD133 (AC133/Prominim-1) was originally identified as a haemato-
poietic stem cell marker[107] and later detected in epithelial progenitors and 
implicated in brain tumour CSC self-renewal and tumour initiating capacity[108]. 
CD133 is considered to be a NB CSCs marker, is detected in approximately 0.1% of NB 
cells in NB tissues, and CD133+ NB cells exhibit self-renewal capacity, multipotency 
and enhanced chemoresistance, and predict disease outcome in NBs[109,110]. I-type 
CSC-like NB cells exhibit high-level CD133 expression[91], which regulates prolif-
eration, tumourigenic activity and represses differentiation induced by inhibiting RET 
signalling[100].

The transmembrane glycoprotein CD44 mediates cell-cell interactions and cellular 
attachment to extracellular matrices by binging hyaluronic acid. CD44 is expressed as 
a variety of isoforms and in NB is a strong prognostic marker, together with N-Myc. 
Both CD44 expression and lack of expression have been associated with tumour 
initiating NB CSC-like properties[111,112]. CD44 negative NB populations express 
higher levels of the tumour initiation marker CD24, and exhibit a gene expression 
pattern characterised by reduced p21Cip1, p16INK4a and p15INK4b expression, 
consistent with uncontrolled cell cycle progression, reduced expression of apoptosis 
factor NAIP, Bcl-xl, Bax and IRF1, consistent with apoptosis evasion and are tumou-
rigenic in NOD/SCID mice, in which CD44 expression is inversely related to 
metastatic propensity[111]. In contrast, high level CD44 expression is associated with 
low survival in high-grade NB and NB cell populations enriched for CD44 expression 
behave like multipotent undifferentiated self-renewing NC-like progenitors, are more 
invasive in vitro, and more tumourigenic and metastatic in vivo. Furthermore, CD44+

/Nestin+/S100b- NB cells have been reported to be more aggressive, tumourigenic, 
undifferentiated and more NC-like compared to CD44+/Nestin-/S100b+ Schwan-like 
cells[112].
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The GPI-anchored CD24 cell surface sialo-glycoprotein is expressed by differen-
tiating neuroblasts, is crucial for neural development and is involved in neurite 
outgrowth and neurogenesis. CD24 interacts with β1-integrins, activates mitogen-
activated protein kinase (MAPK) through focal adhesion kinase and Src kinases, is 
implicated in NF-κB, Notch and Shh signalling[113] and promotes metastasis by 
interacting with P-selectin on activated platelets and endothelial cells[114,115]. CD24+

/CD34+ enriched NB populations are more tumourigenic in mice, CD44- CSC-like 
tumour initiating NB cells express high levels of CD24[111] and CD24+ CSC-like 
tumour initiating cells are present in bone marrow NB metastases, suggesting that 
CD24 enriches the tumourigenic potential of CSC-like tumour initiating NB cells 
within the bone marrow[99].

Delta-like 1 homolog and prohibitins: The development-regulated transmembrane 
protein delta-like 1 homolog (DLK1), which regulates stem/progenitor cells, is overex-
pressed in NBs and is robustly expressed in undifferentiated NB cells[116,117]. In NB 
cells small interfering ribonucleic acid (siRNA) inhibition of DLK1 expression 
promotes spontaneous neuronal differentiation, decreases clonogenic and colony 
forming capacity and suppresses tumourigenicity, and vice versa for DLK1 overex-
pression[116,117]. HIFs bind and activate the DLK1 promoter[117], linking DLK1 
expression to tumour hypoxia and oncogenic HIF-1 and HIF-2 activation, explaining 
the localisation of DLK1+ NB cells to hypoxic niches[116]. DLK1 also interacts 
specifically with prohibitins (PHB) 1 and 2, regulating mitochondrial function and 
reactive oxygen species (ROS) production via a DLK1/PHB axis involved in NB CSC 
self-renewal and clonogenic capacity[118]. Conversely, high DLK1 expression is 
associated with NB cells arrested in relatively late-stage chromaffin lineage differen-
tiation[119].

L1-CAM: The neural cell adhesion molecule L1-CAM regulates neuronal growth, 
survival, migration, axonal outgrowth and neurite extension[120], and has been 
implicated in CSC marker upregulation and aggressiveness in gliomas. Although L1-
CAM expression has been reported to associate with better prognosis in NB[121], L1-
CAM knockdown in NB cells down-regulates N-Myc expression, up-regulates PTEN 
expression, and inhibits self-renewal, tumour sphere formation and migration, 
suggesting that L1-CAM may indeed play an important role in NB CSC-like behaviour
[122].

ABC transporters: Members of the membrane-associated adenosine triphosphate-
binding cassette ABC transporter super-family promote molecular transport across 
extracellular and intracellular membranes, and are important drug-efflux pumps that 
increase multidrug-resistance[123,124]. ABCG2 and ABCA3 are co-expressed in 
Hoechst dye excluding CD133+ SP CSC-like NB cells that exhibit enhanced chemo-
resistance and tumourigenic activity in vivo[97,124-126].

TRPM7: The transient receptor potential cation channel family member and kinase 
TRPM7 regulates mechanical cellular interactions within microenvironments by 
interacting with the cellular cytoskeleton, integrating adhesion and differentiation 
responses with microenvironmental stimuli. TRPM7 expression is essential for 
maintaining NC cell multipotency, contributes to NB by disrupting NB cell maturation 
and preserving progenitor CSC-like features, and is promoted by N-Myc in NB cells
[127,128]. TRPM7 expression is closely associated with NB CSC-like cell migratory and 
metastatic behaviour[129], controls developmental transcription through SNAI2, 
helping to maintain progenitor-like features[130,131], enhances therapeutic resistance
[132] and may also promote metastasis via Hsp90a/uPA/MMP-2 signalling[133].

Lamin A/C: The nuclear membrane-associated protein lamin A/C regulates nuclear 
stability. Knockdown of lamin A/C expression in NB cells promotes aggressive, self-
renewing tumour-initiating CSC-like populations that exhibit a more drug-resistant 
phenotype[134], increases CSC marker Oct4, Nanog, Sox2 and N-Myc, CD133, Sox2 
and SSEA4 expression, and enhances neuro sphere forming capacity[135].

Growth factors, receptors and signalling pathways
Cryptic family member CFC1: The epidermal growth factor family member CFC1 is 
also considered a potential NB CSC marker, involved in NB cell growth, colony and 
tumour sphere formation in vitro and NB xenograft tumour formation in vivo. CFC1 
inhibits NB differentiation induced by activin A and smad-2 phosphorylation, 
implicating collaborative signalling between EGF and CFC1 in NB[136].
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Frizzled/Wnt signalling and LGR5/GRP49: Wnt signalling is critical for NC 
induction, specification, EMT and migration, occurs via canonical and non-canonical 
Wnt pathways, and has been closely implicated in NB progression[137,138]. In the 
canonical pathway, Wnt ligands bind Frizzled receptors inducing nuclear translo-
cation of β-catenin, which binds and activates Tcf/Lef transcription factors, whilst 
blocking Tcf/Lef target gene repression, whereas non-canonical pathways include 
planar cell polarity and calcium mobilisation via G-protein activation. In NBs, Frizzled 
Wnt receptor Fzd6 expression predicts poor survival and marks rare HIF1/2a-positive 
CSC-like tumour initiating NB cell populations located in hypoxic tumour areas[139]. 
Fzd6 positive NB cells share biological features with CSCs including neurosphere 
formation, increased invasive capacity and resistance to chemotherapeutic agents, 
Fzd6 is also required for non-canonical Wnt pathway gene expression and is 
implicated in aggressive NB behaviour, consistent with a role in promoting and 
maintaining NB CSC-like subpopulations[140]. Wnt pathway promotion of NB CSCs 
also involves SLC34A2 transcription factor, which negatively correlates with overall 
and relapse-free survival in NB patients, promotes NB CSCs by binding the miR25 
promoter and activating miR25 expression, which binds the Gsk3β messenger RNA 
(mRNA) 3’-UTR, reducing Gsk3β protein expression, resulting in Wnt signalling[141]. 
The genotoxic agent doxorubicin also enhances Wnt signalling in NB cells in 
association with up-regulated Frzd4 and 6 expression, implicating the DNA damage-
response in NB CSC-like states[140] and subsequent chemoresistance[142,143]. 
Hyperactivation of the Wnt/β-catenin pathway in NB cells is also promoted by NEU4 
Long sialidase, which enhances proliferation, G1 to S phase transition and promotes a 
more undifferentiated CSC-like phenotype, potentially via Myc, Nanog, Oct4, CD133 
and Nestin pluripotency gene expression, identifying NEU4L as a novel potential 
therapeutic NB CSC target[144]. The SC marker LGR5/GPR49 also promotes canonical 
Wnt signalling and is overexpressed in advanced stage N-Myc amplified and ALK-
mutated NBs. LGR5/GPR49 knockdown induces NB cell apoptosis in association with 
diminished MAPK signalling, identifying LGR5/GPR49 as a novel potential NB CSCs 
therapeutic target[145,146].

Neurotrophin receptors P75NTR, TRKA, TRKAIII, TRKB, TRKC and sortilin: 
Neurotrophins NGF, BDNF, NT3 and NT4/5 and their receptors are critical for the 
development and maintenance of vertebrate central and peripheral nervous systems, 
and have been implicated in NB regression and metastatic progression. NT receptors 
include: the tropomyosin-related tyrosine kinases TrkA that binds NGF and NT3; TrkB 
that binds BDNF and NT4/5; TrkC that exclusively binds NT3; CD271/p75NTR that 
binds mature NGF with low affinity and all pro-form NTs with high affinity, and 
sortilin that binds mature NGF and pro-form NGF, BDNF and NT-3. NT/TrkA 
activation inhibits default apoptotic programmes to promote NT-dependent survival 
through PI3K/Akt/NF-κB signalling and Bcl-2 family induction and in the absence of 
NTs, TrkA and TrkC, but not TrkB, induce apoptosis through a CD271/p75NTR-
dependent mechanism, identifying TrkA and TrkC as dependence receptors. TrkC is 
the only NT receptor expressed during early embryogenesis and during neurulation is 
detected in the NT and NP anlage, and in both pre-migratory and migrating NC cell 
subsets. NT3/TrkC activation is required for NC cell survival at target sites and, 
during NC migration, somites express NT-3 and sympathetic neuroblasts and neurons 
express NT3 and TrkC, promoting neuroblast survival, proliferation and subsequent 
differentiation. This temporary effect declines and switches to NGF-dependency, 
associated with reduced TrkC expression and increased TrkA and CD271/p75NTR 
expression, regulated in part by autocrine NT3 activity. NT3/TrkA interactions 
continue to promote sympathetic neuroblasts, neuron survival and target organ 
innervation, then changes gradually to dependence upon NGF/TrkA interaction[16,
69].

CD271/p75NTR is a NC SC marker, and self-renewing CD271/p75NTR+ neural SCs co-
express TrkA, TrkAIII, TrkB and TrkC. In general, NB expression of CD271/p75NTR is 
associated with favourable outcome and CD271/p75NTR exhibits tumour suppressor 
function in NB models, inducing differentiation, promoting apoptosis and reducing 
tumourigenic activity. NB CSC-like cells, however, express CD271/p75NTR, CD133+

/CD271/p75NTR+ self-renewing, clonogenic NB cells produce more malignant tumours, 
and CD271/p75NTR has been closely linked to migratory and invasive behaviour of 
CSCs, implicating CD271/p75NTR in promoting malignant NB CSC-like behaviour[147].

