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Abstract
Pre-natal and post-natal chemical exposures and co-exposures from a variety of 
sources including contaminated air, water, soil, and food are common and 
associated with poorer birth and child health outcomes. Poor diet is a contributing 
factor in the development of child behavioral disorders. Child behavior and 
learning can be adversely impacted when gene expression is altered by dietary 
transcription factors such as zinc insufficiency or deficiency or by exposure to 
toxic substances permitted in our food supply such as mercury, lead, or orga-
nophosphate pesticide residue. Children with autism spectrum disorder and 
attention deficit hyperactivity disorders exhibit decreased or impaired PON1 gene 
activity which is needed by the body to metabolize and excrete neurotoxic orga-
nophosphate pesticides. In this current review we present an updated macroepi-
genetic model that explains how dietary inorganic mercury and lead exposures 
from unhealthy diet may lead to elevated blood mercury and/or lead levels and 
the development of symptoms associated with the autism and attention deficit-
hyperactivity disorders. PON1 gene activity may be suppressed by inadequate 
dietary calcium, selenium, and fatty acid intake or exposures to lead or mercury. 
The model may assist clinicians in diagnosing and treating the symptoms asso-
ciated with these childhood neurodevelopmental disorders. Recommendations for 
future research are provided based on the updated model and review of recently 
published literature.
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Core Tip: Connecting inorganic mercury and lead measurements in blood to dietary 
sources of exposure that may impact child development is a challenge. Autism 
spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) diag-
noses and treatment efficacy may include the collection of the biomarker measure-
ments of selenium, mercury, and lead levels in red blood cells and behavioral checklist 
data before and after healthy dietary interventions. We discuss the analytical measure-
ment methods for determining mercury and lead levels in blood and how these 
biomarkers have been used in ASD and ADHD studies with and without dietary 
intervention.

Citation: Dufault RJ, Wolle MM, Kingston HMS, Gilbert SG, Murray JA. Connecting inorganic 
mercury and lead measurements in blood to dietary sources of exposure that may impact child 
development. World J Methodol 2021; 11(4): 144-159
URL: https://www.wjgnet.com/2222-0682/full/v11/i4/144.htm
DOI: https://dx.doi.org/10.5662/wjm.v11.i4.144

INTRODUCTION
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) 
are neurodevelopmental disorders that are diagnosed according to behavior 
descriptions outlined in the Diagnostic and Statistical Manual of Mental Disorders 
(DSM) published by the American Psychiatric Association (APA). The conditions are 
similar in that children with either diagnosis have difficulty functioning in a social 
environment[1]. While a child with ASD may find it difficult to verbally hold a 
reciprocal conversation with a peer, a child with ADHD may talk excessively or 
interrupt his classmate during a discussion[1]. Children with either diagnosis often 
have difficulty in school settings where there are established rules for acceptable 
behaviors in and out of the classroom. While a child with ASD may become distressed 
when it is time to transition to another school activity, a child with ADHD may have 
difficulty standing still in the recess lines[1]. Children with either diagnosis often fail 
to develop and maintain appropriate peer relationships and have difficulty learning in 
the general education school environment. In the United States (U.S.), children with 
ASD or ADHD are eligible to receive special education and related services under 
federal law to help them achieve their learning goals[2].

Although the causes of ASD and ADHD remain unknown, there is strong evidence 
to suggest mercury and lead exposures are significant factors in their etiology. 
Regarding ADHD, He et al[3] found seven case-control studies in a literature review of 
the effects of blood lead levels in children with ADHD symptoms. The case groups 
showed significant increases in ADHD symptoms with blood lead measurements and, 
in some cases, at levels < 3 μg/dL[3]. This finding is alarming given the fact the United 
States Centers for Disease Control and Prevention (CDC) only uses a 5 μg/dL 
reference value for blood lead levels to identify children who have been exposed to 
lead[4]. In a separate review of seventeen studies published in the last five years, 
Donzelli et al[5] determined there is a positive association between lead exposure and 
ADHD and even low levels of blood lead are of concern. Regarding ASD, Saghazadeh 
and Rezaei[6] identified 48 studies in a review of the literature for use in assessing the 
role of heavy metals in the etiology of ASD. They found children with ASD had higher 
erythrocyte levels of lead and mercury and significantly higher blood lead levels 
compared to controls[6]. Jafari et al[7] focused their review and analysis exclusively on 
mercury measurements reported in 44 studies. They found mercury levels in whole 
blood and red blood cells were significantly higher in patients with autism compared 
to healthy subjects[7]. Jafari et al[7] concluded that their results revealed mercury to be 
an important causal factor in ASD with its accumulation in blood tissue likely due to 
impaired mercury detoxification and excretory mechanisms. The United States CDC 

https://www.wjgnet.com/2222-0682/full/v11/i4/144.htm
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currently has no reference value for blood mercury levels to identify children at risk of 
autism.

