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Abstract
Pancreatic cancer remains one of medicine’s largest areas of unmet need. With 
five-year survival rates of < 8%, little improvement has been made in the last 50 
years. Typically presenting with advance stage disease, treatment options are 
limited. To date, surgery remains the only potentially curative option, however, 
with such late disease presentation, the majority of patients are unresectable. 
Thus, new therapeutic options and a greater understanding of the complex 
stromal interactions within the tumour microenvironment are sorely needed to 
revise the dismal outlook for pancreatic cancer patients. Natural killer (NK) cells 
are crucial effector units in cancer immunosurveillance. Often used as a 
prognostic biomarker in a range of malignancies, NK cells have received much 
attention as an attractive target for immunotherapies, both as cell therapy and as a 
pharmaceutical target. Despite this interest, the role of NK cells in pancreatic 
cancer remains poorly defined. Nevertheless, increasing evidence of the 
importance of NK cells in this dismal prognosis disease is beginning to come to 
light. Here, we review the role of NK cells in pancreatic cancer, examine the 
complex interactions of these crucial effector units within pancreatic cancer 
stroma and shed light on the increasingly attractive use of NK cells as therapy.

Key Words: Pancreatic cancer; Natural killer cells; Tumour microenvironment; Pancreatic 
cancer stroma; Stromal cells
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Core Tip: Increasing evidence has found natural killer (NK) cells to be crucial players 
in the prognosis and progression of cancer. Whilst pancreatic cancer remains one of 
medicine’s largest areas of unmet need, NK cells may prove to be an exciting new 
therapeutic option for pancreatic cancer patients. Here we provide an overview of the 
complex interactions between NK cells and pancreatic cancer stroma, suggest a role for 
NK cells as prognostic biomarkers and highlight exciting new NK cell-based treatment 
options which may transform the therapeutic landscape of pancreatic cancer.
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INTRODUCTION
Pancreatic cancer
Pancreatic cancer is a malignancy with a dismal prognosis. Set to become the second 
leading cause of cancer-related death worldwide by 2030, little progress has been 
made in the treatment of pancreatic cancer over the past five decades[1,2]. Surgery 
remains the only potentially curative option, however, with the majority of patients 
typically presenting with advance stage disease, most cases are unresectable. Further 
to this, with approximately 80% of surgery patients relapsing, frequently within two 
years, pancreatic cancer has solidified itself as one of medicine’s most urgent areas of 
unmet need[3].

Pancreatic ductal adenocarcinoma tumour microenvironment
Characterised by its strong desmoplastic reaction, the pancreatic ductal adenocar-
cinoma (PDAC) tumour microenvironment (TME) plays a crucial role in disease 
progression[4,5]. Primary tumour sites display extensive fibrosis characterised by 
overexpression of extracellular matrix proteins (such as laminin, collagen and 
fibronectin) and activation of fibroblastic cells. Multiple cell types, both cancer and 
stromal, are present in the pancreatic TME, including; pancreatic stellate cells (PSCs), 
myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs) 
and regulatory T-cells (Tregs), amongst many other cell types[6,7]. The dense fibrosis 
associated with PDAC (largely orchestrated by PSCs) results in tumour hypoxia, a 
feature characteristic of PDAC, which is exacerbated by the secretion of anti-
angiogenic factors (such as endostatin and angiostatin) by both pancreatic cancer and 
stellate cells[6,8]. Development of a hypoxic TME has been linked to disease aggress-
iveness and progression, as well as chemotherapy resistance. Importantly, in addition 
to developing resistance to chemotherapeutics, the pancreatic TME is highly 
immunosuppressive, limiting the efficacy of the immune-mediated cancer surveillance
[6]. MDSCs release reactive oxygen species (ROS) and reactive nitrogen species which 
have been shown to inhibit T cell proliferation and migration into the TME. In 
addition, release of immunosuppressive cytokines including interleukin (IL)-10 and 
transforming growth factor beta (TGF-β) sustains the development of Tregs which 
further modulate the TME[9]. Tregs secrete immunosuppressive cytokines such as IL-
10 and TGF-β which recruit additional immunosuppressive cells to the TME and 
stimulate the transition of CD4+ T cells to FoxP3+ regulatory cells, facilitating immune 
evasion[6,10]. Through the release of IL-10 and TGF-β, tumour associated 
macrophages are also able to induce T-cell anergy leading to the development of an 
immune-privileged microenvironment[11]. Finally, pancreatic cancer cells can 
downregulate Fas, resulting in resistance to CD8+ T cell-induced Fas/FasL apoptosis[6,
12]. Key components of the PDAC TME are shown in Figure 1.

NATURAL KILLER CELLS
NK cells are large granular lymphocytes which are  key components of the innate 
immune system, and are poorly understood compared to other lymphocytes (T and B 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i24/3483.htm
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Figure 1 Pancreatic ductal adenocarcinoma tumour microenvironment. Upon activation, pancreatic stellate cells secrete an abundance of extracellular 
matrix proteins including collagen, fibronectin, laminin, and hyaluronic acid, leading to dense desmoplasia. In addition, fibroblastic cells (CAFs) become active, and 
immune suppressive cells (myeloid-derived suppressor cells, regulatory T-cells and tumour associated macrophages) are sequestered to the tumour 
microenvironment (TME). Secretion of anti-angiogenic factors, in addition to dense desmoplasia, results in the development of a hypoxic TME. Cancer stem cells are 
also observed in pancreatic ductal adenocarcinoma.