Studies on NT receptors in NB initiated with the detection of an inverse relationship 
between high N-Myc and low TrkA expression is associated with poor prognosis and 
mid to high TrkA expression in non-N-Myc amplified disease[148]. Low TrkA 
expression combined with N-Myc amplification and expression, in general, charac-
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terises unfavourable NB but N-Myc amplified NBs also exhibit heterogeneity in TrkA 
expression, with a small number also exhibiting high TrkA expression, indicating that 
a more complicated relationship between N-Myc and TrkA in NB[16,69]. In general, 
moderate to high TrkA expression distinguishes non N-Myc and N-Myc amplified 
NBs but does not distinguish prognostic groups in non-N-Myc amplified NBs. Low 
TrkA expression in NBs may relate to a non-TrkA expressing sympathoadrenal cell 
origin in coalescing sympathetic ganglia, paraganglia or adrenal medulla anlage 
during development or N-Myc repression of TrkA expression post-transformation 
through promoter methylation. Conversely, high TrkA expression in NB may relate to 
an undifferentiated TrkA expressing NC progenitor origin within the sympathetic 
chain or adrenal primordia or to induction post-transformation by either NTs, growth 
factors and/or cytokines. In NB models, fully spliced TrkA receptors exhibit tumour 
suppressor activity and restore NGF-induced neuronal NB cell differentiation, via 
IGF2, c-Src, PKCe and Ras/MAPK/Erk signalling, reduce angiogenic factor 
expression, angiogenesis and tumourigenicity and promote genetic stability. TrkA also 
induces p53-dependent NB cell apoptosis through CCM2, Erk and caspase-7. NB cell 
responses to NT/TrkA activation are optimized by CD271/p75NTR, and TrkA/
CD271/p75NTR co-expression in NB carries a good prognosis[16,69,148]. The discovery 
of the oncogenic alternative TrkAIII splice variant in advanced stage NBs and NB cell 
lines, however, challenges the hypothesis of an exclusively tumour suppressing role 
for TrkA in NB. TrkAIII alternative splicing is development and stress-regulated and 
generates an oncogenic TrkAIII isoform that transforms NIH3T3 cells and exhibits 
oncogenic activity in NB models[69,71,72]. In NB cells, TrkAIII expression induces 
centrosome amplification and increases genetic instability[149], promotes stress-
induced aerobic glycolysis[150], enhances angiogenic factor expression, impedes 
NGF/TrkA signalling through Ras/MAPK, induces a survival adapted endoplasmic 
reticulum (ER)-stress response via retrograde ERGIC to ER recycling in vitro[72,151], 
and enhances tumour-associated angiogenesis, tumourigenesis and metastatic capacity 
in vivo but does not restore NGF responsiveness nor induce NB cell differentiation or 
apoptosis[69,71,72]. A potential role for TrkAIII in NB CSCs comes from observations 
that TrkAIII increases mitochondrial Superoxide dismutase 2 (SOD2) expression and 
activity in NB cells, enhancing resistance to ROS-induced death within the context of 
CSC-like phenotype[152]. Furthermore, TrkAIII promotes centrosome amplification, 
and microtubule polymerization resulting in polyploid and aneuploid de-differen-
tiated anaplastic phenotypes[153], implicating TrkAIII in selecting and maintaining 
CSC-like NB subpopulations within stressful pathological and therapeutic tumour 
microenvironments[72].

TrkB has also been implicated in NB pathogenesis, progression and therapeutic 
resistance[16,154-156], exhibits a positive correlation with N-Myc amplification and 
expression, and is stimulated by activated Erb-B in NB cells. Unfavourable NBs 
express BDNF providing a potential autocrine/paracrine survival mechanism and 
TrkB is transiently expressed by sympathoblast subpopulations during sympathetic 
nervous system development, providing a potential origin for TrkB expressing NBs, 
with BDNF expression acquired at a later stage[157]. TrkB expression is increased by 
HIF-1 suggesting that tumour hypoxia may promote TrkB expression in NBs, and 
BDNF/TrkB interaction increases NB cell survival, chemoresistance, invasive capacity, 
angiogenesis factor expression, angiogenesis and metastatic behaviour[16,156,157]. 
Recently, an engineered TrkB receptor, devoid of Ig-like domains, analogous to 
TrkAIII, has been shown to be oncogenic[158], although a similar endogenous 
isoform(s) has not yet been described in NB.

TrkC expression in NB is associated with a favourable outcome. However, high 
level NT-3 and TrkC co-expression has been identified in a subset of advanced stage 
IV NBs, providing a potential paracrine/autocrine survival and proliferation 
mechanism for selection in tissues that do not express NT3, similar to migrating NC-
derived sympathoblasts, as a potential cellular origin for this NB subset[16]. In further 
support of NT receptor involvement in NB stemness, I-Type CSC-like NB cells exhibit 
high-level TrkA, TrkB, TrkC and CD271/p75NTR expression[92].

ROR1: The receptor tyrosine kinase-like orphan receptor ROR-1 is related to CSC-like 
phenotypes[159], is expressed across all NB stages, correlates with survival and 
prognosis, and targeted anti-ROR-1 therapy results in additive cytotoxicity to NB cells, 
identifying ROR1 as a novel regulator of the NB CSC compartment and potential 
therapeutic target[160].

Apoptosis signal regulating kinase 1: The apoptosis signal-regulating kinase 
apoptosis signal regulating kinase 1 (ASK1) is a member of the MAPK family and 
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activates JNK and p38MAPK in response to ER-stress, oxidative stress and calcium 
influx. ASK1 is co-expressed and associates with TLX/NR2E1 in CSC-like NB SP cells, 
particularly in hypoxic conditions within the CSC niche. ASK1 phosphorylation 
stabilises TLX/NR2E1, resulting in HIF-1α induction and VEGF-A expression, 
contributing to angiogenesis and NB CSC survival[161].

Transcription factors and regulators
STAT3 granulocyte colony-stimulating factor receptor and CD114: STAT3 transcrip-
tion factor is critical for NC specification and promotes an undifferentiated NC 
phenotype. Loss of STAT3 expression results in apoptosis and NC marker Sox10 and 
Snai2 repression[162]. STAT3 maintains CSC populations in bladder, colon, and 
hepatocellular cancers and malignant gliomas[163-166]. STAT3 activity is induced by 
granulocyte colony-stimulating factor (G-CSF) receptor activation and G-CSF receptors 
are expressed by neuronal and NC-derived cell types, in which STAT3 promotes SC 
survival and expansion. Highly tumourigenic multipotent CD114+ NB cells, that 
exhibit self-renewal, also exhibit STAT3 activation in response to G-CSF. G-CSF-
sensitive cells in primary and relapsed NBs are considered to represent a pre-
migratory NC cell population and express multiple miRNAs with validated targets in 
p53, reprogramming[167-169], SC cell-cycle regulation and neuronal differentiation 
pathways[170,171], providing a paracrine G-CSF-mediated mechanism for expanding 
highly tumourigenic CD114+ CSC-like NB subpopulations, which is of particular 
relevance to the therapeutic use of G-SCF in NB [172,173].

FOXD3 and FOXM1: PDFG, Wnt and BMPs signalling regulate NC induction and 
specification through transcription factors, including FoxD3 (Teng et al[174], 2008). The 
forkhead family transcriptional repressor FoxD3, originally characterised in embryonic 
SCs and multipotent NC cells[175,176], is considered to be an early NC lineage marker 
that specifies fate by upregulating HNK1 and Slug expression, involved in 
maintaining the undifferentiated state of migrating NC cells and self-renewal potential
[174]. In NB, FoxD3 acts as a tumour suppressor, regulating the expression of N-Myc 
downstream regulated 1 and downstream genes. FoxD3 repression promotes NB 
tumourigenic, invasive, metastatic and angiogenic activity in vitro and in vivo, and is 
associated with NB CSC phenotypes[177]. In contrast, FoxM1 is a proliferation-specific 
transcription factor, the knockdown of which induces NB cell differentiation, 
associated with Sox2 and Bmi1 repression. FoxM1 directly activates Sox2 expression in 
NB cells and regulates both Sox2 and Bmi1 expression, required for neural stem cell 
self-renewal and maintenance of an undifferentiated NB CSC-like state[176,178].

Bmi1 and Kif1Bβ: The polycomb group transcriptional repressor Bmi1, originally 
identified in murine lymphomas as an oncogenic partner of c-Myc, forms part of 
Polycomb repressor complex 1, involved in gene repression through chromatin 
modification[179,180]. Bmi1 is required for NCSC self-renewal, CSC self-renewal and 
tumourigenicity[181,182] and Bmil knockout reduces NCSC self-renewal and results in 
progressive loss of NCSCs in mice[183]. NB CSCs express Bmi1, and the Bmi1 
promoter binds and is activated by E2F-1 transcription factor[184]. Knockdown of 
Bmi1 expression in NB cells induces differentiation and growth suppression, and the 
role of Bmi1 in NB tumourigenesis has been linked to FoxM1, which activates the 
expression of both Sox2 and Bmi1[178]. In I-type CSC-like NB cells, Bmi1 is required 
for self-renewal but also influences lineage commitment. Bmi1 repression promotes S-
type differentiation, high Bmi1 expression induces N-type differentiation and Bmi1 
over-expression induces neuronal differentiation, implicating fine concentration-
dependent Bmi1 control of the delicate balance between NB CSC self-renewal and 
differentiation[182]. Bmi1 transiently inhibits the p53 response to N-Myc-induced 
oncogenic-stress in perinatal NB precursor cells by directly binding and promoting 
p53 ubiquitination and degradation, in a general mechanism for p53 inactivation in 
NBSC-like progenitors, susceptible to N-Myc oncogenesis during embryonal 
development[185]. Bmi1 is also a N-Myc target-gene involved in repressing expression 
of the NB tumour suppressors TSCL1 and Kif1Bβ, with implications for NB 
pathogenesis[186,187], and promotes IkBα degradation via ubiquitination within the 
context of the SCF complex, inducing CSC survival NF-κB signalling, tumour-
associated inflammation, proliferation, MMP-9 expression and EMT[188-191].

The kinesin Kif1Bβ acts downstream of EglN3 to induce neuronal apoptosis and 
exhibits loss of function mutation or loss associated with Ip36.2 deletion in NBs, 
resulting in apoptosis evasion[192]. Kif1Bβ is also required for neuroblast differen-
tiation and in mouse sympathetic neuroblasts deleted of Kif1Bβ and human NBs that 
lack Kif1Bβ, neural differentiation is ablated. Loss of Kif1Bβ expression contributes to 
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undifferentiated aggressive NBs, characterised by high-level Sox10 expression, loss of 
cell surface TrkA expression, and up-regulated expression of ALK ligands and 
suspected MDK and NHLH2 NB oncogenes[70]. Furthermore, NB cells that lack cell 
surface TrkA, due to Kif1Bβ deletion or mutation, do not exhibit NGF-mediated differ-
entiation and in the absence of neurotrophins, escape TrkA-induced apoptosis, 
compounding the Sox10 expressing de-differentiated NB CSC-like state[70]. 
Bmi1/Kif1Bβ involvement in NB CSC induction and maintenance has also been 
associated with a novel alternative extra-short form NF-YAx splice variant subunit of 
the ubiquitous NF-Y transcription factor. NF-YAx was originally identified in primary 
human NBs, is expressed during murine embryonic development at times corres-
ponding to sympathetic neuroblast culling and is induced in NB cells by the genotoxic 
chemotherapeutic agent doxorubicin. NF-YAx expression in NB cells represses Bmi1 
expression and enhances Kif1Bβ expression, resulting in necroptosis, suggesting a NB 
tumour suppressor function. However, chronic NF-YAx expression also selects 
tumourigenic NB cells that are resistant to NF-YAx-induced cytotoxicity, do not 
exhibit NF-YAx-induced Bmi1 repression and Kif1Bβ induction, and exhibit a CSC-like 
expression signature characterised by enhanced CD117, p75NTR, Nanog, Nestin, Sox2 
and EglNL3 mRNA expression, indicating that NF-YAx selects NB CSC phenotypes by 
eliminating cells sensitive to NF-YAx-induced necroptosis, in a potential DNA-
damage-induced CSC selection mechanism, with implications for NB genotoxic 
chemotherapy[193].

N-Myc, cMyc and ALK: Myc/Max complexes inhibit ESC and iPSC differentiation 
and have been implicated in the epigenetic reprogramming that enhances CSC 
phenotypes[194]. Both N-Myc and mutated ALK are important NB oncogenes and 
collaborate to promote NB progression. In embryonic sympathetic neuroblasts, N-Myc 
overexpression promotes proliferation but does not sustain survival, and long-term 
ALKF1174L activation promotes cell cycle arrest, differentiation and survival of post-
mitotic neurons, in association with NEFM, RET and VACHT expression and 
decreased BMF, BIM, TH, CDC25A and CDK1 expression. N-Myc and ALKF1174L co-
expression maintain neuroblast proliferation and promote a different differentiated 
phenotype, characterised by SKP2, CCNA2, E2F8 and DKC1 expression. This is 
consistent with initial steps towards NB development, and is supported by 
demonstration that N-Myc and ALKF1174L are sufficient to drive NB development from 
NC progenitor cells[73,195,196]. N-Myc also forms a positive feedback loop with its 
cis-antisense gene N-Cym, co-amplified with N-Myc, and Oct4 transcription factor
[197]. This contributes to a more CSC-like aggressive phenotype in N-Myc amplified 
NBs, as N-Cym stabilises N-Myc, resulting in Oct4 and CSC-related Nanog, Sox2 and 
Lin28 expression[198]. N-Myc also promotes survival by up-regulating components of 
the error-prone non-canonical alternative nonhomologous end-joining DNA repair 
pathway, resulting in increased DNA repair activity to overcome DNA damage-
induced death. This behaviour is shared with NCSCs, consistent with a NCSC status of 
N-Myc amplified NB cells[199]. N-Myc also promotes lysine 4 histone H3 
trimethylation in stem cell-related genes, and in microarray studies, N-Myc amplified 
NBs exhibit Lif, Klf2, Klf4 and Lin28b ESC-related factor expression, with N-Myc 
observed to directly bind to the Lif promoter, implicating N-Myc in the regulation of 
overlapping SC-related gene expression, CSC-like pluripotency and self-renewal in NB
[200]. Glutamine is also involved in N-Myc regulation of NB CSCs, as glutamine 
deprivation leads to N-Myc/c-Myc cooperation, resulting in CD133 expression in N-
Myc amplified NB cells, associated with changes in acetaldehyde dehydrogenase 
(ALDH) activity[201].