A mercury toxicity model introduced previously in 2009 by Dufault et al[8] provides 
a macroepigenetic explanation of how child neurodevelopment can be adversely 
impacted when dietary transcription factors such as zinc deficiency or exposures to 
heavy metals interfere with the expression of the zinc dependent metallothionein (MT) 
gene. The MT gene produces the metal binding protein metallothionein that makes it 
possible for the body to excrete the neurotoxicants mercury and lead[9]. The mercury 
toxicity model was revised and re-introduced by Dufault et al[10] in 2012 to show how 
lead levels may accumulate in the body with the consumption of high fructose corn 
syrup (HFCS) and the accompanying calcium losses that may occur when dietary 
magnesium intake is low.

United States Department of Agriculture (USDA) scientists warned long ago that 
when dietary magnesium intake is low, HFCS consumption may adversely affect 
micromineral homeostasis in humans by lowering calcium, zinc, and phosphorus 
balances[11]. Mahaffey et al[12] previously reported a significant and independent 
inverse relationship exists between blood lead levels and dietary calcium (Ca) intake. 
In addition to these homeostatic relationships, the revised model published in 2012 
shows that with inadequate dietary Ca intake or Ca losses, PON1 gene activity may 
decrease[10]. The PON1 gene is responsible for producing the Ca dependent para-
oxonase-1 enzyme that breaks down and detoxifies the organophosphate (OP) 
pesticides[13] used widely by United States farmers[14]. United States CDC resear-
chers found diet to be the primary source of OP exposure in children[15]. They warned 
children have significantly higher OP exposures compared to adults and are at greater 
risk of neurotoxic harm[15]. In addition to fructose[16], mercury and lead are potent 
inhibitors of PON1 gene expression[17]. When PON1 gene expression is inhibited, the 
body is unable to detoxify OP pesticide residues. This triggers the mechanism of 
oxidative stress in the brain which impacts a child’s ability to learn[8,10].

Mercury (Hg) and lead (Pb) accumulation in the body may also create these same 
conditions of oxidative stress[18] which impact child behavior and learning especially 
when MT is unable to perform its antioxidant role[19] due to dietary zinc (Zn) 
deficiency or homeostatic mechanisms that lead to Zn losses and copper (Cu) gains. 
Figure 1 below show the updated macroepigenetic model for Hg and Pb toxicity 
resulting from this review of the literature. The new model shows selenium (Se) deficit 
resulting from unhealthy diet is a key factor in decreasing PON1 activity levels.

The literature indicates unhealthy diet remains a significant factor in the develop-
ment of symptoms associated with ASD[20] and ADHD[21-23]. Evidence suggests 
ultra-processed food consumption may be a source of heavy metal exposure not often 
considered, especially in the case of inorganic mercury and lead[24-28]. Both elements 
are neurotoxic. In a recent review, Dórea[29] reported low-level exposures to lead 
concurrent with other neurotoxic substances such as mercury and arsenic, show a 
measurable impact on child neurodevelopment. In addition, children with ASD and 
ADHD continue to show elevated levels of Hg and/or Pb in their blood[30-39]. Hg 
and Pb exposures can be identified through blood analyses and should be determined 
by the clinician when a patient presents with symptoms of ASD or ADHD. If blood 
testing shows elevated Hg or Pb levels, the physician could refer the patient for dietary 
assessment and healthy diet instruction.

The following section provides a review of the availability of Pb and Hg analyses 
and current practices in the laboratory and clinical settings.

ANALYTICAL METHODS FOR BLOOD HG AND PB MEASUREMENT IN 
CLINICAL STUDIES
Despite the difference in toxicity related to Hg species, total Hg is often measured for 
exposure studies. As can be seen from Table 1, cold vapor atomic absorption 
spectrometry (CV-AAS) is commonly used to evaluate the association between blood 
Hg levels and autistic symptoms[34,40-42]. Other studies couple CV-AAS to atomic 
fluorescence spectrometry (CV-AFS) for better sensitivity and selectivity[31,43]. 
Current methodologies mainly rely on inductively coupled plasma mass spectrometry 
(ICP-MS) due to its unique advantages of high sensitivity, wide dynamic range, and 
multi-isotopic analysis capabilities. ICP-MS can be used to analyze blood with less 
sample preparation mainly involving matrix solubilization with acidic or alkaline 
solutions, which can be accelerated by microwave irradiation[44]. Table 1 Lists a few 
studies on measurement of Hg in blood by ICP-MS[30,32,34,45]. The United States 
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Table 1 Summary of methods for the determination of blood Hg and Pb measurements

Analyte Sample and  
sample size Method Limit of detection Ref.