cells) belonging to the adaptive immune system. Acting as the first line of defence 
against viral infected and malignant cells[13,14], NK cells are classified as CD56+CD3- 
cells. This classification can be further sub-divided into two main effector populations: 
immunomodulatory CD56brightCD16- cells which regulate their function through 
cytokine release [specifically interferon (IFN)-γ], and cytotoxic CD56dimCD16+ effector 
cells[14]. Activation of NK cells relies on the balance of signals received from 
inhibitory and activating cell surface receptors (Figure 2)[13]. Inhibitory receptors, 
comprised of killer cell immunoglobulin-like receptors (KIRs) and  C-type lectin-like 
receptors, including natural killer group 2 member A (NKG2A), specifically 
recognisemajor histocompatibility complex (MHC) class 1 molecules. These ligands are 
highly expressed on non-transformed ‘self’ cells, and consequently prevent harmful 
activation of NK cells against host cells. Conversely, malignant cells often 
downregulate the expression of surface MHC-1 molecules to evade detection by T 
cells. This ‘missing self’ signal prevents the inhibition of the NK cells, resulting in 
cytotoxic efficacy[13,14]. NK cells can also be negatively regulated by checkpoint 
proteins such as programme death 1 (PD-1), which binds to its’ ligands programme 
death ligand 1 and 2 (PDL-1, PDL-2)[13]. Activating receptors include the type 1 
transmembrane natural cytotoxicity receptors (NCRs) NKp46 (which is exclusive to 
NK cells), NKp30 and NKp44 (which are also expressed on T cells), the C-type lectin-
like receptors NKG2C and NKG2D, the activating KIRs and the DNAX accessory 
molecule 1 (DNAM1)[13-15]. Ligands for the activating KIR receptors include the 
HLA-C2 and HLA-A ligands, however, the interaction between ligand and receptor is 
less well understood for activating KIRs than for their inhibitory counterparts[16]. 
NKG2D receptors recognise stress-induced proteins on transformed and virally 
infected cells. These include the MHC class 1 related genes MICA and MICB and UL-
16 binding proteins[16]. Whilst recognising nectin adhesion molecule and the 
poliovirus receptor, DNAM1 also interacts with the β2 integrin leukocyte function-
associated antigen 1 (LFA-1) which is involved in the formation of the immunological 
synapse[15]. It is important to note that in addition to independent activation, specific 
combinations of activating receptors are synergistic, increasing the overall signal 
received by the effector cell and consequently, increasing its cytotoxic response[17].

CD16+ NK cells, in addition to direct receptor-ligand binding, express a propensity 
to carry out antibody-dependent cellular cytotoxicity (ADCC)[18]. CD16 (FcγRIII) is a 
transmembrane receptor which can bind the Fc region of IgG1 and IgG3 antibodies, 
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Figure 2 Activation and cytotoxicity of natural killer cells. Natural killer (NK) cells recognise a multitude of ligands on both healthy and transformed cells. 
Inhibitory receptors (red) recognise ‘self-antigens’ on healthy tissue preventing activation. However, these molecules are lost on aberrant cells as a result of viral 
transformation or malignancy (‘missing-self’) leading to NK cell activation. Alternatively, NK cells may become active through engagement of activating receptors 
(green) via stress ligands expressed on transformed cells. Binding of leukocyte function-associated antigen 1 to ICAM1 stabilises the immunological synapse 
between NK and target cells and ensures effective cytotoxicity. Upon activation NK cells release cytotoxic granules which contain perforin and granzymes to initiate 
target cell death via necrotic or apoptotic pathways. NK cells can also execute antibody dependent cellular cytotoxicity through Fc engagement of the CD16 receptor. 
Finally, NK cells secrete cytokines, such as interferon-γ, facilitating crosstalk between the adaptive and innate immune system, resulting in dendritic and T cell 
recruitment.

enabling NK cells to kill immunoglobulin labelled cells[16], a crucial concept for 
monoclonal antibody-based therapies[13].

NK Cytotoxicity
Following initial interactions between activating/inhibitory receptors and target cells, 
the balance of signals received by the NK cell determines its activation status. If 
activated, NK cells must form an immunological synapse with the target cell. 
Formation of this synapse enables stable adhesion, polarisation of cytotoxic granules 
and subsequent lysis of the target cell. This is achieved through binding of the β2 
integrin, LFA-1[17]. Consisting of two chains, αL and β2, LFA-1 is a heterodimer whose 
reactivity to its ligands (ICAM family members) can be modified via conformational 
changes. Specifically, a bent conformation exhibits a low affinity for its ligands, 
intermediate affinity can be achieved through a closed/extended conformation, whilst 
an open/extended conformation results in high-affinity binding (Figure 3)[17,19,20].

In contrast to T cells, NK cells do not require inside-out signals (such as chemokines 
and T cell receptor activation) to stimulate LFA-1 binding and can signal auto-
nomously[15,21]. Following integrin activation, a signalling network is employed to 
facilitate the convergence of cytotoxic granules to the microtubule organising centre 
(MTOC) which is subsequently polarised towards the target cell, allowing degranu-
lation (Figure 4)[21-26]. Actin remodelling is also carried out at the immunological 
synapse in response to NK cell activation, facilitating docking of the cytolytic granules
[27]. Integrin-linked kinase, paxillin, Pyk2 and RhoGEF7 signalling cascades are 
employed for the polarisation of MTOC, with Cdc42, CLIP-170, Par6 and APC 
components of this signalling cascade being key for granule polarisation[21,28]. 
During this process, the mitochondria and Golgi complex have also been shown to 
polarise towards the immunological synapse[29,30]. Following polarisation of the 
cytotoxic granules, the pore-forming protein, perforin, and the serine proteases, 
granzymes, are exocytosed leading to target cell death via perforin induced necrosis, or 
granzyme stimulated caspase-dependent apoptosis[28,31,32]. Non-granule dependent 
cytotoxic mechanisms include the binding of death ligands such as TNF-related 
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Figure 3 Leukocyte function-associated antigen 1 conformation. Leukocyte function-associated antigen 1 (LFA-1) affinity can be altered by its 
conformation. When bent, LFA-1 exhibits low affinity for its ligand, ICAM1. Intermediate affinity is achieved through a closed/extended conformation, whilst an 
open/extended conformation results in high affinity binding to ICAM1 and generation of an effective, stable immunological synapse.

apoptosis-inducing ligand and FasL to their receptor on target cells result in extrinsic 
apoptosis via caspase-8 activation[33] and release of IFN-γ[13,34,35].