NF-Y: The ubiquitous heterotrimeric transcription factor NF-Y binds inverted CCAAT-
boxes in approximately 70% of gene promoters and is composed of NF-YA, NF-YB and 
NF-YC subunits[202-204]. Alternative splicing of the NF-YA subunit has been 
implicated in cellular staminality, differentiation, apoptosis and transformation, and 
the short alternatively spliced NF-YAs isoform forms part of the SC transcriptional 
circuitry, predominates in ESCs and is lost upon differentiation, whereas fully-spliced 
long-form NF-YAl promotes differentiation and NF-YA loss induces senescence or 
apoptosis[205-207]. Alternative NF-YAs splicing is promoted by oncogenes and 
converts tumour suppressing, differentiation promoting NF-Y complexes predom-
inated by NF-YAl into tumour and CSC promoting complexes predominated by NF-
YAs[208,209]. Recently, a novel developmental and doxorubicin-regulated extra short-
form alternative NF-YAx splice variant has been identified in primary stage 2 and 
stage 3 NBs[210,211]. This novel isoform forms functional NF-Y complexes but has lost 
capacity to bind the ubiquitous cancer-associated transcription factor SP1[211], charac-
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terising NF-YAx as a functional NF-Y modifier. NF-YAx expression in NB cells 
promotes Kif1Bβ-dependent necroptosis and is expressed during murine embryo 
development at times corresponding to Kif1Bβ-dependent sympathetic neuroblast 
culling, consistent with a potential tumour suppressor function. However, NF-YAx 
also selects CSC-like subpopulations resistant to NF-YAx-induced death that exhibit 
enhanced resistance to the genotoxic agent doxorubicin, which also promotes alterna-
tive NF-YAx splicing, implicating NF-YAx as a potential protagonist in genotoxic 
drug-induced selection of NB CSC phenotypes and subsequent post-therapeutic 
relapse[210].

Paired related homeobox 1 and notch-3: Cell types identified in NBs include intercon-
verting de-differentiated, mesenchymal, multipotent NC-derived progenitor-like, 
adrenergic and intermediate cell types that exhibit distinct super enhancer and 
associated transcription factor networks and divergent gene expression profiles[212,
213]. Expression of the embryonal-restricted transcription factor paired related 
homeobox 1 (PRRX1) in mesenchymal tissues, reprogrammes adrenergic NB cell super 
enhancer and mRNA landscapes towards the NC-derived progenitor-like mesen-
chymal cell type, enhancing chemoresistance, implicating PRRX1 in promoting CSC-
like states and helping to explain the enrichment of PRRX1+ cells in post-therapy 
recurrent NBs[212]. NOTCH-3 also induces adrenergic transcriptional reprogramming 
to a multipotent, NC-derived progenitor, mesenchymal de-differentiated state via 
genome-wide remodelling of the H3K27ac landscape, in a NOTCH feed-forward loop, 
that also maintains the mesenchymal NB CSC-like state[214]. Furthermore, hypoxia 
induces Notch signalling in NB cells with implications for NB cell de-differentiation
[215].

Repressor element 1 silencing transcription factor, MUSASHI1 and C-KIT/CD117: 
Repressor element 1 silencing transcription factor (REST) zinc finger transcription 
factor is a master repressor of neuronal programmes, helps to maintain de-differen-
tiated SC and CSC states and promotes genomic instability, contributing to cellular 
transformation[216,217]. In NBs, REST exhibits oncogenic activity and high REST 
expression is associated with poor prognosis, supporting a potential role in promoting 
NB CSC-like behaviour[218-220].

The mRNA-binding protein Musashi1 is a critical regulator of SC self-renewal and 
has been implicated in CSC-like self-renewal capacity in NB by promoting target 
mRNA translation and stem cell-fate transition[105,221]. Although the signalling 
mechanisms involved in Musashi1 function in stem/progenitor cells are unclear, 
Musashi1 is regulated by phosphorylation and by MAPK signalling in oocytes, and 
exhibits functional duality by promoting translation and repressing mRNA targets, in 
a similar way to Musashi2, which represses TGFβR1 mRNA, whilst activating 
translation of SMAD3 mRNA in proliferating K562 myelogenous leukemia cells[222].

The c-kit/CD117 stem cell factor receptor tyrosine kinase is a SC and CSC marker
[91,223], and has been reported to be one of seven genes exhibiting elevated expression 
exclusively in NB CSCs[92].

JARID1B: The H3K4me3 histone demethylase JARID1B is involved in ESC fate and 
plays important roles in developmental gene expression and neural differentiation. In 
NB, JARID1B expression enhances CSC-like behaviour, therapeutic resistance and 
enables transit between distinct CSC-like cell populations via the PI3K pathway[224]. 
JARID1B knockdown increases NB cell sensitivity to cisplatin and reduces invasion 
and tumourigenic capacity, in association with down-regulation of Notch/Jagged 
signalling, consistent with a novel NB CSC modulator and therapeutic target[225].

TLX/NR2E1: The orphan nuclear receptor TLX/NRE2 promotes self-renewal in NB 
CSC-like cells and correlates with poor patient survival. In NB CSC-like cells, 
TLX/NRE2 is co-expressed with the neural SC/progenitor markers Nestin, CD133 and 
Oct 4, the neural SC/progenitor migration markers CD15 and MMP-2, and binds and 
activates Oct4 and MMP-2 promoters[226].

Additional molecular protagonists
MMPs and TIMPS: MMP-9 is involved in almost all of the hallmarks of cancer, 
including the metastatic behaviour of CSC-like cells[227]. CSC-like I-type but not S-
type NB cells exhibit constitutive MMP-9 expression and spontaneous S-type to I-type 
NB cell CSC-like EMT is associated with NF-κB-induced MMP-9 expression and 
enhanced MMP-9-dependent invasive capacity in vitro, implicating MMP-9 in NB CSC 
metastatic behaviour[93,227]. NB CSC-like cells also constitutively express the 
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polycomb transcriptional repressor Bmi1[193], which promotes IkBα degradation, 
activates NF-κB[191] and increases tumour aggressiveness via the NF-κB/MMP-9 
pathway[188,189]. Bcl2, which also exhibits enhanced expression in NB CSCs, also 
promotes MMP-9 expression by enhancing NF-κB activity[228], NB cells exhibit 
methylation-dependent repression of the metalloproteinase inhibitor TIMP-2 and 
secrete redox enzymes that inhibit TIMP activity, adding to an aberrant MMP/TIMP 
equilibrium in NB CSCs[210]. TLX/NR2E1-induced MMP-2 expression has also been 
implicated in the migratory and invasive behaviour of NB CSC-like cells[226].

Nestin: The neural stem/progenitor cell marker and intermediate filament protein 
nestin is considered to be a selective marker of bone marrow-derived mesenchymal 
SCs (MSC)[229] and CSCs[230]. Nestin is expressed in NBs, NB CSC-like subpopu-
lations and is associated with aggressive NB behaviour[152,231]. Nestin expression is 
involved in SC, MSC and CSC self-renewal, angiogenesis and is promoted by Notch 
signalling, TrkAIII and N-Myc, identifying nestin as a NB-associated, oncogene-
regulated, stemness gene[152,229,231].

SPDYA/SPY1: The cell cycle regulatory protein SPDYA/Spy1 controls CDK2 activity 
at the G1/S transition phase of the cell cycle and is a critical regulator of NB CSC-like 
behaviour. SPDYA/Spy1 regulates the self-renewal capacity of CD133+ NB CSC-like 
subpopulations[232], upregulates multipotency markers, drives NB tumourigenicity 
by activating cyclin dependent kinases, and its knockdown decreases c-Myc 
expression and impairs retinoic acid-induced differentiation of NB CSCs[233].

ALDH1 Isoenzymes: ALDHs are NAD(P)+-dependent enzymes that catalyze aldehyde 
oxidation to carboxylic acids, and are expressed by and active in haematopoietic SCs 
and NB CSCs[234]. NB cells express all 19 ALDH isoforms and ALDH1A2 and 
ALDG1A3 isoforms are potential markers of NB CSCs involved in promoting self-
renewal, tumour sphere growth, colony formation, NB xenografts tumourigenicity and 
resistance to 13-cis-RA-induced differentiation[235,236].

LIN28B: The RNA binding protein LIN28B is also considered an NB oncogene. Lin28B 
represses the biogenesis of miRNAs let-7, miR-107, miR-143 and miR-200c by 
preventing miRNA maturation[237], and is regulated by N-Myc in NB cells via an N-
Myc/miR-26a-5p/LIN28B regulatory axis, and direct binding and activation of the 
LIN28B promoter[238]. LIN28B binds and activates gene promoters by interacting 
with the zinc finger transcription factor ZNF143, activating downstream targets that 
regulate the core regulatory circuitry that controls the malignant state of NB cells, in 
addition to regulating Gsk3β and L1-CAM expression, involved in cell adhesion and 
migration[239].

miRNAs, long non-coding RNAs and endogenous retroviruses: Let-7 was the first 
suppressor miRNA reported to down-regulate tumour formation and metastasis[240], 
is involved in trunk NC cell migration, is regulated by LIN28B and is involved in 
LIN28B-mediated trunk sympathoadrenal precursor transformation, supporting roles 
for let-7 in NB initiation and metastatic potential[241]. Other miRNAs that are altered 
in NB, include the up-regulated miRNAs: mir-17-92 that targets DKK3, CDKN1A, 
BIM, MEF2D and ESR1; miR-21 that targets PTEN; miR128 that targets truncated TrkC 
and up-regulates Bcl-2 expression; miR-380-5p that targets p53; miR-558 that targets 
HPSE and miR-375 that targets ELAVL4. Down-regulated miRNAs, other than let-7, 
that are associated with NB include: miR-9 that targets MMP-14; miR-15 that targets 
Bcl2; miR-103 and miR-107 that target CDK5R1; miR-124 that targets Sox9 and PTPB1; 
miR-29a that targets cdk6 and CDC6; miR-152 that targets DNMT1; miR-125b that 
targets TrkC; miR-204 that targets Bcl2 and TrkB; miR-363 that targets ADAM15 and 
MYO1B and miR-335 that targets Sox4 and TNC. Embryonic SC-associated miR-380-5p 
cooperates with Ras in primary cell transformation and tumourigenesis, blocks cellular 
senescence in mice, correlates with N-Myc amplification and poor outcome in NBs and 
miR-380-5p inhibition promotes p53-dependent NB cell apoptosis and reduces 
tumourigenesis in an orthotopic mouse NB model[242-245]. A NB CSC suppressor role 
has been proposed for miR-128, not expressed in primary NBs, which represses the 
expression of Bmi1 and E2F3a pro-growth transcription factor, and reduces NB cell 
motility and invasiveness[246-249].

Long non-coding (lnc) RNAs have also been shown to promote and maintain CSCs, 
and regulate CSC behaviour[250]. LncRNAs implicated in NB CSCs[251-253], include 
the hypoxia-regulated lncRNA HOTAIR, up-regulated in NBs, which is associated 
with poor prognosis and CSC self-renewal, differentiation inhibition and high-level 
PRAF2, which promotes NB CSC proliferation and migration[254]. The hypoxia and 
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N-Myc-regulated lncRNA MALAT-1 also contributes to CSC maintenance[255], 
promotes NB cell migration, invasive and angiogenic behaviour, and is induced by the 
N-Myc-regulated histone demethylase JMJD1A, which is also a hypoxia-inducible 
epigenetic regulator of SC behaviour, providing a lncRNA-mediated mechanism 
through which N-Myc can promote invasive, angiogenic and metastatic behaviour of 
NB CSCs[252,256,257]. Repression or polymorphisms in the epigenetic regulator H19 
lncRNA have also been implicated in NB CSCs[251], and depletion of lncRNA NBAT1, 
implicated in retinoic acid-induced NB cell neuronal differentiation, prevents differen-
tiation, and is repressed in undifferentiated CSCs in high-risk N-Myc amplified and 
non-amplified NB[252,258]. Human endogenous retroviruses (HERVs) have also been 
implicated in aggressive metastatic behaviour in a variety of tumours. HERV-K 
activation expands and maintains CD133+ CSC-like populations in NC-derived 
melanoma[259,260], HERV-H lncRNA is a specific marker of pluripotency in human 
SCs, that interacts with Oct4 to maintain embryonic SC gene expression[259,260] and 
HERV expression is up-regulated in NB cells by hypoxia and hypoxia mimics[261,
262]. Although, no reports link HERV-K or HER-V to NB, it is likely that HERVs also 
play important roles in promoting and maintaining NB CSCs. Dysregulated HERV-W 
expression has, however, been reported in NB cells that express the HERV-W trace 
protein syncitin-1, which exhibits anti-apoptotic activity, promotes immune 
suppression, and induces EMT, invasion and metastasis, consistent with CSC 
promoting function. Furthermore, HERV-W induces c-AMP signalling in NB cells, 
resulting in activation of the syncitin-1 transcription factor CREB[263].