Blood (20-30 mL) NA [34]

Red blood cells1 NA [40]

Blood (3-5 mL) NA [41]

Hg

Red blood cells  
(0.4 mL), plasma  
(0.5 mL)

CV-AAS

0.09 ng/mL [42]

Blood1 0.09 μg/L2 [31]Hg

Blood (0.5 g)

CV-AFS

0.001 μg/L [43]

Hg Blood (20 mL) DMA 0.01 μg/L [47,48]

Blood (3-5 mL) NA [35]

Blood (3 mL) 25.01 µg/L [38]

Blood (3-5 mL) NA [41]

Pb

Blood (3-5 mL)

AAS

0.03 μg/dL [55]

Blood1 2.85 μg/dL2 [31]

Blood (20-30 mL) NA [34]

Blood (50 µL) 0.042 μg/dL [36]

Blood (20 mL) 0.01 μg/dL [47]

Blood1, hair (1 g) NA [56]

Pb

Blood (0.5-2 mL)

GF-AAS

25 μg/L [57]

Pb Bone1 X-ray fluorescence 2 µg/g [38]

Blood (1 mL), hair  
(5-10 mg)

NA [30]

Blood (2-3 mL) 0.25 μg/L (Hg) [32]

Blood (2-3 mL) 0.25 μg/dL (Pb) [32]

Blood (20-30 mL) 0.1 μg/L (Hg) [34]

Blood (20-30 mL) 0.002 μg/dL (Pb) [34]

Blood1 1.3 μg/dL (Pb) [37]

Blood1 0.24 μg/L (Hg) [45]

Hg, Pb

Blood (20 mL)

ICP-MS

0.3 μg/dL (Pb) [59]

Blood (46 µL) 0.65 μg/L (Hg) [60]

Blood (46 µL) 0.27 μg/dL (Pb) [60]

Blood (30 µL) NA [61]

Blood (50 µL) 0.13 ppb2 (Hg) [62]

Blood (50 µL) 2.38 ppb2 (Pb) [62]

Hg, Pb

Blood (6.2 µL)

DBS with ICP-MS

0.7 μg/L (Hg) [63]

Blood (0.5 g) 0.0001 μg/L [43]

Dental amalgam1 NA [50]

Methylmercury

Blood (0.5 mL)

GC-CV-AFS

0.1 pg/L [51]

I-Hg, methylmercury Blood (0.5 g) GC-ICP-MS with SIDMS NA [26]

Blood (35-50 µL) 0.3 μg/L (methylmercury) [64]

Blood (40-60 µL) 1.9 μg/L (I-Hg) [65]

I-Hg, methylmercury DBS with GC-CV-AFS
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Blood (40-60 µL) [65]

1Sample size unspecified.
2Lowest detected concentration reported in the study (limit of detection not available).
NA: Limit of detection and lowest detected concentration not available; CV-AAS: Cold vapor atomic absorption spectrometry; CV-AFS: CV-AAS to atomic 
fluorescence spectrometry; DMA: Direct mercury analysis; AAS: Atomic absorption spectrometry; GF-AAS: Graphite furnace AAS; ICP-MS: Inductively 
coupled plasma mass spectrometry; SIDMS: Speciated isotope dilution mass spectrometry; DBS: Dried blood spot.

Figure 1 Macroepigenetic model for role of unhealthy diet in mercury and lead toxicity. ASD: Autism spectrum disorder; ADHD: Attention deficit 
hyperactivity disorder.

CDC uses this technique to measure blood Hg after solubilizing the matrix with a 
solution of tetramethylammonium hydroxide[46].

Direct mercury analysis (DMA) enables direct Hg measurement without any sample 
preparation. This high throughput and cost-effective method minimize analytical 
errors associated with sample preparation and reduces hazardous waste generation. 
Chinese researchers used DMA to measure blood Hg levels to evaluate the association 
between Hg exposure and child neurobehavioral development and the influence of sex 
and dietary intake on these relationships[47,48]. DMA has the constraint that its 
detection limit is not comparable with those of CV-AAS, CV-AFS and ICP-MS.

Although exposure studies often focus on total Hg determination, the health effects 
of Hg depend on its chemical forms. Hence, there are now analytical methods to 
determine its distinct species. The CDC used a non-chromatographic method to 
speciate blood Hg based on selective determination of inorganic and total Hg by CV-
AAS with their difference accounting for organic Hg[49]. Halbach and Welzl[42] 
predicted the levels of inorganic and organic Hg from total blood Hg based on the 
difference in partition of the two forms of Hg between erythrocytes and plasma. 
Advanced methods of Hg speciation analysis use a chromatographic system coupled 
to element specific and sensitive detector such as CV-AFS and ICP-MS. Several clinical 
studies used gas chromatography (GC) coupled to CV-AFS to determine Hg species in 
blood[43,50,51]. Liquid chromatography (LC) can be used to separate Hg species 
without derivatization, thus reducing potential risk of contamination or loss of 
unstable analytes. Its main setback is higher detection limit which can be improved by 
using micro- or nano-HPLC systems or preconcentration of analytes.