NK cells in cancer
Initially identified as a result of their ‘natural’ cytotoxicity towards both syngeneic and 
allogeneic tumour cells, NK cells have widely demonstrated potent anti-tumoral 
cytotoxicity[36-38]. However, they are highly heterogeneous both between cancer 
types and intra-tumourally[36]. Moreover, the variable functional status of NK cells is 
seen to greatly impact their anti-tumoral efficacy[36]. Upregulation of the inhibitory 
receptor NKG2A has been associated with NK cell exhaustion and poorer prognosis in 
patients with liver cancer[39], whilst PD-1 engagement of NK cells has been shown to 
block the polarisation of lytic granules and impair outside-in integrin signalling[40]. 
Increased expression of PD-1 on NK cells has also been associated with poorer overall 
survival in patients with hepatocellular carcinoma[41]. Conversely, high proportions 
of functionally active NK cells result in favourable outcomes in many cancer types
[42]. Retrospective flow cytometric assessment of peripheral blood samples from 
metastatic prostate cancer patients (Gleason scores between 6-9) followed by 
univariate Cox regression analysis demonstrated a significant correlation between 
expression of the activating receptors NKp46 and NKp30, and longer overall survival
[42]. Similarly, immunostaining of tissue samples from 98 patients with gastric cancer 
(stage 1-4) combined with multivariate analysis revealed a positive correlation 
between NKG2D expression in tumour infiltrating lymphocytes and prolonged OS 
(hazard ratio 0.34)[43]. With the propensity to exhibit potent anti-tumoral activity, NK 
cell-based immunotherapy research has flourished in the past few years[36].

NK cells as prognostic markers in PDAC
NK cell number has been found to convey prognostic significance. Through flow 
cytometric analysis of PBMCs from resectable PDAC patients (stage Ib-III) both pre- 
and post-surgery, Hoshikawa et al[44] demonstrated a positive correlation between the 
percentage of NK cells in peripheral blood and recurrence-free survival, with patients 
who exhibited high NK levels expressing later disease recurrence. Moreover, 
univariate and multivariate analysis using the Cox proportional hazard regression 
model demonstrated NK cell frequency to be the only favourable prognostic factor for 
recurrence-free survival. Additional factors tested included tumour stage, N status, 
radicality, age and gender. Importantly, no additional circulating mononuclear cells 
were included in this analysis. NK cell infiltrate within the TME (assessed by gene 
expression profile) was also found to be associated with later disease recurrence, 
however, this was not statistically significant[44]. Assessment of a larger cohort of 
patients would improve the power of this assessment and may provide further insight 
into the role of tumour infiltrating NK cells in PDAC.
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Figure 4 Cytotoxic granule convergence and microtubule organising centre polarisation. A: Following receptor stimulation leading to natural killer 
(NK) cell activation, leukocyte function-associated antigen 1 engages with its ligand ICAM1 on the malignant cell, forming a stable immunological synapse; B: F-actin 
accumulates and polymerises at the immune synapse, forming a filamentous mesh which modulates the release of cytolytic granules. Tubulin microtubules then form 
from the microtubule organising centre (MTOC); C and D: Cytotoxic granules converge on the microtubules (C) and are polarised towards the MTOC where they 
converge (D); E: This granule movement is dependent on dynein/dynactin motor function. Dynamic rearrangement of the microtubules facilitates polarisation of 
MTOC towards the immunological synapse; F and G: This polarisation is stimulated via Integrin-linked kinase, paxillin, Pyk2 and RhoGEF7 signalling. Following 
polarisation to the immunological synapse, a subsection of cytotoxic granules fuse with the plasma membrane (F) (a process largely regulated by Munc 13-4 and 
Rab27a) and undergo degranulation via either complete or incomplete fusion (G); H: Cytotoxic granules which do not degranulate are recycled and are hypothesised 
to remain converged at the MTOC to facilitate serial NK cell killing. Granules which undergo incomplete fusion are rapidly recycled through clathrin mediated 
endocytosis of granule membrane proteins, further facilitating serial killing; I: Finally, the malignant cell undergoes perforin induced necrosis or granule dependent 
apoptosis. NK cells detach from the malignant cell and move on to the next target.

Finally, gene set enrichment analysis revealed that patients with enriched type I and 
II IFN signatures within tumour tissues had later disease recurrence. Type I and II 
IFNs are closely associated with NK cell function. Type I IFNs induce NK cell 
activation both directly, through binding to type I IFN receptor, or indirectly, through 
stimulating dendritic cell release of IL-15, whilst type II IFNs (namely IFN-γ) are 
produced by activated NK cells[45,46]. Moreover, IFNs can induce CXCL10 release, 
leading to the further recruitment of NK cells to the tumour tissue[44]. Thus, enriched 
IFN signatures were also concluded to be a positive prognostic biomarker in PDAC
[44].