Metabolism, nuclear factor-erythroid 2-related factor 2 and redox regulators: CSCs 
exhibit unusual metabolism in order to maintain stemness and exhibit anabolic and 
catabolic metabolic flexibility, associated with alterations in signalling and redox 
activity, in response to changes within the tumour microenvironment. Normal SCs 
and CSCs exhibit enhanced glycolytic metabolism that promotes and maintains CSC 
traits through enhanced expression of glycolysis-related GLUTs, monocarboxylate 
transporters, hexokinases and pyruvate dehydrogenase kinase 1, the functional 
inhibition of which reduces tumourigenicity in vivo. Many of these genes are HIF-
regulated, helping to explain CSC association with hypoxic tumour niches and 
pseudo-hypoxic states[264,265]. Glycolytic reprogramming in CSCs promotes 
metastatic progression, enhances therapeutic resistance and involves Snai1 
suppression of phosphofructokinase, which switches metabolism from oxidative 
phosphorylation to glycolysis and promotes EMT. Oxidative phosphorylation is also 
activated in CSCs, in association with increased mitochondrial numbers and size. This 
metabolic flexibility is regulated by activated oncogenes, oncosuppressor inactivation, 
tumour cellular and chemical microenvironments, and result in co-existence of 
different CSC metabo-types, some fixed and others that exhibit reversible plasticity 
and can switch back and forth from glycolysis to oxidative phosphorylation, 
optimizing exploitation of changing tumour micro-environments[264,265]. TrkAIII 
expression in NB cells promotes metabolic flexibility within a CSC-like state, and in 
inactive-form localizes to outer mitochondrial membranes in un-stressed NB cells. 
Under conditions of ER-stress, inactive mitochondrial-associated TrkAIII exhibits Ca2+-
dependent translocation to inner mitochondrial membranes, where it undergoes 
cleavage-dependent activation, resulting in tyrosine phosphorylation of mitochondrial 
pyruvate dehydrogenase kinase and a metabolic shift to aerobic glycolysis, implicating 
mitochondrial TrkAIII in an ER-stress-regulated mechanism for metabolic flexibility, 
within a CSC context and survival-adapted ER-stress response[72,150].

In order to survive the cytotoxic effects of increased ROS production from metabolic 
and therapeutic sources, CSCs also possess potent antioxidant systems that scavenge 
and regulate ROS production, ROS-dependent signalling pathways, ROS-regulated 
transcription factors and defend against ROS-induced cytotoxicity[266]. The nuclear 
factor-erythroid 2-related factor 2 (NRF2) transcription factor is a master regulator of 
cellular redox and metabolic homeostasis in normal SCs and CSCs, and is important 
for regulating CSC quiescent-pseudo-senescent-dormant states, survival, self-renewal, 
proliferation and differentiation[265,267]. ROS inactivate repressive Keap1/NRF2 
interactions, activating the NRF2-dependent antioxidant system, which up-regulates 
the expression of the anti-oxidants superoxide dismutase, thioredoxin, thioredoxin 
reductase, glutathione peroxidase, glutathione reductase, ferritin, nicotinamide 
adenine dinucleotide phosphate, quinone oxi-reductase, glutamate-cysteine ligase 
catalytic subunit, glutamate-cysteine ligase modifier subunit and increases expression 
of the drug-metabolism and efflux genes ALDH and ABC transporters[265,267-269]. In 
tumours, NRF2 weakens oxidative phosphorylation and induces antioxidant gene 
expression, reducing ROS to levels optimal for CSCs stemness, self-renewal, prolif-
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eration, survival, metastatic progression and therapeutic resistance. NRF2 activity in 
CSCs is modulated by CD44 through p62[270], regulates Nestin, Bmi1, and Sox 2 
expression and in NB cells promotes proliferation and inhibits neuronal differentiation
[271,272], implicating NRF2 in fine tuning the metabolic/antioxidant system to ensure 
appropriate ROS levels for NB CSC maintenance. TrkAIII also regulates free-radical 
ROS levels in CSC-like NB cells by augmenting SOD2 expression, in a TrkAIII/SOD2 
axis that increases resistance to mitochondrial free-radical ROS-induced cell death, 
within the context of a CSC-like phenotype. In this mechanism, increased mitochon-
drial SOD2 activity attenuates free-radical ROS production and increases H2O2 levels, 
protecting cells against agents that induce free-radical ROS-induced death. Increased 
mitochondrial H2O2 levels promote malignant progression, genetic instability, sister 
chromatid exchanges, chromosomal translocation, MMP-expression, MMP-dependent 
invasion and metastatic dissemination, all of which are enhanced by TrkAIII 
expression in NB cells, identifying the TrkAIII/SOD2 axis as a novel potential CSC 
therapeutic target[72,152]. NB cells also secrete components of the thioredoxin/ 
thioredoxin reductase redox system, which is enhanced in CSC states. In the 
extracellular compartment, thioredoxin and thioredoxin reductase promote NB cell 
invasive behaviour by inhibiting TIMPs and altering the MMP/TIMP equilibrium
[273], and disrupt basement membrane integrity, de-regulating endothelial cell tube 
formation, and potentially promoting EMT[274].

Additional mechanisms involved in NB CSC formation
Cellular polyploidy: The tumour microenvironment, oncogene activation and 
oncosuppressor inactivation integrate to promote genomic instability and the 
formation of polyploid giant cancer cells[275], now considered to be an important 
source of aneuploid CSCs in tumours, including NBs. Theodor Boveri was the first to 
hypothesize chromosomal polyploidy and subsequent aneuploidy as a mechanism for 
malignant tumour formation, describing the origin of tumours from a single 
primordial cell with “abnormal chromosome constitution”, generated by abnormal 
stimuli that “might induce simultaneous multiple divisions of the centrosomes”, 
resulting in “tetraploid cells driven to divide by continuous proliferation“, which 
“opens the door for the production of sarcomatous or carcinomatous progenitor cells”
[276]. Today, cellular polyploidy is no longer considered an exclusively pathological 
process but also a physiological mechanism for tissue homeostasis, that is conserved 
and subverted in tumour pathogenesis and progression[277]. Between 0.1%-20% of 
solid tumour volumes consist of polyploid cancer cells that increase in percentage with 
malignancy, contributing to tumour initiation, heterogeneity, EMT, invasion, 
metastasis, therapeutic resistance and the generation of CSC-like cells[278-281]. 
Previously, polyploid cancer cells were presumed to be non-dividing but recent 
observations confirm that these cells express genes involved in cell cycle regulation, in 
addition to expressing hypoxia-inducible, stem cell-regulating, chromatin remodelling, 
and invasion and metastasis promoting genes[278,280-282]. Cellular polyploidy can be 
achieved by cell fusion, an endocycle in which DNA synthesis and G-phases occur 
without M-phase or cytokinesis to generate single polyploid cells with giant nuclei 
that exhibit no mitotic features or by endomitosis caused by abortive mitosis that does 
not result in chromatid separation or cell division and is followed by reentry into S 
phase, generating multinucleated cells[282]. Most polyploid cells die but others 
survive initially in a quiescent G0 pseudo-senescent state but then escape this state to 
undergo asymmetrical division by blebbing and/or bursting to yield aneuploid 
progeny that go on to generate novel tumourigenic and therapy-resistant CSC-like 
cells by mitosis[283]. Polyploid tumour cells are generated by tumour microenviron-
mental stress, within a context of survival adapted cellular ER-stress responses and 
immunosuppression[279,280,284,285], and are induced by: gene overexpression and 
oncogene expression that increase centrosome numbers[149,279,280]; replication stress; 
genotoxic chemotherapeutic agents that induce abortive cell cycles[286-288], and by 
loss of tumour suppressor function[279,281,289,290]. Tumour cell polyploidy induced 
by hypoxia is associated with CSC and EMT gene expression patterns, resulting in a 
more adaptable, less disruptive phenotype within stressful and hypoxic microenvir-
onments, with multiple gene copies lessening the need for chromosome segregation, 
promoting survival and facilitating tumour evolution and therapeutic resistance. 
Polyploid giant cancer cells evolve complex karyotypes and exhibit enhanced 
tumourigenic activity in vitro and in vivo implicating tumour cell polyploidy as a basis 
of aneuploidy[279,281]. Within the somatic context, long term passage of induced 
polyploid somatic cells eventually leads to transformation and tumourigenesis, in a 
cellular transformation process characterised by transition from diploid to aneuploid 
states via tetraploidy. Polyploid cancer cell survival depends upon repression of p53 
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function and surviving polyploid cells overcome oncogene-induced senescence by 
repressing p53 and overexpressing DNA repair genes, to form progeny with oncogenic 
karyotypes and phenotypes, and progressive chromosomal instability, explaining 
hyper-diploid karyotypes in many malignant tumours[279-282], including NBs[278,
291]. Polyploid giant cancer cells exhibit chemo- and radiotherapeutic resistance that 
results from quiescent or pseudo-senescent states, infrequent slow cell cycles, 
increased expression of apoptosis inhibitors, p53 functional repression and enhanced 
DNA repair mechanisms. Resistant polyploid giant cancer cells follow a defined path 
of chromosome re-organisation and restructuring into polyploid nuclear states that 
can separate into secondary nuclei that form secondary progeny in a transformation 
process[279,281,282]. Secondary daughter cells exhibit anchorage-independent growth, 
undergo reductive mitotic division and produce smaller near-diploid aneuploid cells 
that proliferate and are tumourigenic, in a process likened to spores in lower 
organisms that permit survival in harsh conditions and rapid repopulation later. CSCs 
formed from polyploid cancer cells express CSC markers and exhibit embryonic-like 
stemness equivalent to a blastomere stage, form different tumour types, illustrating 
multipotent plasticity greater than marker-purified CSCs, and express fundamental 
genetic, cellular and developmental programmes for tumour initiation and 
progression that integrate with “normal” tumour cellular components[292]. CSC-like 
cells generated from hypoxia-induced CSC marker positive polyploid giant cancer 
cells, divide asymmetrically and cycle slowly to form aggressive mesenchymal 
treatment-resistant tumours[279,280,284].

Centrosome amplification: Theodore Boveri also considered that aberrant centrosome 
numbers were the driving force behind cellular tetraploidy, aneuploidy and malignant 
tumour formation[276]. Today, it is well recognized that aberrant centrosome numbers 
characterise polyploid and aneuploid CSCs in solid tumours, implicating mechanisms 
that promote centrosome amplification in CSCs formation by way of polypoid and 
aneuploid states. Centrosome amplification in tumour cells has been attributed to 
Aurora-A kinase overexpression[286]; drug-induced DNA damage-dependent 
activation of checkpoint kinases Chk1 and Chk-2[287,288]; enhanced polo kinase 4 
expression and activity[289]; loss of BRCA1, APC and p53 function[290-292], and 
oncogenic alternative TrkAIII splicing[149]. In NB cells, spontaneously activated 
TrkAIII exhibits MT-dependent retrograde transport to the centrosome, where it 
phosphorylates Plk4, promoting centrosome amplification, augmenting microtubule 
polymerization, and increasing polyploid giant and aneuploid NB cell formation, 
chromosomal instability and sister chromatid exchanges[149,153], implicating 
hypoxia/stress-induced alternative TrkAIII splicing in promoting NB CSCs via 
polyploid giant cancer cell formation. This is supported by TrkAIII expression in 
neural SCs and CSC-like NB cells, associated with enhanced expression of Nanog, 
Nestin, Sox2, CD133 and CD117 mRNA, and by TrkAIII prevention of NB cell differ-
entiation, promotion of NB xenograft tumourigenic and metastatic capacity, and 
therapeutic resistance[72], contrasting with fully spliced TrkA promotion of genomic 
stability in NB cells[293]. Therapy-resistant polyploid giant cancer cells express 
enhanced levels of Oct4, Nanog and Sox2, involved in self-renewal and apoptosis 
evasion, and re-proliferate upon pseudo bi-polar centrosome coalescence, resulting in 
CSC-like progeny that correlates with oncogene amplification, poor prognosis, post-
therapeutic relapse, EMT, invasion, metastasis and therapeutic-resistance[280,281]. The 
formation of polyploid giant cancer cells is the result of centrosome amplification, 
therefore, represents a critical source of invasive, metastatic and therapy-resistant NB 
CSC-like phenotypes (Figure 4).

Nonsense mediated RNA decay: The multistep nonsense mediated RNA decay 
(NMD) pathway targets and rapidly destroys both mutated and non-mutated mRNAs, 
and has been implicated in preventing embryonic SC differentiation[294]. NMD is 
inhibited by hypoxia in an eIF2a-dependent manner. Stress-induced eIF2a 
phosphorylation activates stress-response gene expression, resulting in the stabil-
ization of several NMD target mRNAs, stabilized by NMD repression, implicating 
hypoxia-induced NMD repression in promoting the cellular hypoxic stress-response. 
Hypoxic repression of NMD involves component re-localization to cytoplasmic stress 
granules and dynamically alters hypoxic gene expression, consistent with a potential 
role for NMD repression in hypoxic promotion of NB CSCs[295]. NMD is also 
repressed by c-Myc, stabilizing Myc target gene expression[296], implicating NMD 
repression in N-Myc/c-Myc cooperation, which regulates NB CSC phenotypes[201]. 
An NMD/miRNA-128 regulatory circuit has also been identified in which miR-128 
represses NMD by targeting UPF1 and MLN51 NMD factors, and in NBs miR-128 
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Figure 4 Formation of neuroblastoma cancer stem cells. Illustration of the various way cancer stem cell (CSC)-like cells form in neuroblastomas, by either 
direct reversible phenotype plasticity from non-cancer stem cells within hypoxic tumour and pseudo-hypoxic perivascular CSC niches and/or via the formation of 
polyploid giant cancer cells. NB: Neuroblastomas.

exerts a tumour and CSC repressing role, inhibiting expression of the CSC self-renewal 
factor Bmi1 and the growth promoting transcription factor E2F3a, reducing NB cell 
motility and invasiveness[246-249].