Despite the advances in instrumentation and methodology, speciation analysis is 
complicated by potential transformation of analytes during sample collection, storage, 
preparation, and analysis that may lead to erroneous results. Hg species may undergo 
alkylation, dealkylation, oxidation and/or reduction depending on the matrix 
composition and analytical processes[52]. Such species transformations cannot be 
identified using conventional methods involving external calibration or standard 
additions. Speciated isotope dilution mass spectrometry (SIDMS), EPA Method 6800
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[53], is uniquely capable to track and correct for in-situ transformation of species, 
thereby enabling accurate and precise determination of analytes. The U.S. CDC applies 
this methodology to determine Hg species in blood by GC-ICP-MS after preconcen-
tration on a solid phase microextraction fiber[54]. Dufault et al[26] used this method to 
study the association between blood inorganic mercury (I-Hg) with glucose levels in 
the human population and its link to processed food intake.

Several methods are available for blood Pb measurement. Studies evaluated the 
association between Pb exposure and autistic behaviors by measuring Pb in blood 
using AAS[35,38,41,55]. Graphite furnace AAS (GF-AAS) enables analysis of small 
volume of sample with minimum preparation[31,34,36,47,56,57]. The introduction of 
ICP-MS has made it possible for laboratories to achieve lower detection limits and 
make accurate and precise blood Pb measurement. A method by the U.S. CDC 
measures Pb in whole blood using ICP-MS after simple dilution[58]. The use of ICP-
MS has also been widely reported to evaluate the relationship between blood Pb levels 
and ASD, see Table 1[30,32,34,37,45,59]. Portable and easy-to-operate devices using 
anodic stripping voltammetry technology are also available to measure Pb at point of 
care on a small amount of blood.

Clinical studies are emerging on measurement of Hg and Pb on dried blood spot 
(DBS). Here, a small volume of blood is blotted and dried on a filter encased in a paper 
card via a simple prick. DBS allows easy and less invasive blood collection, small 
volume sampling as well as simple transport and storage. The use of DBS is growing 
through the introduction of advanced analytical techniques, that have expanded 
testing options and improved throughput. A pilot study in 2008 used DBS for mea-
surement of Hg and Pb where samples from newborns were analyzed by ICP-MS[60]. 
Subsequent studies using DBS evaluated children’s exposures to heavy metals 
including Hg and Pb by ICP-MS[61-63]. Recent studies investigated the feasibility of 
DBS for the measurement of Hg species by GC-CV-AFS[64,65].

It was difficult to summarize the lowest and highest concentrations of analytes 
found in the studies discussed in this section because the data presentation lacks 
uniformity; some studies reported mean or median concentrations while others 
compared the levels of the elements before and after treatment. Therefore, the 
detection limits of the techniques are summarized in Table 1. In cases where detection 
limits were not available, the lowest reported concentrations were provided in Table 1.

LACK OF UNIFORMITY AMONG MEASUREMENT RESULTS AND IMPACT 
ON SYMPTOM-BASED DIAGNOSIS
The analytical method used to determine Hg or Pb levels in blood during clinical trials 
yields varied results lacking in uniformity; this measurement problem continues to be 
a barrier in identifying toxic exposures. An exposure to Pb or Hg becomes toxic when 
the child exhibits symptoms of behavioral duress. Children presenting symptoms of 
ADHD or ASD can be diagnosed using the appropriate behavioral checklist in 
conjunction with blood testing. The amount of blood sample required to measure 
mercury or lead using any of the methods listed in Table 1 vary depending on the 
analyst or laboratory conducting the blood test. Clinical laboratories should be 
consulted before a phlebotomy is performed to obtain the blood sample. The sample 
size needed by the laboratory will be based on the instrument to be used, its limit of 
detection for the analyte to be measured and the method of analysis.

In choosing an appropriate behavior checklist, the Conners rating scales or 
symptom checklists are used widely by physicians to diagnose ADHD when children 
present with problem behaviors[66]. In a brief review of the diagnostic accuracy of 
tests used to diagnose ADHD in children, Gaba et al[67] recommend using the Conners 
Abbreviated Symptom Questionnaire because of its brevity and high diagnostic 
accuracy. In the case of ASD diagnosis, the most widely used behavior rating scale is 
the childhood autism rating scale, otherwise known as CARS[68]. Whether diagnosing 
a case of ADHD or ASD, appropriate behavioral checklists are available for use and 
can be used in conjunction with blood testing. Several studies show these diagnostic 
tools to be effective when used together.