Yang et al[47] also suggest prognostic implication of NK cells in PDAC. High 
densities of NK cells in peripheral blood samples (analysed by flow cytometry) were 
found to correlate with poor overall survival in patients with advanced PDAC (stage 
III/IV) when accompanied by a high neutrophil: lymphocyte ratio (obtained from 
routine hospital data). NK cell number (HR 1.45), as well as patient age (HR 1.34), 
neutrophil to lymphocyte ratio (HR 1.48) and absence of metastasis (HR 0.72) were 
found to be independent prognostic markers following univariate and multivariate 
Cox regression analysis. It is perhaps prudent to note that subsequent ELISAs to 
measure release of IFN-γ and TNF-α from NK cells as well as serum IL-2 Levels, a 
known activator of NK cells, demonstrated lower levels of all three markers in patients 
with high NK cell densities, although only IFN-γ reached significance. These results 
suggest a distinct subtype of NK cells with impaired function in PDAC patients and 
thus prognostic significance may rely not just on NK cell numbers, but on functional 
subtypes[47]. The results obtained within this study focus solely on peripheral blood 
circulating NK cells. Further work to classify functional NK cell subtypes within 
PDAC tumour tissue would provide more conclusive insights into the prognostic 
significance of these effector cells in PDAC.
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NK cells in murine models of PDAC
NK cells have demonstrated potent anti-tumoral efficacy in murine models of PDAC. 
Using a transgenic mouse model in which oncogenic transposons for KrasG12V and 
myristoylated Akt2 were introduced into p53fl/fl mice via intra-pancreatic injection 
and electroporation, along with plasmids for Cre recombinase and sleeping beauty 
transposase, Brooks et al[48] demonstrated that neo-adjuvant PD-1 blockade plus 
adjuvant CD96 inhibition in combination with gemcitabine prevented relapse and 
facilitated long term remission following resection surgery. To further investigate the 
role of immune cells in neo-adjuvant and adjuvant treatment of PDAC, mice were 
injected (intraperitoneal) with anti-CD8 and anti-NK.1.1 depletion antibodies. Pre-
operatively, depletion of both CD8+ T cells and NK cells significantly reduced survival 
when compared to the control. Furthermore, adjuvant NK but not CD8+ depletion was 
found to impair survival and resulted in an increase in local disease recurrence. In vitro 
luciferase cytotoxicity assays confirmed NK cell cytolytic efficacy against tumour 
derived cancer cells, a finding consistent with the results obtained for depletion 
experiments. Thus, targeting both T and NK cells through immune checkpoint 
inhibition may confer long term survival benefits in metastatic cases of PDAC[48]. 
Similarly, in a KrasLSL-G12D p53LSL-R172H Pdx1-Cre (KPC) model of PDAC, NK cell-based 
adoptive transfer immunotherapy was found to significantly delay tumour growth
[49]. In addition, immunostaining of KPC tumours at end time-points revealed 
significantly elevated areas of necrosis in mice treated with adoptive transfer of NK 
cells compared to control mice, demonstrating the cytotoxic efficacy of NK cell 
treatment, a finding replicated through in vitro flow cytometry cytotoxicity assays[49].

Xenograft models of PDAC have also been used to demonstrate the efficacy of ex 
vivo expansion of NK cells. NOD scid gamma (NSG) mice injected subcutaneously with 
MiaPaca2 cells demonstrated a significant reduction in tumour growth when treated 
with adoptive transfer of ex vivo expanded NK cells (versus control group)[50]. This 
finding demonstrated both successful trafficking of NK cells to the tumour site and 
tumour control following intravenous injection, suggesting that NK cells may prove an 
effective systemic treatment in xenograft models of PDAC[50]. It is prudent to note 
that the nature of this model requires the mice included within the study to be 
immuno-compromised, and this must be taken into consideration when reviewing the 
data presented. Employing additional models would add further validity to the 
therapeutic impact of ex vivo expanded NK cells in murine models of PDAC[50].

Notorious for their resistance to typical anti-proliferative/cytotoxic therapies, 
cancer stem cells are an important subpopulation involved in cancer progression, 
metastasis and recurrence. Despite their notoriety, CSCs are preferentially targeted by 
NK cells in both the autologous and allogeneic setting; an effect which was found to be 
NKG2D dependent[51]. Metastatic, intra-pancreatic and subcutaneous models of 
PDAC were established in NSG mice using the PANC-1 cancer cell line. Mice treated 
with adoptively transferred NK cells were found to have substantial reductions in 
tumour volume when compared to untreated mice. Flow cytometric analysis also 
demonstrated a significant reduction in CSC populations in mice treated with 
adoptive NK cell transfer (denoted by aldehyde and CD24 expression). Moreover, 
immunostaining revealed co-localisation of NK cells and CSCs within tumour tissues. 
Ames et al[51] conclude that NK cells possess the ability to identify and preferentially 
target CSCs in solid tumours. As such, further work investigating the impact of 
systemic adoptive transfer of NK cells on CSC populations may yield exciting new 
therapeutic insights into the treatment of this dismal prognosis disease.

Tumour induced NK cell dysfunction and immune evasion in PDAC
Pancreatic tumour cells have developed several methods of NK-cell immune evasion. 
Murine models of pancreatic cancer specifically designed to express MYC at the 
Rosa26 Locus, either with or without the Lsl-KrasG12D allele, were used to determine the 
role of MYC in pancreatic tumour progression. MYC expression was found to drive 
pancreatic cancer development and accelerate disease progression in precursor lesions 
initiated by KRAS. Moreover, bulk RNA sequencing of end stage tumours revealed 
reduced expression of T-cell, B-cell and NK cell markers in tumour tissue, suggesting 
that immune cell infiltration may be regulated by MYC. GeneGo analysis revealed that 
allelic activation of both KRAS and MYC resulted in significant downregulation of 
type I IFN, an effect that was found to be dependent on repressional binding of MYC-
interacting zinc finger protein, MIZ1. Deletion of MIZ1 resulted in restoration of NK 
and B cell infiltration into tumour tissues, an effect ablated upon antibody dependent 
blockade of type I IFN[52]. Similarly, the oncoprotein Sloan-Kettering Institute has 
been shown to inhibit SMAD association with the acetyltransferases CBP and p300, 
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which are key regulators of inducible expression of NKG2D ligands on cancer cells, 
and facilitate repression of gene transcription via histone deacetylases. This results in 
downregulation of NKG2D ligands on tumoral cells, reducing NKG2D dependent 
cytotoxicity and facilitating immune evasion[53]. In addition, tumoral cells are seen to 
exhibit intricate crosstalk with NK effector cells and have been shown to induce 
functional deregulation[54]. Co-culture with the pancreatic cancer cell line MiaPaca2 
was found to induce NK cell anergy via fibrinogen-like protein 2 and was charac-
terised through decreased expression of DNAM-1, IFN-γ and CD107a and increased 
expression of PD-1[55]. Importantly, when co-cultured, anergic NK cells were seen to 
induce anergy in naïve NK cells, reducing IFN-γ and CD107a expression[55]. Further 
work investigating the reversal of NK cell anergy, both tumour-dependent and 
bystander anergy may lead to novel therapeutic insights, and provide a baseline from 
which to further challenge PDAC immune evasion.