The stressful hypoxic tumour microenvironment: Hypoxia is involved in NB 
initiation and progression and promotes NB CSC-like phenotypes[297]. The stressful 
tumour microenvironment continually selects survival-adapted tumour and tumour-
associated “normal” cell populations, resulting in heterogeneous niches within highly 
aberrant vasculatures that promote episodes of hypoxic, nutrient, metabolic and redox 
stress. Oxygen  pressure is lower in solid tumours than in normal tissues, hypoxic 
tumours are more aggressive than oxygenated tumours and tumour hypoxia is a 
common feature of solid tumours, including NB, and represents an independent 
prognostic marker for disease progression and poor clinical outcome[298-301]. 
Tumour hypoxia, oncogene activation and oncosuppressor inactivation integrate to 
promote tumour glycolytic metabolic adaptation, resulting in a reducing acidic 
tumour microenvironment that promotes further adaptation, EMT and progressive de-
differentiation to CSC-like states with enhanced migratory, invasive, metastatic 
capacity, increased therapeutic resistance and augmented genomic instability[302-
305]. In NB, hypoxia promotes more aggressive behaviour that is associated with CSC-
like subpopulations that localize to hypoxic necrotic areas[306-308]. NB CSC-like cells 
exhibiting a pseudo-hypoxic phenotype also localize to oxygenated tumour 
perivascular niches[301,309]. Hypoxia inducible HIF-1α and HIF-2α transcription 
factors promote metastatic CSC-like phenotypes[310,311], share target genes but also 
exhibit target specificity and differences in regulation. HIF-1α proteins are stabilized 
by hypoxia but HIF-1α transcription is not induced by hypoxia, whereas hypoxia 
induces HIF-2α transcription. HIF-1α is involved in acute hypoxic responses and 
subsequently decreases, whereas HIF-2α function is maintained during prolonged 
hypoxia. Hypoxia-independent HIF expression is promoted by growth factor 
signalling, including IGF, VEGF and EGF signalling through the PI3K and Ras/MAPK 
pathways. In NBs, HIF-2α expression correlates with aggressive disease, HIF-2α+/HIF-
1α- mesenchymal CSC-like NB cells populate perivascular NB regions and NB cells 
cultured at 5% O2 to mimic end capillary O2 diffusion levels, express HIF-2α but not 
HIF-1α, implicating HIF-2α in pseudo-hypoxic NB CSC-like phenotypes within peri-
vascular NB areas, potentially driven by autocrine GF/GFR or oncogene-dependent 
signalling[301,309,312]. HIF-2α is also implicated in delta like noncanonical notch 
ligand 1 (DLK1) promotion of NB CSC-like phenotypes. DLK1 is regulated by HIF-1α 
and HIF-2α, induced by hypoxia, is a bona fide neural SC marker required for self-
renewal[117,181] and is robustly expressed by undifferentiated tumour cells. In NB 
xenografts, DLK1+ cells preferentially localize to hypoxic areas[116,117], and together 
with HIF-2α promote aggressive tumour behaviour and undifferentiated CSC-like 
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states[301,309,312]. HIF-1α also promotes NB CSC-like phenotypes within the context 
of an aberrant unfolded protein response, characterised by reduced ATF3 expression. 
In this mechanism, HIF-1α induces Id1 expression in NB cells that do not express 
ATF3, which down-regulates Id1 expression in most cell types[295]. Intermittent 
hypoxia also promotes NB CSC-like phenotypes involving HIF-1α and HIF-2α 
expression, resulting in enhanced survival and clonogenic activity, increased Oct4, 
CD133, Id2, Hes1, c-kit and Notch-1 expression, reduced expression of SNS differen-
tiation markers NPY, Hash1 and dHand, and HIF-1α knockdown promotes neuronal 
differentiation-associated NeuN and NF-M expression[313]. Hypoxia-induced 
alternative splicing also promotes CSC-like phenotypes and EMT by promoting HIF-1
α interaction with Zeb1 and a soluble sCD44 splice variant, induces DCLK1 alternative 
splicing to promote CSC self-renewal and chemoresistance, and promotes alternative 
TrkAIII splicing in NB cells, enhancing angiogenic, tumourigenic and metastatic 
behaviour associated with the context of a more CSC-like phenotype[314].

Mesenchymal stem cells: MSCS invade NB tumour tissues[315] and NB cells that 
express CXCR4 and CXCR7 chemokine receptors migrate towards MSCs that express 
SDF-1 in the bone marrow[316]. MSCs isolated from NBs promote tumourigenesis by 
interacting with NB and stromal cells, and are more frequently arrested in G0/G1 
phases of the cell cycle, facilitating therapeutic-resistance[317]. Normal MSCs therefore 
are NB stromal components that regulate NB CSC tumourigenic and metastatic 
behaviour.

THERAPEUTIC PROSPECTS FOR TARGETING AND ELIMINATING NB 
CSC-LIKE POPULATIONS
Considering the young age of NB patients, the aggressive nature of the disease and the 
concept that post-therapeutic disease-relapse, metastatic progression and eventual 
mortality result primarily from the selection of therapy-resistant CSC-like cells, it is of 
paramount importance to develop novel therapeutic strategies that target and 
eliminate NB CSC subpopulations in order to improve therapeutic response-duration 
and survival.

CSC-like NB subpopulations reflect not only the primitive embryonic origins of this 
tumour but also evolutionary processes promoted by accumulating genetic changes 
within a continuously evolving tumour microenvironment, also altered by conven-
tional therapeutic strategies, which together select survival-adapted CSC-like 
phenotypes. CSC therapeutic resistance depends upon numerous mechanisms, 
including an intermittent slow cell cycle, enhanced expression of drug efflux ABC 
transporter and P-glycoprotein, enhanced expression of apoptosis inhibitors and 
repression of p53 function, a flexible pro-glycolytic metabo-type associated with high-
level anti-oxidant expression, enhanced DNA repair mechanisms, survival-adapted 
ER-stress responses, formation of polyploid giant cancer cells, CSC localization to 
hypoxic niches, the present physical tumour barriers to therapy, and phenotypic 
plasticity, permitting CSC regeneration from non-CSC tumour cells[280,318-320]. 
These factors combined with CSC similarities to normal SCs, make specific therapeutic 
targeting and elimination of NB CSC populations a daunting problem.

In this next section, we review novel potential therapeutic strategies, currently 
aimed at targeting and eliminating NB CSC populations or that could be adapted for 
use in NB.

Targeting cell surface and membrane-associated molecular protagonists
CSC cell surface marker targeting with antibodies and CAR cell strategies: CD44 
was the first CSC marker to be targeted with monoclonal antibodies in acute myeloid 
leukemia, with successful disease eradication[321], suggesting that CD44 in an 
aggressive NB CSC-like subpopulation could also be targeted[112]. Targeting CD133, 
expressed by NB CSC-like cells[92], with antibodies conjugated to the cytotoxic agent 
monomethyl-auristatin has been reported to be internalized and to kill CD133+ liver 
cancer CSCs[322], and targeting CD144 with antibodies, or targeting STAT3, in CD114+ 
NB CSCs that exhibit self-renewal and high tumourigenic activity, depletes the NB 
CSC subpopulations, decreases tumourigenicity, reduces metastatic capacity and 
increases chemotherapeutic sensitivity[323].

CAR-T strategies eradicate tumour cells by recognizing cell surface antigens and, 
unlike natural T-cell receptor positive T cells, recognize antigens by an MHC-
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independent mechanism. CARs are comprised of an extracellular single chain variable 
tumour antigen-specific fragment linked to extracellular spacer, transmembrane and 
intracellular signalling domains. Latest generation CAR T-cells express inflammatory 
cytokines and can effectively and specifically eliminate CSCs. Pre-requisites for CSC 
CAR-T therapy include cell surface expression of CSC-specific, preferably functional, 
tumour antigens. CAR T-cells that specifically recognize CSC markers GD2, LGR5, 
IGFR-1, CD44, CD47, EpCAM, Dll4, FZD and CD123 have been generated, do not 
promote CSC enrichment and do not exhibit substantial tissue cytotoxicity, and CAR 
T-cells that recognize CD133, CD166, CD20, CD38, CLL-1, EpCAM, CD123, CD171, 
ROR1, CD44, CD47, CD117 and c-Met are presently being evaluated in clinical studies
[159]. For NB therapy, targeting L1-CAM (CD171), which drives NB CSC invasive and 
migratory capacity, with L1-CAM CE7 epitope CAR T-cells developed for NB 
immunotherapy, is safe and efficacious in refractory recurrent NB, and CAR T-cells 
that target the CE7 epitope of CD171 (CE7-CAR-T cells), generated from NB patients 
with recurrent/refractory disease, has also been shown to be safe and efficacious[324].

Potential problems with CAR-T therapy include off-target toxicity due to low-level 
antigen expression in normal tissues. This can be overcome using CAR T-cells that 
recognize two or more antigens, enhancing tumour specificity, or CAR T-cells that 
express an inhibitory receptor against normal antigens in addition to recognizing a 
tumour specific antigen. Alternatively, considering that CAR antigen affinity is key to 
activating cytotoxicity, CAR T-cells with low affinity CARs that are only cytotoxic 
when they bind high density antigens may minimize off-target side effects, and CAR 
T-cells armed with caspase-9, sensitive to AP1903-induced activation, can ensure CAR 
T-cell elimination under conditions of aberrant cytotoxicity[325]. CAR T-cells 
engineered to contain a lenalidomide-inducible dimerization system that serves as an 
ON- and OFF-switch, characterised by lenalidomide-dependent anti-tumour activity 
in the presence of tumour antigen and lenalidomide-induced degradation in the 
absence, may further minimize potential off-target side effects[326]. Other problems 
associated with CSC-targeted therapy, include phenotypic plasticity, illustrated by 
reversible bidirectional conversion between CSC and non-CSC states induced by 
changes in the tumour microenvironment and therapeutic agents, which may render 
target-therapies, including CAR T-cells only transiently efficacious, until novel CSC-
like subpopulations regenerate. In this case, efficacy could be maximized by 
combining CAR T-cell therapy with conventional chemo and/or radiotherapy therapy 
to kill both CSC and non-CSC tumour cells, supported by a report of synergistic 
efficacy in a rat glioma model, when NKG2D CAR-T therapy is combined with 
conventional radiotherapy[327], and when EpCAM CAR-NK92 CAR-T therapy is 
combined with regofinib plus salinomycin, metformin and S-phase kinase associated 
protein 2 inhibitors and low dose conventional chemotherapy[328,329]. Heterogeneity 
of CSC tumour antigen expression can also be mitigated using bi- or poly-specific CAR 
T-cells that target multiple tumour antigens, and CSC tumour antigen expression 
could be promoted to facilitate CAR T-cell recognition, exemplified by retinoic acid 
up-regulation of CD38 expression that sensitizes acute myeloid leukemia cells to CD38 
CAR T-cells[330]. CAR T-cell exhaustion and senescence can be overcome using 4-IBB 
and ICOS co-stimulatory domains, CAR T-cell tumour infiltration and durability can 
be enhanced, and exhaustion and senescence reduced, combined with immune 
checkpoint PD-1, CTLA4, TIM-3, LAG-3 and adenosine 2A receptor inhibitors. CAR T-
cells that express anti-apoptotic factors can reduce tumour-induced CAR T-cell 
apoptosis, CAR T-cells that express interleukin (IL)-7 and IL-15 can improve 
persistence, and CAR T-cells that express chemokine receptors improve tumour infilt-
ration and homing to CSC niches, as does local or intra-tumour CAR T-cell delivery
[159]. Physical tumour stromal barriers can be disrupted by CAR T-cell expressing 
extracellular matrix degrading enzymes targeted to tumour stromal FAP+ fibroblasts
[331], and tumour oxygen supplementation can enhance infiltration and reduce 
immunosuppression[332]. Repression of CAR-T function by tumour-associated T-
regulators, macrophages, neutrophils, myeloid-derived suppressor cells and inhibitory 
IL10, TGFβ, PGE2, arginase, cyclooxygenase-1, galectin-9 and idoleamine 2, 3 
dioxygenase molecules, can be reduced using specific inhibitors[159]. Other modific-
ations that may improve efficacy include adjuvant tumour de-bulking prior to CAR T-
cell therapy to reduce toxicity due to cytokines and adjuvant chemotherapy with 
agents that induce T cell chemokine expression can pre-condition tumours for CAR T-
cell therapy. Further characterisation of CSC-specific targets can reduce the risk of 
autoimmunity and improved understanding of how specific CSC antigens alter during 
disease progression will help fine-tune individualized CAR T-cell therapeutic 
approaches, which combined with targeting monoclonal antibodies, conventional 
chemotherapy and radiotherapy, unveil an important therapeutic future for CAR T-
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cell based immunotherapies in the eradication of NB CSCs.
Invariant natural killer T cells (INKTs) or natural killer cells (NKs) represent an 