In a study of five hundred seventy-eight children with ADHD, Huang et al[37] 
measured blood Pb levels using ICP-MS and found children with low exposure (≤ 5 
μg/dL) exhibited hyperactive and impulsive behaviors but not inattentiveness. In 
conjunction with the blood testing, Huang et al[37] administered the Conners’ Rating 
Scale-Revised (CRS-R) checklist to the mothers to assess their children’s behavior. In a 
study of one thousand seven hundred and seventy-eight children with no current 
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ADHD diagnosis, Ha et al[41] measured blood Pb levels using AAS in conjunction 
with administering a Conner’s rating ADHD scale to the parents to determine 
symptoms and trouble behaviors in their children. The blood Pb levels were positively 
associated (P < 0.0001) with the Conners’ ADHD score[41]. As blood lead levels 
increased so did the children’s symptoms associated with ADHD[41].

Alabdali et al[69] measured both Pb and I-Hg in the red blood cells of fifty-two male 
children diagnosed with ASD and thirty age and sex matched healthy controls. 
Measurement of the severity of symptoms associated with ASD was accomplished 
using the CARS questionnaire[69]. Compared to the control group of children, the 
ASD group had significantly higher I-Hg (P < 0.001) and Pb (P < 0.001) levels in their 
red blood cells (RBCs)[69]. A flameless AAS method developed by Magos[70] was 
used to measure mercury species and the GF-AAS method was used to measure lead
[69] in the RBCs. Hassan et al[71] measured several biomarkers (e.g., serum cholesterol, 
Helicobacter pylori in stool, heavy metals in blood) in a cohort of one hundred and forty-
six children comprised of seventy-three males with ASD and seventy-three healthy 
age- and sex-matched controls. Behavioral assessments were conducted on the 
children with ASD using the CARS questionnaire[71]. The biomarker study showed 
Hg, Pb and aluminum levels in whole blood were significantly higher (P < 0.5) among 
the children with ASD vs the control group[71]. The blood samples were collected and 
preserved in vials of EDTA and the metals were measured using AAS[71]. The CARS 
questionnaire data did not reveal any differences in autism severity associated with 
the different metals[71]. Mostafa et al[72] measured blood Hg levels using CV-AAS in 
eighty-four children with ASD and eighty-four healthy-matched controls. The blood 
samples were collected in a heparinized syringe and analyzed promptly[72]. The Hg 
levels were significantly higher (P < 0.001) in the children with ASD compared to the 
controls[72]. The CARS questionnaire was used to evaluate the severity of symptoms 
in the children with ASD; the data showed a significant (P < 0.0001) and positive linear 
relationship between blood Hg levels and CARS autism behavior severity scores[72].

From this review, it appears the behaviors seen in children diagnosed with ADHD 
and autism are influenced by the Hg and Pb levels found in their blood. Regardless of 
why these bioaccumulations are occurring in these children, a key goal in their care 
should be to reduce their exposures to Hg and Pb. Figure 1 show unhealthy diet may 
be a significant source of I-Hg and Pb exposure in these afflicted children.

UNHEALTHY WESTERN DIET IS A SOURCE OF I-HG AND PB EXPOSURE
Unhealthy dietary factors that may link to the development of symptoms associated 
with ASD and ADHD include exposures to I-Hg, Pb and/or pesticide residues[8,10,73] 
found in highly processed food[74-76]. In the United States, certified food color 
consumption in processed foods increased five-fold between 1950 and 2012 from 12 
mg/capita per day to 68 mg/capita per day[76]. These food colors may contain 
residues of I-Hg, Pb, and arsenic[75]. Allowable heavy metal residues in certified food 
colors are regulated by the United States Food and Drug Administration through the 
batch certification process[77]. Stevens et al[78] studied the amounts of certified food 
colors found in the United States processed food supply (i.e., beverages, food, and 
sweets) and concluded that many children are consuming far more food colors than 
previously thought. Stevens et al[78] recommended that parents avoid serving food or 
beverages containing certified food colors and limit their children’s consumption of 
added sugars to improve child behavior and health outcomes.

The most common added sugars found in processed food are the corn sweeteners 
which are at risk of Hg contamination due to their manufacturing process. I-Hg 
mercury can enter the corn sweetener product line in one of two ways: (1) With the use 
of Hg cell chlor-alkali chemicals in the manufacturing process[79] and (2) With the 
intentional addition of mercuric chloride to the corn starch mix at the front end of the 
manufacturing process to inhibit naturally occurring degrading enzymes produced by 
bacteria[80]. Rideout et al[81] and Wallinga et al[82] both reported finding low levels of 
mercury in samples of corn syrup or products containing corn syrup or high fructose 
corn syrup.

In addition to food colors and added sugars, numerous other food ingredients 
found in the typical western diet may contain mercury or lead residues[83]. The 
western diet is characterized by the high intake of ultra-processed food products 
containing numerous ingredients including refined added sugars, fats, vegetable oils 
and grains with allowable organophosphate (OP) pesticide residues and the inade-
quate intake of whole foods, especially pesticide-free fruits, vegetables, nuts, healthy 
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fats (e.g., cold pressed) and organically grown grains[83]. In the cases of ADHD and 
ASD, several recent diet studies show children afflicted with these neurodevelop-
mental disorders are typically eating unhealthy diets as shown in Figure 1.

