World Journal of *Gastroenterology*

World J Gastroenterol 2021 August 21; 27(31): 5126-5296

Published by Baishideng Publishing Group Inc

JG

World Journal of Gastroenterology

Contents

Weekly Volume 27 Number 31 August 21, 2021

REVIEW

5126 Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence and what the future may hold

Young E, Philpott H, Singh R

5152 Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa Weng CY, Xu JL, Sun SP, Wang KJ, Lv B

MINIREVIEWS

- 5171 Molecular advances in pancreatic cancer: A genomic, proteomic and metabolomic approach Rajesh S, Cox MJ, Runau F
- 5181 Screening and prevention of hepatitis C virus reactivation during chemotherapy Li YR, Hu TH, Chen WC, Hsu PI, Chen HC
- 5189 Role of near-infrared fluorescence in colorectal surgery Zocola E, Meyer J, Christou N, Liot E, Toso C, Buchs NC, Ris F
- 5201 Dysphagia, reflux and related sequelae due to altered physiology in scleroderma Kadakuntla A, Juneja A, Sattler S, Agarwal A, Panse D, Zakhary N, Pasumarthi A, Shapiro L, Tadros M

ORIGINAL ARTICLE

Basic Study

5219 Planning the hepatitis C virus elimination in Cyprus: A modeling study

> Gountas I, Yiasemi I, Kyprianou E, Mina C, Georgiou C, Katsioloudes P, Kouroufexi A, Demetriou A, Xenofontos E, Nikolopoulos G

Clinical and Translational Research

5232 Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning

Zhao SB, Yang W, Wang SL, Pan P, Wang RD, Chang X, Sun ZQ, Fu XH, Shang H, Wu JR, Chen LZ, Chang J, Song P, Miao YL, He SX, Miao L, Jiang HQ, Wang W, Yang X, Dong YH, Lin H, Chen Y, Gao J, Meng QQ, Jin ZD, Li ZS, Bai Y

Case Control Study

5247 Tailored eradication strategy vs concomitant therapy for Helicobacter pylori eradication treatment in Korean patients

Choi YI, Chung JW, Kim KO, Kwon KA, Kim YJ, Kim JH, Seo JY, Park DK

Contents

Weekly Volume 27 Number 31 August 21, 2021

Retrospective Study

5259 Histological differentiation impacts the tumor immune microenvironment in gastric carcinoma: Relation to the immune cycle

Mashukov A, Shapochka D, Seleznov O, Kobyliak N, Falalyeyeva T, Kirkilevsky S, Yarema R, Sulaieva O

Observational Study

5272 Prediction of the severity of colorectal lesion by fecal hemoglobin concentration observed during previous test in the French screening program

Balamou C, Koïvogui A, Rodrigue CM, Clerc A, Piccotti C, Deloraine A, Exbrayat C

CASE REPORT

5288 Plexiform angiomyxoid myofibroblastic tumor treated by endoscopic submucosal dissection: A case report and review of the literature

Wu JD, Chen YX, Luo C, Xu FH, Zhang L, Hou XH, Song J

Contents

Weekly Volume 27 Number 31 August 21, 2021

ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Shunji Fujimori, MD, PhD, AGAF, Director, Professor, Department of Gastroenterology, Chiba Hokusoh Hospital, Nippon Medical School, 1715, Kamagari, Inzai-City, Chiba 270-1694, Japan. s-fujimori@nms.ac.jp

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG's CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing, Production Department Director: Xiang Li, Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS		
World Journal of Gastroenterology	https://www.wjgnet.com/bpg/gerinfo/204		
ISSN	GUIDELINES FOR ETHICS DOCUMENTS		
ISSN 1007-9327 (print) ISSN 2219-2840 (online)	https://www.wignet.com/bpg/GerInfo/287		
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH		
October 1, 1995	https://www.wjgnet.com/bpg/gerinfo/240		
FREQUENCY	PUBLICATION ETHICS		
Weekly	https://www.wjgnet.com/bpg/GerInfo/288		
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT		
Andrzej S Tarnawski, Subrata Ghosh	https://www.wjgnet.com/bpg/gerinfo/208		
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE		
http://www.wjgnet.com/1007-9327/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242		
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS		
August 21, 2021	https://www.wjgnet.com/bpg/GerInfo/239		
COPYRIGHT	ONLINE SUBMISSION		
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com		

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

WJ

World Journal of Gastroenterology

Submit a Manuscript: https://www.f6publishing.com

World J Gastroenterol 2021 August 21; 27(31): 5181-5188

DOI: 10.3748/wjg.v27.i31.5181

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Screening and prevention of hepatitis C virus reactivation during chemotherapy

Yuan-Rung Li, Tsung-Hui Hu, Wen-Chi Chen, Ping-I Hsu, Hui-Chun Chen

ORCID number: Yuan-Rung Li 0000-0002-5041-7731; Tsung-Hui Hu 0000-0002-9172-1967; Wen-Chi Chen 0000-0002-7572-4201; Ping-I Hsu 0000-0003-3905-4674; Hui-Chun Chen 0000-0002-7843-0882.