alternative to CAR T-cell therapy, with advantages including potential clearing of 
tumour associated macrophages and better penetration. INKTs alter the behaviour of 
tumour-associated macrophages and myeloid derived suppressor cells, secrete 
cytokines that recruit immune effectors and kill neuroblasts and CSCs[333]. INKTs 
stimulated with a-galactosylceramide (GAg), adoptive iNKT transfer and CAR-iNKTs 
could all be utilized to target NB CSCs. GAg-stimulated iNKTs enhance NK-mediated 
NB cell killing, reinvigorate exhausted CD8+ T cells[334,335] and show good tumour 
infiltration when combined with immune checkpoint inhibitors. Adoptive iNKT 
transfer in humanized mice reprogrammes NB xenograft-associated macrophages 
from the M2 to the anti-tumour M1 phenotype[336], GD-2 specific CAR-iNKTs reduce 
NB xenograft growth in mice and prolong survival, and CAR-iNKTs are being 
evaluated in phase I clinical trials in relapsed or refractory NB[333]. With respect to 
NKs, Dinutuximab an anti-GD2 antibody was the first immunotherapy used for NB, 
and exerts its effects also by stimulating NK activity, implicating a potential use for 
NK activators, including novel bi- and tri-specific killer cell engagers that enhance NK 
cytotoxicity, in NB therapy. Alternatively, autologous adoptive transfer of activated 
NK cells combined with anti-GD2 antibodies could be used, which have been reported 
to increase survival in a mouse NB xenograft model[337]. Along the same theme, 
allogenic NK transfer combined with humanized anti-3F8 antibody and IL-2 is 
currently in clinical trial for NB[338] (NCT 02650648) and CAR-NKs evaluated in NB 
include GD2-CAR-NKs that exhibit specific robust GD2+ NB cell killing and NKG2D 
CAR-NKs that kill NB-associated myeloid derived suppressors[333].

Inhibition of immune checkpoint protagonists PD-1, CTLA4, TIM-3, LAG-3 and 
adenosine 2A receptor, and in particular PD-1/PD-L1 and CTLA4, also represents an 
important approach for restoring anti-tumour immunity and improving CAR T-cell, 
CAR-iNKT, CAR-NK, iNKT and NK immunotherapeutic approaches[339]. N-Myc 
amplified NBs exhibit high-level PD-L1 expression, which correlates with reduced 
tumour infiltrating T-cells and unfavourable prognosis, and can be reduced by 
shRNA-mediated functional N-Myc inhibition or the BET bromodomain inhibitor JQ1
[340].

ABC and P-glycoprotein transporter inhibitors: ABC transporter inhibitors in general 
lack specificity and elicit important toxic side effects[123]. However, the ABC inhibitor 
probenecid sensitizes NB CSCs to cisplatin, increasing apoptosis and decreasing prolif-
eration associated with caspase 3 expression, reduced ABC transporters MDR1, MDR2 
and BCRP expression and reduced expression of CD133 and vimentin and snai1 EMT 
markers, forcing CSCs into a non-CSC state, associated with therapeutic re-sensit-
ization[341]. The prophylactic antianginal agent Perhexiline induces non-coding Alu 
RNA neuroblastoma differentiation marker 29 expression in NB cells, represses ABC 
transporter expression, increases sensitivity to cisplatin, depletes CSCs through differ-
entiation, reduces NB nodular formation and enhances survival in a mouse NB 
xenograft model[342]. The P-glycoprotein inhibitor vardenafil inhibits P-glycoprotein-
mediated drug-efflux and increases the cytotoxicity of paclitaxel and vincristine in 
enriched CSCs[343].

Inhibiting oncogenes and signalling pathways
NB CSC-associated oncogenes: Small RNA inhibitors that target E6 mRNA in CSC-
enriched cervical cancers[344] and HMGA1 in glioblastoma CSCs[345] are proof of 
concept the NB CSC-associated oncogenes could be silenced. However, delivery of 
high enough concentrations of oncogene-specific small RNA inhibitors (antisense 
oligonucleotides, RNA interference, ribozymes) to tumours is a significant clinical 
problem, which may be overcome using nanoparticles, liposomes and PEGylated 
aptamers (see below) targeted to cell surface CSC markers (see above)[346]. NB CSC-
associated Alk, TrkB and TrkAIII oncogenes could be inhibited by the Food and Drug 
Administration (FDA)-approved small molecule ALK inhibitors Crizotinib, Ceritinib, 
Alectinib, Brigatinib, Entrectinib and Lorlatinib[347] or by the FDA-approved small 
molecule Trk kinase inhibitors Entrectinib, Larotrectinib, Lestaurtinib, GNF-4256 or 
GNF-5837 either alone or in combination with conventional chemotherapy[72,348-
350], with the drug-resistance evolution counteracted by parallel development of 
modified drugs specific for known and expected kinase-domain mutations, and 
efficacy enhanced when combined with conventional chemotherapy and/or 
radiotherapy. Alk, TrkB and TrkAIII oncoproteins could also be reduced using 
appropriately CSC-targeted delivery of gene-specific peptide nucleic acids or siRNAs
[72]. Oncogenic alternative TrkAIII splicing could be reversed using new generation 
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lentiviral vectors that express TrkAIII inhibitory siRNAs and full length fully-spliced 
TrkA complementary DNA, mutated to prevent inhibition of expression without 
altering the amino acid sequence, in order to block TrkAIII oncogenic activity and 
reinstate TrkA tumour-suppressing activity[72]. Ibrutinib and acalabrutinib inhibitors 
of Bruton’s Tyrosine kinase, which is highly expressed in N-Myc amplified NBs and is 
associated with poor prognosis, have been shown to inhibit the migratory, invasive 
and tumour sphere forming capacity of NB cell lines, and to synergize with cisplatin, 
identifying Bruton’s Tyrosine kinase as a potential druggable NB driver oncogene, of 
relevance to NB CSCs[351]. Survivin, an oncogenic inhibitor of apoptotic and 
autophagic cell-death, is also differentially expressed in CSCs, is associated with 
chromosome 17q gain and adverse outcome[352], and can be inhibited by a significant 
number of small molecule and mRNA inhibitors (antisense oligonucleotides, RNA 
interference, ribozymes)[353].

CSC-associated signalling pathways: CSC signalling pathway inhibitors could also be 
adapted for use in NB, including the Notch pathway inhibitor Psoralidin, which 
reduces tumour-sphere formation, induces apoptosis, inhibits proliferation and 
increases doxorubicin and docetaxel sensitivity in breast cancer CSCs[354]. Shh 
signalling is also essential for NB cell proliferation and tumourigenicity[355]. The Shh 
signalling antagonists cyclopamine, IPI-926 and GANT61 promote tumour regression 
and deplete CSC in cancers, including NB[356-359], decrease CD133 and CD15 double 
positive NB CSC-like cells and reduce NB tumourigenic activity in vitro[360]. Small 
molecule Wnt and CD44 signalling inhibitors that reduce breast cancer CSC self-
renewal[361,362] and the cyclin dependent kinase inhibitor Roniciclib (BAY 1000394) 
that also targets CSCs, exhibit potent therapeutic effects in high-risk NB, by inhibiting 
Wnt/β-catenin signalling, inducing nucleolar-stress, down-regulating CSCs and 
inhibiting proliferation[363,364]. The Wnt/β-catenin signalling inhibitor Pimozide also 
blocks CSC EMT, inhibits CSC-associated STAT-3 and represses differentiation 
inhibiting gene expression[365]. Other inhibitors include, the irreversible Glycogen 
synthase kinase-3b serine/threonine kinase inhibitor Tideglusib, which reduces NB 
cell proliferation, migration and viability by eradicating the self-renewal capacity of 
highly resistant NB CSCs, reducing tumour sphere forming capacity and CD133 
expression[366]. The AKT/mammalian target of rapamycin (mTOR) signalling 
inhibitors triciribine and rapamycin target NB CSCs, decreasing survival and tumour 
sphere-forming capacity[367], and the mTOR inhibitor temsirolimus, which combined 
with the P53 activating MDM inhibitors Nutlin 3a or RG7388, inhibits proliferation 
and induces apoptosis in in vivo NB models[368]. Dual inhibition of the AKT2/mTOR 
and MAPK pathways with specific CCT128930 AKT2 inhibitor and PD98059 MAPK 
inhibitor decreases NB CSC proliferation, migration, tumour sphere-forming and 
angiogenic capacity[369]. Retinoic acid combined with Dlk1 knockdown disrupts CSCs 
by reducing DLK1 interactions with PHB1 and PHB2 prohibitins, required for self-
renewal and clonogenic capacity[118,370]. Targeting STAT3/JAK signalling with the 
natural polyphenol curcumin enhances NB chemosensitivity[371]. The highly oxidized 
plant steroid cucurbitacin-I either alone or in combination with the bi-phenol Honokiol 
inhibits NB tumourigenicity[372,373]. The selective Aurora B kinase inhibitor 
AZD1152 reduces NB cell proliferation and is selectively cytotoxic to tumour inducing 
NB CSC-like cells[374]. Inhibition of adenosine monophosphate activated protein 
kinase (AMPK) signalling also targets CSCs, the AMPK activator Metformin and 
AMPK pathway inhibitor vidarabine or 9-β-D-arabinofuranosyladenine reduce 2-D 
and 3-D NB CSC proliferation via Metformin inhibition of mTOR and Akt, and energy 
deprivation via Ara-a-mediated AMPK inhibition[375]. The PI3K/mTOR inhibitor 
NVP-BEZ235 decreases angiogenesis and increases survival in N-Myc-amplified 
orthotopic NB xenograft and transgenic N-Myc driven mouse NB models by reducing 
CSC-like activity[376].

Inhibition of transcription factors and regulators
N-Myc: NB CSC-associated N-Myc oncogene expression is stabilized and potentiated 
by interaction with ubiquitin-specific protease 7, and could be inhibited by the 
ubiquitin-specific protease 7 inhibitor P2207[377]. N-Myc expression in NB cells can 
also be reduced by small molecule BET bromodomain inhibitors JQ1 and I-BET151, 
which combined with HDAC inhibitor Panobinostat act synergistically to reduce N-
Myc and LIN28B CSC-promoting oncogene expression in NB cells, resulting in 
apoptosis, reduced tumour growth and progression in NB-bearing mice[378]. 
Inhibitors of N-Myc expression would also reduce N-Myc regulated MALAT1 lncRNA 
which contributes to CSC induction and maintenance[255] and reduces the expression 
of N-Myc-regulated histone demethylase JMJD1A, a regulator of SC behaviour and 
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CSC-associated MALAT1 expression in N-Myc amplified NB[251,256,257].

HIFs: Tumour hypoxia and pseudo-hypoxic phenotypes drive NB CSC phenotypes by 
activating HIF-1 and HIF-2 transcription factors, identifying HIFs are potential 
therapeutic targets in reducing NB CSC subpopulations. HIF inhibitors include 
inhibitors of HIF mRNA and protein expression, HIF dimerization, DNA-binding and 
transcriptional function and promoters of HIF-α degradation. HIF-1 mRNA and 
protein expression inhibitors include: lncRNA PIN1-v2[379]; S-TRPM2 calcium-
permeable ion channel short variant[380] and EZN-2698 and EZN-2208 HIF-1α 
antisense oligonucleotides[381,382]. The topoisomerase inhibitor topecan inhibits HIF-
1α protein translation and function[383], the natural flavonoid chrysin, soybean 
glyceollin phytoalexins and KC7F2 small molecule inhibit HIFα protein expression
[384-386], and the estrogen metabolite 2-methoxy-estradiol inhibits HIF-1α and HIF-2α 
protein synthesis, nuclear translocation and transcriptional activity[387]. Hsp90 
inhibitors GA, 17-AAG, 17DMAG and EC154, the HDAC inhibitor vorinostat and 
LW6t small molecule promote VHL-dependent HIF-α degradation, preventing 
accumulation and inhibiting transcriptional activity[388-391]. The small molecule PX12 
inhibits HIF-1α accumulation by targeting thioredoxin-1[392,393], and BAY87–2243 
suppresses HIF-1α and HIF-2α protein accumulation by inhibiting mitochondrial 
complex-1 (stopped in phase 1 trials)[394,395]. Inhibitors of HIF dimerization, include: 
cyclic CLLFVY that binds the HIF-1α PAS-B domain disrupting dimerization, 
transcriptional function and tumour cell hypoxic responses[396]; TC-S7009, a nanomo-
lar HIF-2 but not HIF-1 inhibitor that impairs DNA-binding and HIF-2-dependent 
hypoxic responses[397], and acriflavine that inhibits HIF-1 and HIF-2, and prevents 
HIF dimerization[398]. Doxorubicin and daurubicin inhibit HIF binding to HREs in 
gene promoters[399] and echinomycin (NSC-13502) prevents HIF-1 binding to core 5′-
CGTG-3′ HRE sequences in the VEGF promoter[400]. HIF transcriptional inhibitors, 
include: chetomin dithio-diketopiperizine that impedes HIF-1α interaction with its 
transcriptional activating histone acetyltransferase p300 co-factor and increases 
radiosensitivity[401]; idenopyrasole 21 that inhibits HIF-1 transcriptional activity[402]; 
the platelet aggregation inhibitor YC-1 that disassociates HIF-1α/p300 complexes, 
represses HIF transcriptional activity and reduces HIF-1α protein accumulation[403]; 
FM19G11 that inhibits HIF transcriptional activation by inhibiting interaction with 
p300[404]; NSC-607097 small molecule that inhibits HIF-1 transcriptional activity[405] 
and IDF-11774 that prevents HIF-1α accumulation, regulates cancer metabolism and 
suppresses tumour growth in vitro and in vivo[406]. Chaetocin, a de-regulator of HIF-1
α pre-mRNA splicing, also inhibits angiogenesis and growth in cancer models[407,
408]. HIF inhibitors would also block hypoxia-induced CSC-associated lncRNA 
expression by inhibiting HIF-induced histone demethylase JMJD1A expression, a 
regulator of SC behaviour and CSC-associated lncRNA MALAT1 expression in NB
[251,256,257].