MHC class-I chain-related molecules A/B (MICA/B) are crucial ligands for the 
activating receptor NKG2D. Several studies have demonstrated immune evasion as a 
result of MICA/B shedding by tumour cells. Duan et al[56] demonstrated that high 
glucose levels, which are widely correlated with pancreatic cancer, could facilitate 
immune evasion. Specifically, in vitro assays demonstrated a decrease in NK cell 
induced lysis of pancreatic cancer cell lines (demonstrated by lactate dehydrogenase 
release assays) when cultured in high glucose conditions. Moreover, western blot and 
quantitative real-time polymerase chain reaction (PCR) analysis revealed that this 
decrease in function was a result of reduced expression of MICA/B in cancer cell lines 
at both the protein and mRNA level. Mechanistically, high glucose was found to 
inhibit AMP-activated protein kinase signalling, leading to upregulation of the 
polycomb group protein (PcG) Bmi1, and subsequent promotion of GATA2 
expression. This augmentation inhibited expression of MICA/B on pancreatic cancer 
cells and led to their immune evasion[56]. Similar shedding of the NKG2D ligand has 
been observed in response to hypoxia. High levels of HIF1α have been correlated with 
decreased expression of MICA/B on pancreatic tumour cells and also with increased 
internalisation of the activating receptor NKG2D, suggesting a dual role for the 
hypoxic TME in NK cell dysfunction[57]. Specifically, immune-histochemical analysis 
of PDAC patient tumour tissues revealed a significant correlation between MICA 
surface expression and high HIF1α. Moreover, immune-fluorescent staining of NK 
cells isolated from patient PBMCs demonstrated clear internalisation of the activating 
NKG2D receptors as well as MICA/B[57].

Receptor expression is found to be largely augmented in pancreatic cancer patients. 
Flow cytometric analysis of participant blood samples revealed that expression of the 
activating receptors DNAM-1 (CD226) and CD96 were significantly reduced in 
pancreatic cancer patients (stage I-IV) when compared to healthy controls. This 
downregulation was suggested to lead to NK cell dysfunction and tumour evasion.[58] 
Downregulation of NKG2D in pancreatic cancer patients has also been correlated to 
reduced cytotoxicity of the effector cells. In vitro blockade of NKG2D using neutra-
lising antibodies was found to significantly decrease killing of MiaPaca2, BxPC3 and 
Capan2 cell lines by IL-15 stimulated NK cells[59]. This finding highlights the 
functional importance of NKG2D expression on NK cell function and may prove to be 
a crucial marker of NK cell efficacy against malignancy.

Additionally, flow cytometric analysis of cell surface markers following in vitro co-
cultures of NK cells derived from healthy PBMCs and pancreatic cancer cell lines 
revealed downregulation of the NK activating receptors NKG2D, NKp30, NKp46 and 
DNAM-1. ELISA analysis suggested that this dysfunction was induced as a result of 
matrix metalloproteinase 9 (MMP9) and Indoleamine 2,3 dioxygenase (IDO) signalling 
cascades.[60] In addition to downregulation of activating receptors, exposure to MMP9 
and IDO also led to decreased TNF-α and IFN-γ production by NK cells, an effect that 
was reversed upon blockade of MMP9 and IDO using tissue inhibitor of metallopro-
teinases 1 and 1-Methyl-DL-tryptopan, respectively[60]. This finding was replicated in 
a comprehensive study of surface receptor expression and cytotoxic granule positive 
cells in pancreatic (stage II and IV), gastric (stage 0-IV) and colorectal cancer (stage I-
IV) patients. Using flow cytometry, Peng et al[61] identified significant downregulation 
of the activating receptors NKG2D, NKp30, NKp46 and DNAM-1 on NK cells 
identified in peripheral blood samples from pancreatic cancer patients when compared 
to healthy controls, whilst expression of the inhibitory receptor KIR3DL1 was 
significantly upregulated. Moreover, the percentage of perforin positive circulating 
NK cells was found to be significantly reduced in pancreatic cancer patients. Taken 
together, these alterations evidence the dysfunction of NK cells observed in 
malignancy.
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Impairment in degranulation was also identified by Jun et al[62]. In an in vitro flow 
cytometry-based degranulation assay, PBMCs derived from malignant patients, non-
malignant patients or healthy controls were mixed with target cells before staining 
with CD107a. NK cells derived from pancreatic cancer patients showed significantly 
impaired degranulation when compared to non-malignant and/or healthy control 
samples. Despite demonstrating impaired cytotoxic capabilities, no significant 
difference in NK cell IFN-γ production was observed between cancer patients and 
healthy controls. Importantly, multivariate analysis revealed that tumour-induced NK 
cell dysfunction correlated with disease stage, suggesting progressive impairment of 
NK cells with advanced-stage disease. Thus, as previously suggested, NK functional 
status may prove an attractive prognostic marker in PDAC.

NK cell interaction with stromal cells
NK cell-stromal cell interactions have been shown to result in significant cellular 
dysfunction and exclusion of NK cells from tumour tissues, suggesting that NK cells 
can be educated by the TME[47,63]. As crucial players in the development of the pre-
metastatic niche, extracellular vesicles are key to the progression of PDAC and contain 
large numbers of immune regulatory factors including TGF-β, nectin-2 and PVR. Flow 
cytometric analysis following in vitro co-culture of NK cells and extracellular vesicles 
demonstrated downregulation of multiple NK cell receptors and cytokines, 
specifically, IFN-γ, TNFα, CD107a and NKG2D, resulting in gross cytotoxic 
impairment (demonstrated through tumour sphere cytotoxicity assays) and NK cell 
dysfunction. This impairment was further associated with the activation of the TGF-β- 
Smad3/4 signalling pathway[64]. It should also be noted that NK cell dysfunction is 
heavily regulated by the soluble factors and cytokines secreted by both tumoural and 
stromal cells, with TGF-β, IDO, MMPs and interleukins proving largely responsible for 
this impairment (Figure 5)[50,60,65-67].