Author contributions: Li YR developed the theory and performed the computations; Chen WC and Hsu PI verified the analytical methods; Hu TH, Chen HC and Hsu PI supervised the findings of this work; all authors discussed the results and contributed to the final manuscript.

Conflict-of-interest statement: All authors have and declare that there are no other relationships or activities that could appear to have influenced the submitted work.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Yuan-Rung Li, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan

Tsung-Hui Hu, Department of Internal Medicine, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

Wen-Chi Chen, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan

Ping-I Hsu, Division of Gastroenterology and Hepatology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan 709, Taiwan

Hui-Chun Chen, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

Corresponding author: Ping-I Hsu, PhD, Professor, Division of Gastroenterology and Hepatology, Department of Internal Medicine, An Nan Hospital, China Medical University, No. 66, Sec. 2, Changhe Rd, Tainan 709, Taiwan. williamhsup@yahoo.com.tw

Abstract

Hepatitis C virus (HCV) reactivation occurs in 23% of HCV-infected cancer patients receiving chemotherapy. Forty-three percent of the patients with reactivation of HCV during chemotherapy develop a hepatitis flare. Most of the cancer patients with HCV reactivation have an unremarkable clinical course following an HCV-related hepatitis flare during chemotherapy. However, 26%-57% of the cancer patients developing an acute flare of chronic hepatitis C during chemotherapy require unanticipated discontinuation or dose reduction of chemotherapy, which results in deleterious changes in the cancer treatment plan. Although an optimal strategy for HCV screening in cancer patients receiving chemotherapy has not been established, universal pre-chemotherapy HCV testing for patients with hematological malignancies is recommended by current guidelines. All the currently approved direct-acting antivirals (DAAs) can be used in cancer patients, but the use of DAAs during chemotherapy should avoid drug-drug interactions between chemotherapy and antiviral agents. If there are no contraindications or anticipated drug-drug interactions, DAAs treatment can be administered before, during, or after chemotherapy. In conclusion, HCV reactivation occurs in approximately one-fourth of HCV-infected cancer patients receiving chemotherapy. An HCV-related hepatitis flare during chemotherapy may lead to the discontinuation of potentially life-saving chemotherapy.

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Taiwan

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0 Grade C (Good): C, C Grade D (Fair): 0 Grade E (Poor): 0

Received: January 28, 2021 Peer-review started: January 28, 2021 First decision: May 2, 2021 Revised: May 23, 2021 Accepted: August 2, 2021 Article in press: August 2, 2021 Published online: August 21, 2021

P-Reviewer: Oliveira-Filho EF, Sira AM S-Editor: Ma YJ L-Editor: A P-Editor: Xing YX

Currently, universal HCV screening is recommended in hematological malignancy patients before chemotherapy, but there is no evidence-based guideline for other cancer patients. DAAs treatment can cure HCV infection and prevent HCV reactivation during chemotherapy.

Key Words: Hepatitis C virus; Chemotherapy; Screening; Reactivation; Hepatitis flare

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepatitis C virus (HCV) reactivation occurs in approximately one-fourth of HCV-infected cancer patients receiving chemotherapy. An HCV-related hepatitis flare during chemotherapy may lead to the discontinuation of potentially life-saving chemotherapy. Currently, universal HCV screening is recommended in hematological malignancy patients before chemotherapy, but there is no evidence-based guideline for other cancer patients. direct-acting antivirals treatment can cure HCV infection and prevent HCV reactivation during chemotherapy.