RECENT STUDIES SHOW CHILDREN DIAGNOSED WITH ADHD AND ASD 
ARE EATING UNHEALTHY DIETS
In a review of the literature to determine the role of diet in reducing symptoms in 
children diagnosed with ADHD, Millichat et al[21] found diets to reduce symptoms 
include those that restrict the intake of sugars or eliminate additives including preser-
vatives. Recommendations in the use of diet as a treatment option for ADHD were 
made in cases of parental or patient preference, iron deficiency, medication failure or 
when a change from a western diet to an ADHD-free healthy diet was warranted[21]. 
Millichat et al[21] concluded that greater attention needs to be paid to the education of 
parents and their children on what constitutes a healthy dietary pattern with a focus 
on removing ingredients shown to exacerbate symptoms. Shareghfarid et al[22] 
conducted a pooled meta-analysis of dietary pattern studies that included eight 
thousand and sixteen children diagnosed with ADHD and found a healthy dietary 
pattern decreased the risk of ADHD while a western dietary pattern increased 
symptoms. In their conclusion, Shareghfarid et al[22] determined a “healthy” dietary 
pattern consisting of vegetables, fruits, legumes, and fish decreased the odds of ADHD 
while a “Western” dietary pattern consisting of red meat, refined grains, processed 
meats and hydrogenated fats and oils increased ADHD. In another recent literature 
review, Farsad-Naeimi et al[23] conducted a pooled meta-analysis of fourteen studies 
that included twenty-five thousand nine hundred and forty-five subjects to determine 
whether there is a relationship between the consumption of sugar and sugar 
sweetened beverages and symptoms of ADHD. The results of the pooled data analyses 
indicate a strong positive relationship (P = 0.01) exists between sugar and sugar-
sweetened beverage consumption and symptoms of ADHD[23].

Sugar-sweetened beverages often contain food color ingredients (e.g., yellow 
#5/tartrazine/E-102, red #40/allura red/E-129, and yellow #6/sunset yellow/E110) 
that require certification in the United States[77] to determine if heavy metal levels 
exceed allowable concentrations. Products containing these same food color 
ingredients must carry the following warning label in the European Union and United 
Kingdom: “May have an adverse effect on activity and attention in children”[84]. The 
warning label requirement is a result of the findings of a study commissioned by the 
United Kingdom government[84]. The study was led by McCann and involved two 
cohorts including one comprised of one hundred fifty-three 3-year-old children and 
another comprised of one hundred forty-four 8/9-year-old children from the general 
population[85]. Children in both age groups were divided into three different groups
[85]. One group received a placebo juice containing no food colors, another group 
received a juice mix (Mix A) containing yellow #5, yellow #6, and sodium benzoate 
and the final group received a juice mix (Mix B) containing yellow #6, sodium 
benzoate, and red #40[85]. Sodium benzoate is a common preservative with allowable 
levels of lead up to 2 ppm[86]. Behavior checklists were administered to parents and 
teachers during the study[85]. The children in the 3-year-old group that received Mix 
A exhibited a significant adverse effect in behavior (P = 0.044) compared to the 
children in the placebo and Mix B groups[85]. The children in the 8/9-year-old group 
exhibited a significant adverse effect in behavior in both the Mix A (P = 0.023) and Mix 
B (P = 0.001) groups compared to the placebo group[85]. From their data analyses, 
McCann et al[85] determined the food colors or sodium benzoate or both exposures 
result in increased hyperactivity in the general population of children falling into the 
3-year and 8/9-year-old age groups.

In a review of dietary impacts on children diagnosed with ASD, Peretti et al[20] 
found diet is a key factor in the worsening of symptoms and is a modifiable risk factor 
in the treatment of ASD. Many parents of children with ASD have placed their 
children on a gluten and casein free diet without realizing the gluten free foods are 
highly processed and may lead to the accumulation of Hg, Pb, and cadmium in their 
children’s blood over time. Raehsler et al[87] analyzed data collected by the United 
States CDC from the National Health and Nutrition Examination Survey to determine 
whether a gluten free diet was associated with increases in heavy metal accumulation. 
The data was collected from adult participants 18 years of age and older between 2009 
and 2012[87]. The United States CDC analyzed participant whole blood samples for 
heavy metals using the ICP-MS method[87]. Raehsler et al[87] used univariate statis-
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tical analysis to compare the dietary intake of participants following a gluten free diet 
with those not following a gluten free diet. After controlling for age, smoking, sex, 
race, and fish and shellfish consumption, blood Hg levels were significantly higher (P 
= 0.04) in people following a gluten free diet compared to those who did not[87]. 
Raehsler et al[87] found blood Pb levels were statistically significantly higher (P = 
0.001) in women following a gluten free diet but not in men.