NK cell interaction with suppressive immunoregulatory cells has a significant 
impact on cytotoxic effector function. Both MDSCs and TAMs produce IL-23, IL-6, 
IL10 and TGF-β which results in the downregulation of IFN-γ, perforin and IL-12 
production by NK cells, decreasing cytotoxicity and NK cell proliferation within the 
TME[65]. TAMs also inhibit NK cell function through cell-cell interactions. M2 
macrophages express PDL-1 which binds to PD-1 expressed on NK cells. This 
checkpoint protein prevents NK cell engagement and induces downregulation of the 
activating receptors NKG2D, natural cytotoxicity receptors and DNAM1, leading to 
reduced cytotoxicity[67]. Immunosuppressive Tregs release IL-10 and TGF-β into the 
TME. This cytokine release decreases NK cell cytotoxicity through the downregulation 
of activating receptors and decreased production of anti-tumour cytokines such as 
IFN-γ[65].

Moreover, MDSCs have also been shown to augment FcR mediate NK cell 
functions. Adoptive transfer of MDSC in a Panc02-EGFR+ murine model of pancreatic 
cancer significantly inhibited the efficacy of monoclonal antibody therapy, with mice 
receiving Cetuximab + MDSCs expressing significantly larger tumour volumes than 
did mice treated with Cetuximab + splenocytes. Furthermore, NK cells co-cultured 
with tumour derived (melanoma) MDSCs were found to express significantly reduced 
phospho-ERK than did though cultured alone (as measured by flow cytometry). Thus, 
it was concluded that MDSCs inhibit FcR mediated signal transduction, resulting in 
impaired cytokine production, ADCC dysfunction and reduced anti-tumour activity. 
An effect that was found to be, at least in part, in response to MDSC nitric oxide 
production[68].

Likewise, tumour-associated neutrophils have been shown to impair NK cell 
function through the release of arginase and ROS[67]. In vitro co-culture assays using 
PBMCs derived from healthy donors demonstrated that activated granulocytes 
(stimulated with Phorbol 12-myristate 13-acetate) produced ROS including hydrogen 
peroxide, which was found to be cytotoxic to CD56dim CD16+ NK cells, but not CD56bright

CD16- subsets, suggesting that interactions with stromal cells may result in differential 
effects on cytotoxic effector subset[69].

Tumour-associated macrophages and cancer-associated fibroblasts have also been 
shown to produce growth arrest-specific gene 6 (Gas6) in the pancreatic TME. As a 
negative regulator of the immune system, the Gas6-AXL pathway is seen to prevent 
NK cell activation. Orthotopic syngeneic models of pancreatic cancer in which tumour 
cells derived from KPC mice were transduced with zsGreen/Luciferase and orthotop-
ically injected into the pancreas of immune-compromised mice were used to 
investigate the role of Gas6 in NK cell activation and pancreatic cancer development. 
Pharmacological blockade of Gas6 signalling using neutralising antibodies was found 
to inhibit pancreatic cancer metastasis. Moreover, immunohistochemical analysis of 
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Figure 5 Natural killer cell dysfunction caused by tumoral and stromal cells in pancreatic ductal adenocarcinoma. Natural killer (NK) cell 
interactions with multiple stromal and tumour cells significantly impacts the cytotoxic efficacy of NK cells in pancreatic ductal adenocarcinoma. Transforming growth 
factor -β, interleukin (IL)-10, IL-6, IL-23 and IL-1β release significantly dampens NK cell cytotoxicity and function, and inhibits intratumoural proliferation of NK cells. 
NK cell mediated cytokine release is also inhibited within the immunosuppressive tumour microenvironment. Finally, chemokine release may also sequester NK cells 
in the panstromal compartment, preventing engagement with tumour cells.

NK cell infiltrates revealed a significant increase in the number of NKp46+ NK cells in 
lung metastasis in mice treated with anti-Gas6 therapy when compared to the control. 
This finding was also observed in the tumour draining lymph nodes; however no 
significant difference was observed in NK cell infiltration in primary tumour sites 
between treatment groups[70]. As such, Gas6 blockade may prove a promising new 
therapeutic target for the treatment of metastatic lesions in pancreatic cancer.

NK cells have been shown to be excluded from tumour tissue as a result of NK-
stromal cell interactions. Through ex vivo immunostaining and Ariol image analysis of 
tissue micro-arrays, Ene-Obong et al[4] demonstrated that infiltrates of CD56+ natural 
killer cells were significantly lower in the juxtatumoural compartment of PDAC tissues 
(stage I-III) when compared to panstroma. This finding suggests PSCs sequester NK 
cells in the panstromal compartment of the TME, preventing NK induced cancer cell 
death. Similarly, Lim et al[50] demonstrated that NK cell frequencies in malignant 
tissue from PDAC patients (stage I-IV) were as low as < 0.5% (as assessed by flow 
cytometry). This low infiltration was attributed to reduced expression of the CXCR2 
receptor on NK cells which resulted in poor chemotaxis into tumour tissues.

Known orchestrators of the TME, pancreatic stellate cells are crucial regulators of 
immune cell infiltrates in pancreatic cancer and have been shown to promote tumour 
progression through the development of an immunosuppressive environment[5,71-
73]. In an orthotopic mouse model of pancreatic cancer in which either Panc02 cells 
alone or in combination with activated PSCs were injected into the pancreas of 
C57BL/6 mice, Li et al[74] report a significant reduction in the number of NK cells in 
tumour tissue in mice co-transplanted with PSCs when compared to mice injected 
with Panc02 cells alone. This finding is consistent with ex vivo analysis of human 
PDAC samples[4]. Further work is needed to demonstrate the mechanistic link 
between PSCs and NK cell tumoural exclusion.