HIF-1α silencing, when combined with retinoic acid formulations such as Al trans 
retinoic acid, used in the clinic to induce differentiation in high-risk NB following 
induction and consolidation chemotherapy[409,410], augment NB cell differentiation, 
senescence and chemosensitivity[411], and when combined with the proteasome 
inhibitor MG132 reduce NB CSC tumour sphere forming capacity, Nestin, Sox2 and 
Oct4 expression[412], highlighting the importance of combining HIF inhibitors with 
differentiation inducers to target malignant NB CSC subpopulations.

Targeting epigenetic transcription regulators: Targeting DNA methylation machine-
ries with DNA methylase inhibitors has also been proposed as a potential therapeutic 
strategy for eliminating CSCs and their progenitor cells[413]. The histone deacetylase 
inhibitor vorinostat enhances NB cell chemosensitivity, inhibits NB CSC tumour 
sphere formation, depletes SP CSC-like NB cells and reduces invasion, in association 
with altered expression of the CSC markers ABCB1, ABCC4, LMO2, SOX2, ERCC5, 
S100A10, IGFBP3, TCF3, and VIM and drug-resistance genes[414]. The HDAC 
inhibitor CBHA, combined with retinoic acid, exerts a synergistic anti-tumour effect in 
a human xenograft NB models by inhibiting survivin expression and AKT signalling
[415,416]. HDAC inhibitors combined with Al trans retinoic acid reduce NB cell prolif-
eration[417]. SiRNA inhibition of the polycomb repressor complex component Bmi1 
restores NB cell expression of Kif1Bβ tumour suppressor, inducing apoptosis and 
promoting NGF/TrkA-dependent NB cell differentiation[70,192]. The HDAC inhibitor 
Panobinostat, combined with BET bromodomain inhibitors, reduces N-Myc and 
Lin28B oncogene expression in NB cells, inducing apoptosis, reducing proliferation 
and blocking tumourigenicity in a mouse NB model[378]. Methylation silencing of 
TIMP-2 in NB cells is reversed by methyltransferase inhibitors[210], methylation 
silencing of caspase-8[418] can be reversed by methyltransferase inhibitors, and 
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combined with cisplatin or etoposide promotes apoptosis[419], and with INFg 
facilitates TRAIL-induced apoptosis[420]. DNA methylation inhibitors, however, also 
promote NB CSC gene expression and phenotypes, and within the context of NB 
promote completely undifferentiated large cell NBs, the most aggressive and deadly 
form of NB[421]. The histone demethylase JMJD1A inhibitor DMOG has been reported 
to reduce CSC-associated lncRNA MALAT1 expression in N-Myc amplified NB[256].

Inhibiting redox enzymes
Consistent with enhanced anti-oxidant activity in CSCs and potential extracellular 
roles for Trx and TrxR in altering the MMP/TIMP balance, disrupting extracellular 
matrices, promoting invasion and altering the angiogenic behaviour of endothelial 
cells[273,274], novel TrxR1 inhibitors have been reported to induce CSC death, 
suppress multidrug resistance by inhibiting the P-glycoprotein extrusion pump, to 
inhibit antioxidant defense, suppress invasion and migration and enhance sensitivity 
to chemotherapy[421]. Increased mitochondrial SOD2 expression and activity in NB 
CSCs, promoted by oncogenes, including TrkAIII, also enhances NB cell resistance to 
ROS-induced cytotoxicity[152], and could be targeted to enhance chemosensitivity. In 
this regard, the nonsteroidal anti-inflammatory drug Diclofenac has been shown to 
inhibit mitochondrial SOD2 expression and activity, and to promote NB cell apoptosis 
through the intrinsic mitochondrial pathway[422].

Alternative CSC inhibitors 
Other agents reported to target CSCs, include the plant alkaloid Berberine, which 
attenuates CD133, β-catenin, N-Myc, Sox2, Notch-2 and Nestin expression in Neuro2A 
NB cells impairing cancer stemness; down regulates PI3K/Akt and Ras/MAPK/Erk 
signalling reversing EMT in association with restored E-cadherin expression and 
reduced vimentin and fibronectin expression; represses cyclin and cyclin-dependent 
kinase expression potentiating G0/G1 cell cycle arrest and inhibiting proliferation, and 
modulates TGFβRI and RII receptors, promoting neuronal differentiation[423]. The 
polo-like kinase-1 inhibitor imidazotriazine GSK461346 (in clinical development), 
inhibits clonal expansion, promotes cell death and reduces tumourigenic activity in 
tumour initiating NB CSC models[424]. The small molecule tankyrase inhibitor 
XAV939 reverses NB CSC stemness and reduces migration capacity[425]. TRAIL 
induces apoptosis in TrkAIII expressing CSC-like NB cells through SHP/Src-mediated 
crosstalk with the TRAIL-receptor signalling pathway, suggesting that improved 
TRAIL formulation may also have a place in eradicating CSC populations, under 
certain circumstances[426]. The mitochondrial carnitine palmitoyl-transferase-1 
inhibitor perhexiline promotes NB cell differentiation by inducing non-coding RNA 
NB differentiation marker 29 expression, resulting in reduced stemness, anchorage-
dependent growth, reduced tumourigenic capacity and enhanced chemosensitivity via 
reduced ABC transporter expression and, combined with cisplatin, reduces nodule 
formation and increases survival in a mouse xenograft NB model, consistent with CSC 
depletion[342,427]. Stem cell-based small molecule screens have identified 
Dequalinium analogue C14 Linker, an analogue of the antibacterial mouthwash 
component Deca 10, as a nanomolar cytotoxic agent that kills tumour initiating CSC-
like NB cells, reduces tumour sphere formation and targets NB CSCs in vivo by 
impairing mitochondrial function and inducing apoptosis[428]. Rapamycin has also 
been identified as an inhibitor of NB tumour initiating CSC-like survival and prolif-
eration at nanomolar concentrations, and when combined with vinblastine inhibits NB 
xenograft tumour growth[428]. Additional compounds that exhibit selective activity 
against tumour initiating NB CSC-like cells include teniposide and vinblastine[428]. A 
drug library screen has also identified carbenoxolone as an inhibitor of FOXO-3-
dependent therapeutic-resistance in high-stage NB cells, reducing survival and 
increasing sensitivity to chemotherapeutic agents in 2D and 3D models[429]. b-
carotene also inhibits NB CSC self-renewal capacity and reduces CSC marker 
expression and resensitizes NB CSCs to cisplatin cytotoxicity, suggesting a potential 
use in NB chemotherapy[430]. Considering that neural-related tumour initiating CSC-
like cells exhibit distinct telomere maintenance, NB CSC-like cells may also represent 
good targets for telomerase inhibitors[431].

Targetting polyploid giant cancer cells and centrosome amplification
Polyploid giant cells are therapy-induced, therapy-resistant tumour subpopulations 
capable of orchestrating post-therapeutic recurrence and disease progression through 
the generation of CSCs[280,281,283,432]. CSC Polyploidy is considered a druggable 
phenotype but mitosis targeting strategies may also promote polyploidy in surviving 
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cells. Novel therapeutic strategies include targeting the higher energetic needs of 
polyploid giant cells[433]. In this regard, brain and acute myeloid leukemia polyploid 
giant cells are preferentially killed by the glycolysis inhibitor 2-deoxy-D-glucose[434,
435]. Specific mTOR inhibitors induce NB cell osteogenic differentiation[436] and 
enhance the effect of Aurora kinase inhibitors in promoting apoptosis of polyploid 
giant cancer cells[433]. The inhibition of mTOR signalling prevents therapy-induced 
polyploid giant cell formation[437] and the mTOR inhibitor AZD8055 prevents 
therapy-induced formation of pancreatic cancer polyploid giant cancer cells[438], 
illustrating that metabolic inhibition in polyploid giant cells may not only reduce CSC 
generation but also enhance therapeutic sensitivity in tumours containing polyploid 
giant cells. The anti-fungal anti-oxidant resveratrol selectively reduces the fitness of 
polyploid giant cancer cells by slowing down the cell cycle and promoting apoptosis, 
an effect that is augmented when combined with AMPK stimulators. In this regard, 
resveratrol combined with aspirin reduces the formation of polyploid colon cancer 
cells that lack p53 function and in APCMin/+ mice, prevents polyploidy in intestinal cells 
and subsequent tumour formation[439,440]. Conversely, maintenance of polyploid 
cancer cells senescence may also be efficacious, illustrated by the small molecule 
inhibitor R1530, which promotes tubulin polymerization and mitotic checkpoint 
kinase BubR1 function, inducing senescent polyploid cancer cell formation and 
reducing tumour growth in a human H460 non-small-cell lung cancer xenograft 
model, suggesting that continual promotion of mitotic catastrophe in polyploid cancer 
cells may block NB CSC formation[441]. Along this theme, microtubule polymerizing 
taxanes and microtubule de-polymerizing vinca alkaloids promote mitotic catastrophe 
and death in cancer cells but lack specificity and induce severe side-effects; investiga-
tional Monastrol AZD4877, Ispinesib, and ARRY-520 (Phase 1 and II trials completed) 
Kinesin-5 motor protein inhibitors promote mitotic arrest, tumour cell death and are 
well tolerated; FDA-approved GSK923295 centrosome-associated protein-CENP-E 
inhibitor induces defective mitosis and inhibits proliferation; FDA-approved UCN-
01/staurosporine and AZD7762 check-point kinase inhibitors induce death in p53-
deficient tumours; WEE1 kinase and HDAC inhibitors combined with DNA damaging 
agents induce mitotic catastrophe; APC-Cdc20 targeting prevents cyclin B degradation 
and promotes mitotic exit; small molecule dynamin GTPase inhibitors induce 
cytokinesis failure and cell death, and c-myc repression promotes cancer cell mitotic 
catastrophe and death[442].

The central role of aberrant centrosome numbers and behaviour in polyploid giant 
cancer cell formation, continuous chromosomal instability, generation of aneuploid 
CSC-like cells, de-regulated microtubule organisation and irregular cell cycles, also 
makes the centrosome a promising therapeutic target for reducing tumour CSC 
populations[443,444]. Centrosomes and their pericentriolar matrices contain important 
proto-oncogenes and tumour suppressors that, when altered, drive centrosome 
amplification and subsequent chromosomal aberrations, the therapeutic inhibition of 
which can blunt centrosome involvement in tumour progression. Targeting 
centrosome Plk1 with BI2536 or BI6727 inhibitors has shown efficacy in acute myeloid 
leukemia[445]. Small molecular cyclin-dependent kinase inhibitors that de-regulate the 
centrosome cycle are in development[446], FDA-approved PD0332991 (Palbociclib), 
LEE011 (ribociclib) and LY2835219 (abemaciclib) cdk4/6 inhibitors are amongst the 
most recent[444] but may cause rare severe lung inflammation (https://www.
fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-severe-lung-
inflammation-ibrance-kisqali-and-verzenio-breast-cancer). A number of Aurora kinase 
inhibitors are also in clinical trials aimed at reducing chromosomal instability caused 
by aberrant centrosome behaviour, and exhibit incremental efficacy when combined 
with conventional chemotherapeutic agents, restoring therapeutic sensitivity and 
reducing tumour progression[287,443]. The FDA-approved Plk4 inhibitor CFI-400945 
promotes defective centrosome duplication, cell death and inhibits tumour xenograft 
growth[447] and the FDA-approved Mps1/TTK inhibitor BAY1161909 (Empesertib) 
blocks spindle assembly, chromosome attachment and exhibits marked tumour 
suppressing activity when combined with paclitaxel[448]. FDA-approved Nutlins 
restores P53 function by inhibiting interaction with MDM2 and PRIMA-1, which 
targets Y220C mutant p53, restores wild-type p53 function reducing centrosome 
amplification[449,450]. Centrosome clustering, required for pseudo-bipolar spindle 
formation, leads to mitosis and aneuploid CSCs formation in centrosome-amplified 
polyploid giant cancer cells. This can be prevented by the FDA-approved small 
molecule PARP-6 inhibitor AZ0108, which promotes multipolar spindle formation and 
apoptosis in centrosome-amplified cells and exhibits anti-tumour effects in cancer 
models[451,452]. Centrosome clustering can also be disrupted by the investigational 
small molecule CCB02, which disrupts the interaction between centrosomal-P4.1-

https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-severe-lung-inflammation-ibrance-kisqali-and-verzenio-breast-cancer)
https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-severe-lung-inflammation-ibrance-kisqali-and-verzenio-breast-cancer)
https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-severe-lung-inflammation-ibrance-kisqali-and-verzenio-breast-cancer)
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associated protein and b-tubulin, resulting in prolonged multipolar mitosis and death 
of centrosome-amplified cancer cells[453].