In a review of studies conducted to determine the effectiveness of placing children 
with autism on a gluten free and casein free (GFCF) diet, Piwowarczyk et al[88] found 
there is little evidence that such a diet is beneficial in reducing symptoms. Parents of 
children with autism that suffer from intestinal abnormalities need more information 
as to whether gluten intolerance or sensitivity is the cause of their child’s symptoms 
and should thus consult a physician before placing their child on a GFCF diet. Organo-
phosphate pesticide (OP) exposures from grain consumption may also create gastro-
intestinal disturbance and other symptoms observed with gluten intolerance[83]. Since 
children with autism lack the bioavailability and catalytic activity of the PON1 gene
[89] and PON1 activity is significantly decreased in children with ADHD[90,91], they 
are more susceptible to the toxicity and resulting symptoms associated with organo-
phosphate pesticide exposures. More research is needed to determine if the con-
sumption of gluten-free food products contribute to heavy metal or OP pesticide 
exposures in children with autism and ADHD and if their consumption may be safely 
included in a healthy diet.

HEALTHY DIET INCLUDES WHOLE FOODS AND MAY INCLUDE  
SUPPLEMENTS WHEN WARRANTED
One recent promising study led by Adams incorporated aspects of a (GFCF) diet in a 
supplement intervention with promising results[92]. In a randomized, controlled trial 
design, thirty-seven children and adults with ASD diagnoses participated in the 
treatment group which received the intervention, thirty children and adults with ASD 
served in the non-treatment group, while 50 neurotypical people of similar age and 
gender served as controls[92]. The treatment intervention involved a 12-mo regime 
which included supplementation with a variety of vitamins and minerals beginning on 
Day 0, with additional supplements added on Day 30, Day 90, and Day 180 until 
finally on Day 210 the Healthy Gluten Free Casein Free (HGFCF) diet was introduced 
to the protocol[92]. The researchers administered a variety of behavior checklists prior 
to beginning, and after completing, the 12-month treatment intervention[92]. The most 
significant reductions in symptoms of ASD (P = 0.0002) seemed to occur in the 
children with pervasive developmental delay (PDD). Biomarkers were also analyzed 
before and after the intervention period[92], presumably before Day 0 and at Day 365. 
The most significant biomarker findings for supplementation involved vitamin B2 
(riboflavin), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in which 
there were large and significant increases in the treatment group compared to the non-
treatment group with corresponding P values: P = 0.00000001, P = 0.000000001, P = 
0.000000001)[92]. The fish oil supplements introduced on Day 30 of the intervention 
could explain the significant increases in DHA and EPA levels. The healthy diet 
component of the intervention included adequate intake of leafy greens, whole fruit, 
and protein while eliminating food colors and preservatives and reducing junk foods
[92]. The diet also included the adoption of gluten free, casein-free, and soy-free foods
[92]. Heavy metal biomarkers were not collected and analyzed by the research team
[92]. Selenium (Se) supplementation was introduced on Day 0 of the treatment 
protocol; there was a significant increase in Se levels (P = 0.001) in the treatment group 
compared to the non-treatment group[92] while other mineral supplements made no 
difference. Se binds to Hg in a 1:1 ratio[8]. The supplementation in the treatment group 
could have provided enough excess Se to mitigate any Hg exposures occurring from 
the consumption of highly processed gluten-free, casein-free foods. After analyzing 
their data, Adams et al[92] concluded a comprehensive nutritional and dietary 
intervention is effective in reducing symptoms in most individuals with ASD. 
Although the results of the Adams et al[92] study are encouraging, the impact of eating 
a whole food healthy diet and/or supplements on reducing symptoms of autism 
remains unclear.

Supplementation in diet should be done cautiously because supplements have the 
potential to be toxic and are poorly regulated with respect to their efficacy and 
composition[93]. Fish oil supplementation may be warranted in children who refuse to 
eat salmon or other low mercury fish and shellfish. DHA and EPA are important for 
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healthy brain development and function. The 2015-2020 Dietary Guidelines for 
Americans recommend eating low Hg fish as part of a healthy dietary pattern due to 
their DHA and EPA content[94]. In addition, fish provide more vitamin B-12 and 
vitamin D than many other foods[94]. Se and Hg tend to bind in fish tissue. When Se is 
present in excess of Hg in fish, there is no public health concern about Hg exposure 
from eating fish[95,96].

Se is a key mineral in reducing oxidative stress in children with ASD and ADHD 
who may have elevated blood Hg levels. Se supplementation could be avoided by the 
consumption of Brazil nuts in moderation by eating one Brazil nut each day or, if 
children are amenable, drinking a daily fruit/vegetable smoothie that contains one 
Brazil nut per child. Brazil nuts are known to be the richest source of Se and provide 
magnesium and Zn which are important micronutrients in preventing the adverse 
neurodevelopmental outcomes presented in Figure 1 that result from eating the 
western diet[8,10]. Cardoso et al[97] conducted a review of clinical trials using Brazil 
nuts as an alternative to selenium supplementation. Although Cardoso et al[97] did not 
focus their review specifically on children with developmental disorders, they found 
many positive outcomes such as improvements in lipid serum profiles, anti-inflam-
matory response, and cognitive impairment in the various trial participants. Se 
measurements in blood should be a part of any protocol used in future healthy diet 
intervention studies conducted to reduce symptoms of ASD or ADHD.