In a recent study, Francescone et al[75] demonstrated dynamic crosstalk between 
PDAC cancer cells, CAFs and immune cells. Specifically, in in vitro co-culture assays 
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CAFs were found to ectopically express the neural presynaptic protein NetrinG1 
(NG1) whilst its binding partner, NGL1 was identified on PDAC cells. This interaction 
was found to convey protection on cancer cells from NK cell-driven elimination,a fact 
quantified through CRISPR/Cas9 NG1 knockout which resulted in decreased 
expression of the immunosuppressive cytokines TGF-β, IL-8 and IL-6, and restored 
NK cell anti-tumour activation. This finding was reproduced in murine orthotopic 
models of PDAC in which NGL1 was knocked out of syngeneic mouse cells. This work 
provides a potential novel target in PDAC in which the immunosuppressive nature of 
PDAC induce by CAF cells can be reverted.

Finally, in vitro and xenograft models of PDAC in NOD SCID mice demonstrated 
that stromal TGF-β signalling stimulates CAF cells to secrete IL-6, which in turn 
suppresses NK cell function as assessed through NK cell killing assays. Concom-
itantly, stromal TGF-β limits NK cell function itself[76]. In vivo TGFβ blockade using 
the anti-mouse TGFβR2 mAb, 2G8, was found to reduce tumour progression, an effect 
that was reversed upon NK cell depletion[76]. Furthermore, a conditional KRAS 
(G12D) model of pancreatic cancer combined with a high-fat calorie diet demonstrated 
that stromal adipocytes produce IL-6, reducing NK cell function through IL-6 
mediated downregulation of IFN-γ production. Thus, it has been suggested that 
adipocytes and PSCs may provide tumour sanctuaries within the TME through the 
immunosuppression of NK cells[77,78].

Taken together these findings demonstrate the complex interactions between NK 
cells and the PDAC microenvironment. Despite their cytotoxic efficacy against 
malignancy, the dysfunction induced by stromal cells greatly augments the natural 
anti-tumoral activity of NK cells. As such, a deeper understanding of these interactions 
is crucial to fully unlock the potential of NK cells in the treatment of PDAC.

NK CELLS AS THERAPY IN PDAC
Despite the known dysfunction of NK cells associated with PDAC, these cytotoxic 
effector units display evident cytotoxic capabilities and as such have received much 
attention as a potential immunotherapeutic tool in the treatment of PDAC. One of the 
immunotherapeutic routes explored is the use of NK cells as cellular immunotherapy
[79]. When compared to T cells, the use of NK cells as cellular immune-therapeutics 
express several advantages. Firstly, NK cells present a much lower risk of on-
target/off-tumour toxicity, rendering NK cells a relatively safe treatment option. 
Moreover, neurotoxicity, cytokine release syndrome and graft-versus-host disease are 
much less likely to occur in chimeric antigen receptor (CAR)-NK treatment than 
observed with the use of CAR-T therapy. Secondly, due to this reduced risk of graft-
versus-host disease from allogenic NK sources, NK cells have the potential to be 
derived from multiple sources, including cell lines such as NK92. This facilitates the 
development of a truly ‘off-the-shelf’ cellular immunotherapeutic, eliminating the 
need for personalised therapeutics and the subsequent challenges these treatments 
invoke[79]. Thirdly, CAR-NK cells retain their natural cytotoxic capabilities and 
consequently can eliminate malignant cells in both a CAR dependent and independent 
manner[79,80].

Several studies have focused on harnessing the anti-tumoral efficacy of NK cells 
against PDAC. Lee et al[81], rationally designed a CAR-NK to specifically target folate 
receptor alpha (FRα) and death receptor 4 (DR4) which were found to be highly 
expressed on tumour cells. In addition, the CAR-NK was loaded with an apoptosis-
inducing death ligand to further induce anti-tumoral cytotoxicity. Treatment with the 
FRα/DR4 targeting NK cells significantly increased tumour-selective apoptosis and 
NK cell infiltration in tumour tissue in sub-cutaneous models of pancreatic cancer. 
Similarly, Xia et al[82] investigated the efficacy of a Robo1 bi-specific CAR-NK cell 
treatment in combination with 125I seed radiotherapy in orthotopic murine models of 
pancreatic cancer. Expressed on pancreatic cancer cells, Robo-1 is a member of the 
axon guidance receptor family which has been found modulate T-cell chemotaxis into 
the TME. Tumour size was significantly reduced in mice treated with combination 
therapy when compared to 125I seed treatment alone. Moreover, tumours of mice 
receiving combination therapy displayed a significantly higher greyscale value than 
did 125I treatment alone. Thus, it was concluded that bi-specific CAR-NK cells may 
prove a promising immunotherapeutic when combined with 125I seed therapy in 
treatment of pancreatic cancer. Identification of novel antigens for therapy are useful 
strategies for cell-based therapy[83,84].



Fincham REA et al. Natural killer cells in PDAC

WJG https://www.wjgnet.com 3494 June 28, 2021 Volume 27 Issue 24

Table 1 Current clinical trials employing natural killer cells therapy in pancreatic cancer

Primary therapy Additional 
intervention Tumour type Phase NCT 

number Status Ref. 