Citation: Li YR, Hu TH, Chen WC, Hsu PI, Chen HC. Screening and prevention of hepatitis C virus reactivation during chemotherapy. World J Gastroenterol 2021; 27(31): 5181-5188 URL: https://www.wjgnet.com/1007-9327/full/v27/i31/5181.htm DOI: https://dx.doi.org/10.3748/wjg.v27.i31.5181

INTRODUCTION

Hepatitis C virus (HCV) infection affects millions of people worldwide and is a significant burden for cancer patients[1,2]. The prevalence of chronic HCV infection among cancer patients in the United States ranges from 1.5% to 10.6% [3]. A recent study with universal pre-chemotherapy screening of HCV infection by testing for anti-HCV antibody showed that the prevalence of HCV infection in cancer patients receiving chemotherapy was 6.0% (337/5601) in Taiwan[4]. Chemotherapy can lead to immunosuppression and reactivate quiescent HCV infection in cancer patients[5-13]. The acute flare of HCV infection may result in deleterious changes in the cancer treatment plan and has a negative impact on the treatment outcome of cancer patients. Currently, evidence-based guidelines for HCV screening and treatment in cancer patients undergoing chemotherapy have not been established because data on the efficacy of pre-chemotherapy HCV testing and treatment are very limited. In this article, we review the incidence of HCV reactivation during chemotherapy and the outcome of HCV-related hepatitis flare in cancer patients receiving chemotherapy. Additionally, the recommendations for the pre-chemotherapy HCV screening and the prevention of HCV reactivation during chemotherapy are also reviewed.

DEFINITION OF QUIESCENT HCV INFECTION, HCV REACTIVATION AND **HCV-RELATED HEPATITIS FLARE IN CANCER PATIENTS RECEIVING** CHEMOTHERAPY

This article summarizes current evidences dealing with HCV reactivation and HCVrelated hepatitis flare in cancer patients receiving chemotherapy. It is worthy to note that the definitions of HCV reactivation and hepatitis flare during chemotherapy varied in previous studies[4,14-22]. In this review article, we list the definitions of HCV reactivation and HCV-related hepatitis flare in each study quoted in the Tables. The definitions of HCV reactivation and HCV-related hepatitis flare recommended by authors are summarized in Table 1. Recommended HCV reactivation during chemotherapy is increase in HCV-RNA level of $\geq 1 \text{ Log}_{10} \text{ IU/mL}$ over baseline[17], and recommended definition of HCV-related hepatitis flare is unexplained increase in alanine aminotransferase (ALT) to 3 times the upper limit of normal during chemotherapy and increase in HCV-RNA level of $\geq 1 \text{ Log}_{10} \text{ IU/mL over baseline}$ [18]. Most retrospective works lacked the data of HCV viral load before chemotherapy. The

Table 1 Recommended definitions of quiescent hepatitis C virus infection, hepatitis C virus reactivation and hepatitis C virus-related hepatitis flare in cancer patients receiving chemotherapy

Term	Definition	Ref.		
Quiescent HCV infection	An HCV infection with a positive serum HCV-RNA and normal serum levels of liver enzymes	IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 59[30]		
HCV reactivation	Increase in HCV-RNA level during chemotherapy of $\geq 1 \log_{10} \mathrm{IU}/\mathrm{mL}$ over baseline	Talima <i>et al</i> [17]		
HCV-related hepatitis flare	Unexplained increase in ALT to 3 times the upper limit of normal during chemotherapy and increase in HCV-RNA level of $\geq 1 \log_{10} IU/mL$ over baseline	Torres <i>et al</i> [18]		

IARC: International Agency for Research on Cancer; HCV: Hepatitis C virus.

scientific strengths of these retrospective evidences were therefore not robust.

INCIDENCE OF HCV REACTIVATION IN CANCER PATIENTS RECEIVING CHEMOTHERAPY

In a retrospective observation study by Lee *et al*[16], enhanced replication of HCV (increase in HCV-RNA level of $\geq 1 \text{ Log}_{10} \text{ IU/mL}$ over baseline) was noted in 9 (27%) of 33 HCV-infected cancer patients who underwent chemotherapy. Another retrospective study by Talima et al[17] demonstrated that the incidence of HCV reactivation (increase in HCV-RNA level of $\geq 1 \text{ Log}_{10}\text{IU/mL}$ over baseline) in 34 HCV-infected breast cancer patients receiving chemotherapy was 6% (2/34). In a prospective observation study by Torres et al[18], reactivation of HCV infection (increase in HCV-RNA level of \geq 1 Log₁₀IU/mL over baseline) occurred in 23 (23%) of 100 cancer patients undergoing chemotherapy. Among these cancer patients, those with hematological malignancies had a higher incidence of HCV reactivation than those with solid tumors (36% vs 10%).