FUTURE HEALTHY DIET INTERVENTION STUDIES
The results of this review indicate there is a need for future intervention studies to 
conclusively connect I-Hg and Pb measurements in blood to dietary sources of 
exposure in children with ASD and ADHD. Khan et al[98] confirmed dietary heavy 
metal intake correlates significantly with the heavy metal levels in the blood of 
children and adults. Dietary exposures to Hg and Pb can be measured through blood 
analyses using the methods discussed in the previous sections with careful consid-
eration as to which component of blood (e.g., RBCs, Plasma, Whole Blood) is best for 
measuring elements of interest in children diagnosed with ASD or ADHD. In children 
with ASD, Alibadi et al[69] measured levels of I-Hg and Pb in the RBCs. Adams et al
[92] measured Se levels in the RBCs of the children with ASD during their diet 
intervention study. In the case of autism, RBCs may be the best biomarker for 
measuring Hg, Pb and Se levels. In the case of ADHD, Pb levels are generally 
measured in whole blood rather than plasma or serum. However, because Pb is found 
within the blood cells, consideration should be given to testing Pb, along with Se, 
levels in the RBCs of children diagnosed with ADHD. In addition to mitigating Hg 
exposure, blood Se levels are important to measure in both ASD and ADHD because 
PON1 gene expression may be regulated by dietary Se status[99]. As can be seen in 
Figure 1, increasing PON1 gene activity may be key to reducing the oxidative stress in 
the brain that impacts a child’s ability to learn.

In addition to collecting and measuring biomarker levels in future diet intervention 
studies, it is important to collect information on processed food consumption so that 
the link between Hg/Pb exposures and diet can be established definitively. Processed 
food consumption data can be gathered using a diet survey that focuses on pre- and 
post-intervention eating patterns. Dufault et al[26] developed such a survey for use in 
determining the link between processed food consumption and blood I-Hg levels. 
Supplementary Tables 2 accompanying this manuscript provides a list of the survey 
questions in checklist format along with scoring instructions. The questions were also 
used during a clinical trial to educate parents of children with ASD and ADHD on the 
benefits of healthy diet[100]. In administering the survey pre and post-intervention, 
diet scores can be compared to determine changes in processed food consumption 
patterns.

HEALTHY DIET CONSIDERATIONS FOR CHILDREN WITH AUTISM AND 
ADHD
In devising a healthy diet for children with autism and ADHD it is important to 
consider elements needed to boost PON1 gene activity. Xotlanihua-Gervacio et al[101] 
determined the dietary factors that promote increased PON1 gene activity include 
selenium, cholesterol, and overall lipid intake. The majority of PON1 activity occurs on 

https://f6publishing.blob.core.windows.net/208175f9-e558-48cd-b3d7-6d41d6881e20/WJM-11-144-supplementary-material.pdf
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the high-density lipoprotein (HDL) in humans[102]. HDL is known as “good chole-
sterol” and its promotion can be accomplished by the adoption of a healthy Mediter-
ranean type of diet which is characterized by the consumption of fruits, vegetables, 
whole grains, fish and shellfish, nuts, olive oil, and poultry. In the case of children 
with autism or ADHD, this literature review indicates a healthy type organic (pes-
ticide free) Mediterranean diet includes leafy greens (e.g., spinach, kale, collards), nuts 
(e.g., Brazil), seeds, legumes, whole grains, fish (e.g., salmon) and shellfish, and exclu-
des the consumption of conventionally grown vegetables and fruits with allowable 
pesticide residues, products containing ingredients with allowable mercury and lead 
residues (e.g., food colors, preservatives), hydrogenated fats, sugar sweetened bevera-
ges (e.g., corn sweeteners), most vegetable oils, processed meats, and refined grains.

CONCLUSION
This review has resulted in the novel finding of the role dietary selenium may play in 
supporting PON1 activity in children with ASD or ADHD. Unhealthy diet resulting in 
the bioaccumulation of Hg or Pb may jeopardize the body’s ability to regulate the 
expression of PON1 resulting in decreased or impaired PON1 activity. An updated 
Mercury and Lead Toxicity Model for ASD and ADHD is presented to assist clinicians 
in diagnosing and treating the symptoms associated with ASD and ADHD. The model 
can also be used as a guide in the design of future intervention studies to determine 
the role of dietary factors in creating conditions for the development of autism and 
ADHD.
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