NK cell infusions Irreversible 
electroporation 

Advanced pancreatic cancer I/II NCT02718859 Completed [90,
91]

Dendritic cell activated, 
cytokine induced killer 
treatment

S-1 (drug) Advanced pancreatic cancer I/II NCT01781520 Completed [87,
92]

BiCAR NK cells (ROBO1 
CAR-NK cells)

Pancreatic cancer I/II NCT03941457 Recruiting [93]

Ex-vivo expanded 
autologous NK cells 
(SNK01)

Trastuzumab; 
Cetuximab

Advanced solid tumour; metastatic cancer; 
HER-2+ breast cancer; HER-2 positive 
gastric cancer; HER-2 protein 
overexpression; oesophageal cancer; ovarian 
cancer; endometrium cancer; bladder 
cancer; pancreatic cancer; colorectal cancer; 
NSCLC; EGFR+ NSCLC; head and neck 
squamous cell carcinoma; triple-negative 
breast cancer; cervical cancer; sarcoma

I/IIa NCT04464967 Not yet 
recruiting

[94]

High activity NK cells Pancreatic cancer I/II NCT03008304 Completed [95]

Activated NK cells Lung cancer; breast cancer; colon cancer; 
pancreatic cancer; ovarian cancer

I/II NCT03634501 Recruiting [96]

FT500-an allogenic, iPSC 
derived NK cell 
immunotherapy

Nivolumab; 
pembrolizumab; 
atezolizumab; 
cyclophosphamide; 
fludarabine; IL-2

Advanced solid tumours; lymphoma; 
gastric cancer; colorectal cancer; head and 
neck cancer; squamous cell carcinoma; 
EGFR positive solid tumour; HER2 positive 
breast cancer; hepatocellular carcinoma; 
small-cell lung cancer; renal cell carcinoma; 
pancreas cancer; melanoma; NSCLC; 
urothelial carcinoma, cervical cancer; 
microsatellite instability; merkel cell 
carcinoma

I NCT03841110 Recruiting [97]

FT500-101 allogenic NK 
cell immunotherapy

Advanced solid tumours; lymphoma; 
gastric cancer; colorectal cancer; head and 
neck cancer; squamous cell carcinoma; 
EGFR positive solid tumour; HER2 positive 
breast cancer; hepatocellular carcinoma; 
small-cell lung cancer; renal cell carcinoma; 
pancreas cancer; melanoma; NSCLC; 
urothelial carcinoma, cervical cancer; 
microsatellite instability; merkel cell 
carcinoma

Observational 
study

NCT04106167 Recruiting [98]

FATE-NK100 (donor-
derived ex-vivo activated 
immunotherapy)

Trastuzumab; 
Cetuximab

HER2+ gastric cancer; colorectal cancer; 
head and neck squamous cell carcinoma; 
EGFR+ solid tumours; advanced solid 
tumours; HER2 postie breast cancer; 
hepatocellular carcinoma; NSCLC; renal cell 
carcinoma; pancreatic cancer; melanoma

I NCT03319459 Active, not 
recruiting

[99]

Autologous dendritic cell 
vaccine loaded with 
personalised peptides to 
stimulate innate and 
adaptive immune response 
via activating T and NK 
cells

Standard of care; 
Nivolumab

Pancreatic adenocarcinoma Ib NCT04627246 Recruiting [100]

ACE1702 cellular therapy 
(anti-HER2 NK cells)

Cyclophosphamide; 
Fludarabine

Locally advanced solid tumours; metastatic 
cancer; solid tumour; HER-2+ gastric cancer; 
HER-2 + metastatic breast cancer

I NCT04319757 Recruiting [101]

NK cells Bortezomib CML; pancreatic cancer; colon/rectal cancer; 
multiple myeloma; carcinoma-NSCLC

I NCT00720785 Recruiting [102]

Cytokine-induced killer 
cells

Tegafur; Gimeracil; 
Oteracil potassium

Advanced cancer II NCT03002831 Terminated [103,
104]

Anti-MUC1 CAR-pNK 
cells

Hepatocellular carcinoma; NSCLC; 
pancreatic cancer; triple negative invasive 
breast carcinoma; malignant glioma of the 
brain; colorectal carcinoma; gastric 
carcinoma

I/II NCT02839954 Unknown [105]
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Autologous NK/NK T cell 
immunotherapy

Breast cancer; glioma; hepatocellular 
carcinoma; squamous cell lung cancer; 
pancreatic cancer; colon cancer; prostate 
cancer

I NCT00909558 Suspended [106]

NK cell: Natural killer cell; CAR: Chimeric antigen receptor; NSCLC: Non-small cell lung cancer; CML: Chronic myeloid leukemia; iPSC: Induced 
pluripotent stem cells.

In addition to CAR therapies, cytokine supplement either alone or in combination 
with additional therapeutics has demonstrated significant benefit in both preclinical 
studies and clinical trials. In combination with the immune priming CD40 agonist, 
supplementation of IL-15 in orthotopic and KPC mouse models of pancreatic cancer 
resulted in a significant increase in immune cell infiltration into tumour tissue 
(assessed through multi-colour flow cytometry), particularly of NK and CD8+ T cells. 
This infiltration resulted in enhanced anti-tumour effect and significantly improved 
long term survival (log-rank tests; P ≤ 0.0001)[85]. Furthermore, Lin et al[86] 
demonstrated that allogeneic NK cell transfer in combination with irreversible electro-
poration significantly increased median progression-free and overall survival in stage 
III PDAC patients and increased median overall survival in stage IV patients. 
Moreover, multiple allogenic transfers correlated with better prognosis in stage III 
patients. Similarly, treatment with a dendritic cell/cytokine-induced killer cell vaccine 
was found increase both overall and progression-free survival in advanced pancreatic 
cancer patients[87]. Taken together these results highlight the therapeutic potential of 
NK cell-based therapies. Current clinical trials employing NK cell therapy in 
pancreatic cancer (identified through entering the search terms ‘natural killer cells’ and 
‘pan-creatic cancer’ at clinicaltrials.gov) are highlighted in Table 1.

CONCLUSION
NK cells are powerful effector units, which, when harnessed, can confer striking 
therapeutic benefit. With the innate effector units demonstrating strong efficacy 
against malignancy, both in preclinical studies, and clinical trials, the potential for NK 
cell therapy in PDAC is only just beginning to come to light. Additional research is 
needed to fully elucidate the role of NK cells in pancreatic cancer and deconvolute the 
intricate relationships between NK and stromal cells within the TME, facilitating  co-
targeting of tumour stroma[73,88]. Through defining these relationships, novel 
functional and mechanistic insights into this devastating disease can be achieved[89] 
and the full therapeutic potential of NK cells can be harnessed.
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