INCIDENCE OF HCV-RELATED HEPATITIS FLARE IN CANCER PATIENTS **RECEIVING CHEMOTHERAPY**

HCV-related hepatitis flare is a significant burden for cancer patients undergoing chemotherapy[6,19-20]. Table 2 displays the incidence of HCV-related hepatitis flare in cancer patients receiving chemotherapy. In a retrospective observation study by Li et al [4], universal pre-chemotherapy screening of HCV infection by testing for anti-HCV antibody was conducted in 5601 cancer patients undergoing chemotherapy. HCVinfected cancer patients had a higher incidence of severe acute liver injury (serum ALT increases beyond 10 times the upper limit of normal during chemotherapy or 6 mo following chemotherapy) than those without HCV infection (2.3% vs 0.7%). Among the HCV-infected patients who did not have chronic HBV infection, the incidences of severe liver injury in those with hematological malignancy, hepatocellular carcinoma (HCC) and non-HCC solid tumors were 9.4% (3/32), 1.9% (2/105), and 1.2% (2/169), respectively. In this study, the incidence of severe acute liver injury in HCV-infected hematological cancer patients was higher than that in those with HCC patients and non-HCC solid tumor patients (9.4% vs 1.9 % and 1.1%, respectively). Rituximabcontaining chemotherapy and hematological malignancy were identified risk factors related to severe acute exacerbation of HCV infection in cancer patients undergoing chemotherapy. In another retrospective study by Mahale *et al*[5], the incidence of acute exacerbation of HCV infection (3-fold or greater increase in serum ALT level) during chemotherapy was 23% in 104 patients with hematological malignancy and 4% in 204 patients with solid tumors. The former also had a higher incidence of HCV-related acute exacerbation than the latter. In a prospective observation study at MD Anderson Cancer Center^[18], reactivation of HCV infection occurred in 23% of 100 cancer patients receiving chemotherapy. Among those with HCV reactivation, 10 patients (43%) developed a hepatitis flare (unexplained increase in ALT to 3 times the upper limit of normal). Overall, the incidence of HCV-related hepatitis flare in cancer patients receiving chemotherapy was 10% in this prospective study.

WJG | https://www.wjgnet.com

Table 2 Incidence of hepatitis C virus-related hepatitis flare in cancer patients receiving chemotherapy						
Ref.	Study type	Cancer type	Results			
Torres <i>et al</i> [18]	Prospective observation study	Hematological tumor (<i>n</i> = 50)	A hepatitis flare occurred in 10% of HCV-infected cancer patients receiving chemotherapy			
	Study	Non-HCC solid tumor (<i>n</i> = 50)	Definition of HCV-related hepatitis flare: unexplained increase in ALT to 3 times the upper limit of normal and increase in HCV-RNA level of $\geq 1 \log_{10} IU/mL$ over baseline			
Li et al[4]	Retrospective observation study	Hematological tumor (<i>n</i> = 569); HCC (<i>n</i> = 256); Non-HCC solid tumor (<i>n</i> = 3900)	The incidence of severe acute liver injury in HCV-infected hematological cancer patients was higher than that in those with HCC patients and non-HCC solid tumor patients (9.4% vs 1.9 % and 1.1%, respectively). Definition of severe acute liver injury: ALT increased beyond 10 times the upper limit of normal during chemotherapy or 6 months following chemotherapy			
Tomizawa et al <mark>[28]</mark>	Retrospective observation study	Colorectal cancer ($n = 24$)	The incidence of severe acute exacerbation rate in HCV-infected patients was 8%. Definition of severe acute exacerbation: ALT increased beyond 5 times the upper limit of normal			
Hsu et al [22]	Retrospective observation study	Hematological tumor (<i>n</i> = 104); Solid tumor (<i>n</i> = 204)	The incidence of HCV acute exacerbation was 11% (hematological tumor: 23%; solid tumor: 4.4%). Definition of HCV acute exacerbation: 3-fold or greater increase in serum ALT level			

HCV: Hepatitis C virus; HCC: Hepatocellular carcinoma; ALT: Alanine aminotransferase.

CLINICAL OUTCOME OF HCV-RELATED HEPATITIS FLARE DURING CHEMOTHERAPY

Most of the cancer patients with HCV reactivation have an unremarkable clinical course following HCV flare during chemotherapy. In a prospective observation study by Fujii et al[6], 6 (28.6%) of 21 Leukemia patients with HCV-related hepatitis flare during chemotherapy developed hepatic decompensation (Table 3). Another prospective observation study by Torres et al[18] showed that none of 23 cancer patients (hematological malignancy: n = 18; solid tumor: n = 5) with HCV-related hepatitis flare during chemotherapy developed liver decompensation or mortality. In a retrospective study including 33 hematological cancer patients with HCV-related hepatitis flare, the incidence of hepatic decompensation was also 0%[7]. Although most of the cancer patients with HCV reactivation or hepatitis flare during chemotherapy have a benign clinical course, a significant number of patients with severe flare of HCV infection have to discontinue potentially life-saving chemotherapy. Currently, there are no randomized controlled trials comparing the outcomes of the patients with chemotherapy-related HCV reactivation who stop chemotherapy and who go on cancer treatment. Therefore, whether chemotherapy should be stopped in cancer patients with HCV reactivation remains unclear. Nonetheless, physicians often discontinue chemotherapy in HCV-infected cancer patients who develop severe liver dysfunction during cancer treatment because it is a life-threatening condition and can be induced by either chemotherapeutic drugs or viral reactivation.