Alternative approaches
Targeting the tumour microenvironment: Reprogramming of the hypoxic tumour 
niche improves the efficacy of chemotherapy, fractionated radiotherapy and CAR T-
cell immunotherapy[159,454], and represses hypoxia-induced CSCs phenotypes. 
Tumour oxygenation can be improved by hyperbaric oxygenation, intra-tumoural 
lipid-stabilized oxygen microbubble injection[455,456], nanoparticle-mediated 
reoxygenation, oxygen-generating methods[457] or artificial red cells[458]. The 
“normalization” of aberrant tumour vasculatures may also improve tumour 
oxygenation, reduce tumour progression and enhance therapeutic efficacy, stemming 
from observations that vascular destruction promotes tumour hypoxia, reduces 
therapeutic efficacy and facilitates metastatic progression. Tumour vessels are 
immature, permeable, tortuous, have aberrant basement membranes and lack cellular 
and matrix components required for maturation and function. This results in increased 
interstitial hypertension that promotes rapid drug-efflux and generates hypoxic 
niches, which promote and select polyploid giant cancer cell and CSC-like phenotypes. 
Vascular “normalization” requires delicate rebalancing of angiogenic factor/inhibitor 
equilibria by careful selection and dosage of antiangiogenic agents. Inhibition of 
VEGFA, VEGFRs or PHD2 proline hydroxylase inhibitors can prune immature 
permeable vessels, reduce permeability, improve vessel maturity, blood flow and 
oxygenation, decrease interstitial pressure to improve drug penetration and 
chemosensitivity, reduce metastatic progression and potentially reduce hypoxic niche-
associated CSC subpopulations[459,460]. Finally, tumour associated stromal and 
extracellular matrix barriers to CSC-targeted therapies delivered by nanoparticles or 
by engineered immune cells could be overcome using FAP+ tumour fibroblasts 
targeted CAR T-cells, or other CAR cell types, engineered to express matrix degrading 
enzymes to disrupt tumour stroma and improve therapeutic access[159].

Engineered MSCs: The close relationship between MSCs and NB CSCs in tumouri-
genesis and metastatic progression[319-321] has also led to novel strategies that utilize 
MSCs to deliver anti-NB therapeutic agents. In the mouse TH-N-Myc NB model, IFNβ-
transduced mouse MSCs home to NBs, remain in tumours for up to 2 wk and augment 
tumour IFNβ levels[461]. Purified human adipose MSCs transfected with miR-124 and 
co-cultured with human M17 NB cells transfer miR-124 mimetic to NB cells by 
exosome delivery, resulting in miR-124-dependent reduced proliferation, increased 
apoptosis and neuronal differentiation, demonstrating that human adipose MSCs can 
be used effectively to deliver mimetic miRNAs to NB cells, supporting future 
therapeutic use of autonomous patient-derived MSCs as therapeutic vectors in NB
[462]. Primary human MSCs engineered to express full length membrane-associated 
TRAIL[463], kill TRAIL receptor positive classic and primary NB cell lines, migrate to 
NB sites following intraperitoneal injection, and reduce NB xenograft growth in vivo, 
confirming drug delivery potential in NB[464]. However, the potential use of MSCs for 
drug delivery must take into account reports that MSCs also promote tumour growth 
and metastasis[465,466].

Oncolytic viruses: Genetically modified oncolytic virotherapy holds great promise as 
a novel anti-cancer therapy for eliminating CSCs[467]. The engineered oncolytic virus 
Nestin-targeted oHSV (rQNestin34.5) has been shown to kill doxorubicin-resistant 
CD133+ SP CSC-like NB cells and to eradicate both bulk and tumour initiating tumour 
spheres, significantly delaying tumour formation in in vivo models[468]. The first 
report of oncolytic virotherapy in NB was the direct intratumour injection of the 
Ad5/3-Cox2 oncolytic adenovirus, which induced a clinical response in a 6 year old 
stage IV NB patient[469]. The oncolytic adenovirus ICOVIR, that exhibits enhanced 
tumour selectivity by exploiting aberrant E2F expression, has been used to treat 
several children with stage IV refractory NB by intravenous injection of irradiation-
inactivated ICOVIR infected autologous MSCs, with complete 5 year remission in the 
only patient to exhibit a response[470]. In a recent first in-human and in-child trial 
study of autologous Icovir-5 infected MSC treatment of NB, two patients exhibited 
disease stabilization associated with low toxicity[471]. The engineered measles virus 
Edmonston strain has also been shown to have significant cytopathic effects on human 
primary and classical NB cell lines and xenograft models, inducing apoptotic cell 
death[472].

Nanoparticles for improving delivery and efficacy: Nanoparticle drug delivery 
facilitates better control of drug-release kinetics, improves bio-distribution and 
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prolongs systemic and localized drug longevity. Mesoporous silica nanoparticles 
loaded with Notch signalling inhibitors or carrying γ-secretase inhibitors efficiently 
target tumour CSCs[473,474]. Salinomycin conjugated to a hyaluronic acid-based 
nanogel targets drug-resistant CD44+ cells and enhances therapeutic efficacy[475]. 
Nanoparticles coated with antibodies to CSC markers improve targeting, polymeric 
(D, L lactide-co-glycolide) nanoparticles coated with an anti-CD133 antibody and 
loaded with paclitaxel reduce tumourigenicity in mouse xenograft models[476], and 
Fe2O3 nanoparticles coated with antibodies to ABCG2 transporter and loaded with 
paclitaxel target and kill myeloma cells[477]. With regard to NB, synthetic HDL 
nanoconjugates that target the SR-B1 receptor are taken up by validated NB CSCs, and 
reduce CSC viability, self-renewal, invasion and migration in vitro, and in vivo exhibit 
tumour-uptake and reduce tumour growth, supporting further evaluation as a 
therapeutic NB CSCs inhibitor[478]. Mitochondrial-targeted silver nanoparticle 
cytotoxicity could be enhanced in NB cells by inhibitors of humanin expression, 
reported to protect NB cells against silver nanoparticle-induced toxicity[479]. Low 
nanoparticle penetration, due to low-level extravasation, has also been intelligently 
addressed, based upon greater understanding of the permeable and immature nature 
of tumour micro-vasculatures, with the development of gold nanoshell nanoparticles 
that seed tumour vasculatures for photothermal tumour ablation. This approach has 
demonstrated remarkable efficacy in mouse xenograft tumour models and in a clinical 
pilot study of low and intermediate risk prostate cancer, extolling a 94% success rate in 
tumour ablation[480].

CONCLUSION
The embryonic origin of NBs from NC stem/progenitor cells and their stemness gene 
expression patterns, indicate that NBs contain significant CSC-like subpopulations 
from the outset, which combined with properties of self-renewal, tumourigenicity, 
multipotency, therapy-resistance and reversible plasticity play central roles in NB 
heterogeneity, therapeutic-resistance, post-therapeutic-relapse, metastatic progression 
and unfavourable outcome. Conventional induction, consolidation and post-consol-
idation therapeutic strategies for high risk unfavourable NBs, induce initial clinical 
remission to states of no evidence or minimal residual disease, but also select and 
promote the formation of therapy-resistant polyploid giant cancer cells (PGCCs) and 
CSC subpopulations, adding to the probability of post-therapeutic relapse and 
metastatic progression. It is, therefore, of paramount importance that novel therapeutic 
strategies are developed to specifically target and eliminate PGCCs and CSC subpopu-
lations in order to improve the current ≈ 8% 5-year overall survival rate in high risk 
NB[481].

As illustrated in this review, major advances in understanding the molecular 
protagonists, signalling pathways and mechanisms responsible for the induction, 
selection, maintenance and behaviour of NB PGCCs and CSCs have been made, and 
novel therapeutic strategies are currently being developed to target these populations. 
From our own perspective, observations that NF-κB-induced MMP-9 expression and 
MMP-9-dependent invasion associate with spontaneous S to I (CSC) phenotype 
conversion in NB cells[93,175], and the NB-associated oncogenic alternative TrkAIII 
splice variant promotes NB cell MMP-9 expression within a CSC context, links MMP-9 
and stress-regulated alternative TrkAIII splicing to more aggressive NB CSC 
behaviour and identifies MMP-9 and TrkAIII as potential therapeutic NB CSC targets
[72,73]. TrkAIII promotion of PI3K/Akt/NF-κB survival signalling, Bcl2 family 
expression[480], a survival-adapted ER-stress response[219], mitochondrial SOD2 
expression[198] and pro-angiogenic MMP-9/VEGF/TSP-1 equilibrium, within a NB 
CSC context, furthermore, provide important insights into oncogene-regulated 
apoptosis evasion, survival within stressful tumour microenvironments, protection 
against mitochondrial ROS-induced death and angiogenesis, likely to extend to other 
splice-activated, mutated and fusion Trk oncogenes. Stress-regulated TrkAIII-
dependent metabolic plasticity, unveils a mechanism for NB CSC metabolic adaption 
to changing conditions within tumour microenvironments[218], and TrkAIII 
promotion of centrosome amplification, unveils a mechanism for enhancing 
therapeutic resistance and promoting dormancy through NB PGCC formation[217], 
which upon escape from dormancy can generate blastomere-like CSCs with highly 
aggressive metastatic karyotypes. Furthermore, our recent discovery of a novel NF-
YAx splice variant, expressed by NBs and induced by doxorubicin, that selects NB 
CSC-like cells through differential cytotoxicity, unveils a potential mechanism for 
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Figure 5 Cancer stem cell involvement in neuroblastoma relapse and progression, and potential therapeutic strategies. Neuroblastomas (NB) 
progression (center); mechanisms, molecular protagonists and conventional therapeutic strategies that select and induce the NB polyploid giant cancer cells (PGCC) 
and cancer stem cells (CSC), responsible for post-therapeutic relapse and low 5-year overall survival rates, in high risk unfavourable NB (right); potential therapeutic 
strategies to detect, target and eliminate NB PGCC and CSC subpopulations (left), and areas requiring further development (bottom). EFS: Event free survival; OS: 
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Overall survival; CSC: Cancer stem cell; IL-2: Interleukin 2; GMCSF: Granulocyte Macrophage Colony-Stimulating Factor; NCSC: Neural crest stem cells; NB: 
Neuroblastomas; NK: Natural killer cells; ALK: Anaplastic lymphoma kinase; siRNA: Small interfering ribonucleic acid; PNA: Peptide nucleic acid; MSC: Mesenchymal 
stem cells; PGCCs: Polyploid giant cancer cells.

genotoxic drug-induced NB CSC selection and post-therapeutic relapse, which will be 
fully investigated in due course[136]. It is also our opinion that PGCCs formation and 
regulation of PGCC dormancy and escape from dormancy to generate potentially 
highly metastatic blastomere-stage CSCs, represent underestimated and understudied 
areas and should form the basis of novel pre-clinical models to study post-therapeutic 
NB relapse from PGCCs, with the aim of identifying single functional surface markers 
or marker-sets that uniformly and privately identify dormant NB PGCCs, counterparts 
that have escaped dormancy and their secondary CSC progeny, for better detection 
and therapeutic targeting and experimental therapeutics. Furthermore, current 
therapeutic strategies, which suffer from problems of delivery, uptake and efficacy 
due to aberrant tumour micro-vasculatures, physical barriers and acidic hypoxic 
microenvironmental conditions that promote drug-efflux, must also be improved to 
overcome these problems. In this review and within this context, we highlight the use 
of nanoparticles for improving drug kinetics or to facilitate thermal ablation; novel 
improved CSC-targeting CAR T-cells that modify inflammatory environments, modify 
tumour matrices and that can be switched off or eliminated to minimize side effects, 
with immune checkpoint inhibitors to improve infiltration; novel CAR NK, iNKT cells 
and engineered MSCs to target CSC niches; tumour oxygenation to reduce hypoxic 
CSC niches and enhance drug-sensitivity; centrosome dispersal and microtubule 
disrupting agents to perpetuate dormancy, and novel oncolytic viruses that exhibit 
improved CSC targeting and lytic activity (Figure 5). Continued research and 
development in these areas will hopefully lead to much needed improvements in 
event-free and overall survival in high risk unfavourable NBs.
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