In a retrospective study by Li et al[4], four of seven patients (57.1%) with HCVrelated severe acute liver injury discontinued chemotherapy due to hepatitis flare. In a prospective study by Torress et al[18], 6 of 23 HCV-infected patients (26%) with hepatitis flare required unanticipated discontinuation or dose reduction of chemotherapy. Since interruption of chemotherapy in cancer patients would result in deleterious changes in the cancer treatment plan and has a negative impact on patient outcome, the aforementioned findings support the identification and treatment of chronic HCV infection to prevent HCV reactivation and hepatitis flare.

PRE-CHEMOTHERAPY HCV SCREENING IN CANCER PATIENTS

A standard strategy for HCV screening in cancer patients before chemotherapy has not been established. However, a retrospective study by Hosry et al[21] demonstrated that early diagnosis of HCV infection with virological cure improved the outcomes of cancer and survival of HCV-infected patients who developed non-Hodgkin lymphoma. To improve pre-chemotherapy HBV and HCV testing, Hsu et al[22] developed a computerized order entry-based therapeutic control system (e-CONTROL) to notify healthcare providers in a medical center in Taiwan for pre-

WJG https://www.wjgnet.com

Table 3 Clinica	Table 3 Clinical outcomes of hepatitis C virus-related hepatitis flare during chemotherapy							
Ref.	Study type	Cancer type	Liver decompensation	Interruption of chemotherapy	Mortality due to HCV reactivation			
Torres et al[18]	Prospective observation study	Hematological tumor ($n = 18$)	Total: 0%	Total: 26%	Total: 0%			
		Solid tumor $(n = 5)$						
Fujii et al[<mark>6</mark>]	Prospective study	Leukemia ($n = 21$)	Total: 28.6%	-	-			
Li et al[4]	Retrospective observation study	Hematological tumor (<i>n</i> = 3)	Total: 0%	Total: 57%	Total: 0%			
			(Hematological tumor: 0%;	(Hematological tumor: 67%;	(Hematological tumor: 0%;			
		HCC (<i>n</i> = 2)	HCC: 0%;	HCC: 50%;	HCC: 0%;			
		Non-HCC solid tumor ($n = 2$)	Non-HCC solid tumor: 0%)	solid tumor: 50%)	Non-HCC solid tumor: 0%)			
Lee et al[16]	Retrospective study	Hematological tumor (<i>n</i> = 14)	Total: 0%	Total: 32%	Total: 0%			
		Solid tumor ($n = 11$)						
Mahale <i>et al</i> [5]	Retrospective study	Hematological tumor (<i>n</i> = 24)	Total: 0%	Total: 45%	Total: 0%			
		Solid tumor ($n = 9$)						
Zuckerman et al[7]	Retrospective study	Hematological tumor ($n = 33$)	Total: 0%	-	Total: 0%			

HCV: Hepatitis C virus; HCC: Hepatocellular carcinoma.

chemotherapy HBV and HCV testing. The e-CONTROL system achieved a prechemotherapy HCV screening rate of 97.7% (5601/5735). The HCV screening rate in cancer patients receiving chemotherapy is low in the United States. According to an observation study at MD Anderson Cancer Center, the HCV screening rate in cancer patients receiving chemotherapy was only 13.9% [23]. Currently, an optimal strategy for HCV screening in cancer patients receiving chemotherapy has not been established. Figure 1 illustrates current recommendations for testing and treating HCV infection in cancer patients receiving chemotherapy [24,25,29]. The 5th European Conference on Infections in Leukemia recommended that all patients with hematological malignancy be screened for hepatotropic viruses (HBV and HCV) before cancer treatment^[24]. The European Association for the Study of the Liver (ESAL) recommends that all patients with malignancy should be screened for HCV infection before cancer treatment due to HCV reactivation possibility after treatment[25].

Anti-HCV antibody is a recommended tool for initial screening of HCV infection in cancer patients receiving chemotherapy because of its cheap and cost-effective advantages. However, the disadvantage of screening HCV infection by serum anti-HCV antibody is a positive result indicating either current or past HCV infection. Therefore, cancer patients with a positive result of anti-HCV antibody should be further tested for serum HCV RNA to confirm current infection status of HCV (Figure 1). In clinical practice, serum HCV RNA is not recommended as a routine screening tool for HCV infection in cancer patients because it is an expensive diagnostic method.

TREATMENT OF HCV INFECTION IN CANCER PATIENTS RECEIVING **CHEMOTHERAPY**

All the currently approved direct-acting antiviral (DAA) agents can be applied in cancer patients, but the use of DAA treatment during chemotherapy should avoid drug-drug interactions between chemotherapy agents and antivirals (Figure 1). The initiation of DAA treatment in HCV-infected cancer patients undergoing chemotherapy should be individualized and determined by the cancer treatment plan. Contraindications to DAA treatment in HCV-infected cancer patients include (1)

WJG https://www.wjgnet.com

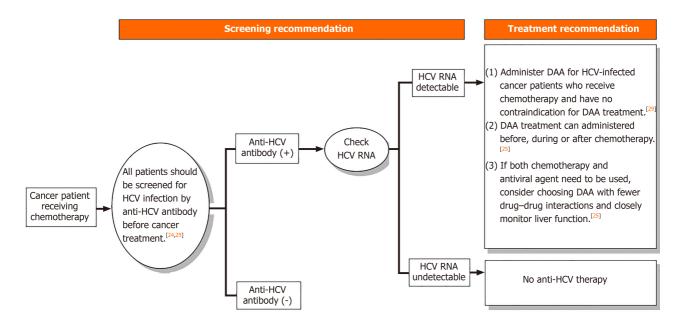


Figure 1 Current recommendations for testing and treating hepatitis C virus infection in cancer patients receiving chemotherapy. HCV: Hepatitis C virus; DAA: Direct-acting antiviral.

Pregnancy; (2) Uncontrolled cancer; (3) Patients with a life expectancy of < 12 mo that cannot be remediated by cancer treatment; (4) Hypersensitivity or intolerance to DAAs; and (5) Anticipated major drug-drug interactions with cancer treatment. If there are no contraindications or anticipated drug-drug interactions, DAA treatment can be administered before, during or after chemotherapy.

The use of DAAs for HCV infection in infected cancer patients receiving chemotherapy may increase the risk of drug-drug interactions. Physicians can identify potentially significant interactions between DAAs and chemotherapy agents based on information obtained from current databases (http://hepdruginteractions.org) and then choose adequate DAAs for HCV treatment or alter the regimen of chemotherapy to avoid drug-drug interactions. In general, treatment for HCV infection in cancer patients receiving chemotherapy by sofosbuvir/Ledipasvir or glecaprevir/ pibrentasvir is safe and effective[26]. A prospective observation study from MD Anderson Cancer Center showed that the cure rate of HCV infection by sofosbuvirbased therapy in HCV-infected cancer patients was 91%[27].

CONCLUSION

In conclusion, chemotherapy can lead to immunosuppression and reactivate quiescent HCV infection. Most of the cancer patients with HCV reactivation have an unremarkable clinical course following HCV hepatitis flare during chemotherapy. However, 26%–57% of the cancer patients developing acute exacerbation of chronic hepatitis C during chemotherapy require unanticipated discontinuation or dose reduction of chemotherapy. Currently, the optimal strategy for HCV screening in cancer patients receiving chemotherapy has not been established. Nonetheless, the ESAL recommends that all patients with malignancy should be screened for HCV before cancer treatment due to HCV reactivation possibility after treatment. Currently, universal HCV screening is recommended in hematological malignancy patients before chemotherapy, but there is no evidence-based guideline for other cancer patients. Administration of DAAs can cure HCV infection and prevent HCV reactivation during chemotherapy.

REFERENCES

- Webster DP, Klenerman P, Dusheiko GM. Hepatitis C. Lancet 2015; 385: 1124-1135 [PMID: 25687730 DOI: 10.1016/S0140-6736(14)62401-6]
- Allison RD, Tong X, Moorman AC, Ly KN, Rupp L, Xu F, Gordon SC, Holmberg SD; Chronic 2

WJG | https://www.wjgnet.com

Hepatitis Cohort Study (CHeCS) Investigators. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006-2010. J Hepatol 2015; 63: 822-828 [PMID: 25937437 DOI: 10.1016/j.jhep.2015.04.021]

- 3 Torres HA, Shigle TL, Hammoudi N, Link JT, Samaniego F, Kaseb A, Mallet V. The oncologic burden of hepatitis C virus infection: A clinical perspective. CA Cancer J Clin 2017; 67: 411-431 [PMID: 28683174 DOI: 10.3322/caac.21403]
- Li YR, Chen WC, Tsai WL, Cheng JS, Tsay FW, Kao SS, Chen HC, Hsu PI. Severe acute 4 exacerbation of HCV infection in cancer patients who undergo chemotherapy without antiviral prophylaxis. J Viral Hepat 2020; 27: 873-879 [PMID: 32301253 DOI: 10.1111/jvh.13302]
- Mahale P, Kontoyiannis DP, Chemaly RF, Jiang Y, Hwang JP, Davila M, Torres HA. Acute 5 exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol 2012; 57: 1177-1185 [PMID: 22871500 DOI: 10.1016/j.jhep.2012.07.031]
- Fujii Y, Kaku K, Tanaka M, Yosizaki M, Kaneko T, Matumoto N. Hepatitis C virus infection in patients with leukemia. Am J Hematol 1994; 46: 278-282 [PMID: 8037177 DOI: 10.1002/ajh.2830460405]
- Zuckerman E, Zuckerman T, Douer D, Qian D, Levine AM. Liver dysfunction in patients infected 7 with hepatitis C virus undergoing chemotherapy for hematologic malignancies. Cancer 1998; 83: 1224-1230 [PMID: 9740089]
- Torres HA, Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. 8 Nat Rev Clin Oncol 2012; 9: 156-166 [PMID: 22271089 DOI: 10.1038/nrclinonc.2012.1]
- Luppi M, Longo G, Ferrari MG, Ferrara L, Marasca R, Barozzi P, Morselli M, Emilia G, Torelli G. Additional neoplasms and HCV infection in low-grade lymphoma of MALT type. Br J Haematol 1996; 94: 373-375 [PMID: 8759899 DOI: 10.1046/j.1365-2141.1996.d01-1791.x]
- Vento S, Cainelli F, Mirandola F, Cosco L, Di Perri G, Solbiati M, Ferraro T, Concia E. Fulminant 10 hepatitis on withdrawal of chemotherapy in carriers of hepatitis C virus. Lancet 1996; 347: 92-93 [PMID: 8538348 DOI: 10.1016/s0140-6736(96)90212-3]
- 11 Kawatani T, Suou T, Tajima F, Ishiga K, Omura H, Endo A, Ohmura H, Ikuta Y, Idobe Y, Kawasaki H. Incidence of hepatitis virus infection and severe liver dysfunction in patients receiving chemotherapy for hematologic malignancies. Eur J Haematol 2001; 67: 45-50 [PMID: 11553266 DOI: 10.1034/j.1600-0609.2001.067001045.x]
- Vento S, Cainelli F, Longhi MS. Reactivation of replication of hepatitis B and C viruses after 12 immunosuppressive therapy: an unresolved issue. Lancet Oncol 2002; 3: 333-340 [PMID: 12107020 DOI: 10.1016/s1470-2045(02)00773-8]
- 13 Schirmer M, Vogel W, Thaler J, Grünewald K, Umlauft F, Geisen F, Zilian U, Konwalinka G. Fulminant hepatitis C virus infection. Lancet 1994; 343: 1433 [PMID: 7910911 DOI: 10.1016/s0140-6736(94)92558-51
- Dibenedetto SP, Ragusa R, Sciacca A, Di Cataldo A, Miraglia V, D'Amico S, Lo Nigro L, Ippolito 14 AM. Incidence and morbidity of infection by hepatitis C virus in children with acute lymphoblastic leukaemia. Eur J Pediatr 1994; 153: 271-275 [PMID: 8194562 DOI: 10.1007/BF01954518]
- Locasciuli A, Gornati G, Tagger A, Ribero ML, Cavalletto D, Cavalletto L, Masera G, Shulman HM, 15 Portmann B, Alberti A. Hepatitis C virus infection and chronic liver disease in children with leukemia in long-term remission. Blood 1991; 78: 1619-1622 [PMID: 1653063]
- Lee HL, Bae SH, Jang B, Hwang S, Yang H, Nam HC, Sung PS, Lee SW, Jang JW, Choi JY, Han 16 NI, Song BJ, Lee JW, Yoon SK. Reactivation of Hepatitis C Virus and Its Clinical Outcomes in Patients Treated with Systemic Chemotherapy or Immunosuppressive Therapy. Gut Liver 2017; 11: 870-877 [PMID: 28750484 DOI: 10.5009/gnl16434]
- Talima S, Kassem H, Kassem N. Chemotherapy and targeted therapy for breast cancer patients with 17 hepatitis C virus infection. Breast Cancer 2019; 26: 154-163 [PMID: 30191397 DOI: 10.1007/s12282-018-0904-2]
- Torres HA, Hosry J, Mahale P, Economides MP, Jiang Y, Lok AS. Hepatitis C virus reactivation in 18 patients receiving cancer treatment: A prospective observational study. Hepatology 2018; 67: 36-47 [PMID: 28653760 DOI: 10.1002/hep.29344]
- 19 Sagnelli E, Pisaturo M, Stanzione M, Messina V, Alessio L, Sagnelli C, Starace M, Pasquale G, Coppola N. Clinical presentation, outcome, and response to therapy among patients with acute exacerbation of chronic hepatitis C. Clin Gastroenterol Hepatol 2013; 11: 1174-1180.e11 [PMID: 23591280 DOI: 10.1016/j.cgh.2013.03.025]
- 20 Rumi MG, De Filippi F, La Vecchia C, Donato MF, Gallus S, Del Ninno E, Colombo M. Hepatitis C reactivation in patients with chronic infection with genotypes 1b and 2c: a retrospective cohort study of 206 untreated patients. Gut 2005; 54: 402-406 [PMID: 15710990 DOI: 10.1136/gut.2004.048009]
- Hosry J. Mahale P. Turturro F. Miranda RN. Economides MP. Granwehr BP. Torres HA. Antiviral 21 therapy improves overall survival in hepatitis C virus-infected patients who develop diffuse large Bcell lymphoma. Int J Cancer 2016; 139: 2519-2528 [PMID: 27501007 DOI: 10.1002/ijc.30372]
- 22 Hsu PI, Lai KH, Cheng JS, Kao SS, Li YR, Sun WC, Chen WC, Lin KH, Shin CA, Chiang PH, Li YD, Ou WT, Chen HC, Yu HC. Prevention of acute exacerbation of chronic hepatitis B infection in cancer patients receiving chemotherapy in a hepatitis B virus endemic area. Hepatology 2015; 62: 387-396 [PMID: 26041578 DOI: 10.1002/hep.27843]
- Hwang JP, Suarez-Almazor ME, Torres HA, Palla SL, Huang DS, Fisch MJ, Lok AS. Hepatitis C 23 virus screening in patients with cancer receiving chemotherapy. J Oncol Pract 2014; 10: e167-e174 [PMID: 24594679 DOI: 10.1200/JOP.2013.001215]

- 24 Mallet V, van Bömmel F, Doerig C, Pischke S, Hermine O, Locasciulli A, Cordonnier C, Berg T, Moradpour D, Wedemeyer H, Ljungman P; ECIL-5. Management of viral hepatitis in patients with haematological malignancy and in patients undergoing haemopoietic stem cell transplantation: recommendations of the 5th European Conference on Infections in Leukaemia (ECIL-5). Lancet Infect Dis 2016; 16: 606-617 [PMID: 27599653 DOI: 10.1016/S1473-3099(16)00118-3]
- 25 European Association for the Study of the Liver; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol 2018; 69: 461-511 [PMID: 29650333 DOI: 10.1016/j.jhep.2018.03.026]
- Torres HA, Pundhir P, Mallet V. Hepatitis C Virus Infection in Patients With Cancer: Impact on 26 Clinical Trial Enrollment, Selection of Therapy, and Prognosis. Gastroenterology 2019; 157: 909-916 [PMID: 30797794 DOI: 10.1053/j.gastro.2019.01.271]
- 27 Torres HA, Economides MP, Angelidakis G, Hosry J, Kyvernitakis A, Mahale P, Jiang Y, Miller E, Blechacz B, Naing A, Samaniego F, Kaseb A, Raad II, Granwehr BP. Sofosbuvir-Based Therapy in Hepatitis C Virus-Infected Cancer Patients: A Prospective Observational Study. Am J Gastroenterol 2019; 114: 250-257 [PMID: 30410039 DOI: 10.1038/s41395-018-0383-2]
- 28 Tomizawa K, Suyama K, Matoba S, Hanaoka Y, Toda S, Moriyama J, Shimomura A, Miura Y, Kumada H, Kuroyanagi H, Takano T. The safety of chemotherapy for colorectal cancer patients with hepatitis C virus infection. Med Oncol 2014; 31: 212 [PMID: 25239602 DOI: 10.1007/s12032-014-0212-4]
- Ghany MG, Morgan TR; AASLD-IDSA Hepatitis C Guidance Panel. Hepatitis C Guidance 2019 29 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Hepatology 2020; 71: 686-721 [PMID: 31816111 DOI: 10.1002/hep.31060]
- 30 International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 59, Hepatitis Viruses, World Health Organization IARC, 1994

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

