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Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named “nonalcoholic 
fatty liver disease” occurs in about one-third of the general population of 
developed countries worldwide and behaves as a major morbidity and mortality 
risk factor for major causes of death, such as cardio-vascular, digestive, metabolic, 
neoplastic and neuro-degenerative diseases. However, progression of MAFLD 
and its associated systemic complications occur almost invariably in patients who 
experience the additional burden of intrahepatic and/or systemic inflammation, 
which acts as disease accelerator. Our review is focused on the new knowledge 
about the brain-gut-liver axis in the context of metabolic dysregulations associated 
with fatty liver, where insulin resistance has been assumed to play an important 
role. Special emphasis has been given to digital imaging studies and in particular 
to positron emission tomography, as it represents a unique opportunity for the 
noninvasive in vivo study of tissue metabolism. An exhaustive revision of 
targeted animal models is also provided in order to clarify what the available 
preclinical evidence suggests for the causal interactions between fatty liver, 
dysregulated endogenous glucose production and insulin resistance.
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Core Tip: From studies using tissue-targeted animal models, it emerges that neither 
insulin resistance per se induces hepatic steatosis, nor steatosis induces whole-body 
insulin resistance. However, it is evident that reducing inflammation has several 
beneficial effects both at the hepatic and whole-body level. In fact, either hepatic or 
systemic inflammation act as major throttle of progressive liver and systemic diseases.

Citation: Rebelos E, Iozzo P, Guzzardi MA, Brunetto MR, Bonino F. Brain-gut-liver 
interactions across the spectrum of insulin resistance in metabolic fatty liver disease. World J 
Gastroenterol 2021; 27(30): 4999-5018
URL: https://www.wjgnet.com/1007-9327/full/v27/i30/4999.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i30.4999

INTRODUCTION
In recent years, nonalcoholic fatty liver disease (NAFLD) has become the leading cause 
of chronic liver disease worldwide, and the endpoint complication of nonalcoholic 
steatohepatitis (NASH), a major indication for liver transplantation[1]. The magnitude 
of the problem is highlighted by a recent model that estimated a 178% increase in 
deaths caused by liver disease related to NASH by 2030[2]. Among noncirrhotic 
NAFLD patients, the leading cause of death is cardiovascular disease[3]. Fatty liver 
associates with the metabolic syndrome and predisposes to all diseases (cardio-
vascular, digestive, metabolic, neoplastic and neurodegenerative) that are major causes 
of death in developed countries. As metabolic dysfunctions play a major role in the 
pathogenesis of fatty liver, a panel of experts has recently proposed to change the term 
“NAFLD,” and its definition, to metabolic associated fatty liver disease (MAFLD)[4,5] 
in an attempt to identify clinical criteria to give a “positive” diagnosis of the disease. 
Furthermore, the definition of “nonalcoholic” was misleading because it is virtually 
impossible to exclude the endogenous production of alcohol by an intestinal 
autobrewery[6]. According to the new consensus, MAFLD means the evidence of 
hepatic steatosis accompanied either by type 2 diabetes (T2D) or overweight/obese or 
in normal weight/lean subjects by at least two metabolic risk abnormalities.

There are many complex physio-pathologic connections within the brain, gut, and 
liver (BGL) axis (Figure 1). While MAFLD per se contributes to an increased risk of 
neurodegeneration[7,8], one well known alteration of this axis is linked to hepatic 
encephalopathy (HE) a debilitating neuropsychiatric condition often associated with 
acute liver failure and/or cirrhosis[9]. However, the pathophysiologic mechanisms 
and treatment options involved in HE are much different from those involved with 
insulin resistance in MAFLD. Consistently, a recent study demonstrated that the 
nonabsorbable antibiotic rifaximin, a standard of care for HE had no effect on impro-
ving insulin resistance, adipose tissue inflammation, or plasma lipopolysaccharide 
(LPS) levels following an oral lipid test in obese subjects[10].

Our review is focused on the early pathophysiology of BGL in the context of insulin 
resistance and specifically addresses two pillars of hepatic insulin resistance, namely 
dysregulated endogenous glucose production and MAFLD. Of note, highly selected 
patients with MAFLD without any features of the metabolic syndrome, have altered 
endogenous glucose production[11]. Specific emphasis will be given to novel findings 
from imaging studies, since imaging provides noninvasive in vivo “snapshots” of the 
tissues of interest. We and others have highlighted that there is an imperative need of 
noninvasive techniques, including imaging to identify effective biomarkers and early 
prognostic patterns of MAFLD[12,13]. Finally, we discuss new insights that can be 
gained from targeted animal models in which interventions such as the knockout (KO) 
of the insulin receptor or the GLUT4 glucose transporter in different tissues, or the 
primary upregulation of lipid synthesis help to elucidate the effect of insulin resistance 
on hepatic steatosis and vice versa.

https://www.wjgnet.com/1007-9327/full/v27/i30/4999.htm
https://dx.doi.org/10.3748/wjg.v27.i30.4999
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Figure 1 A summary of some interactions (A) of the brain, liver, and gut in health, and (B) in the context of insulin resistance. Several lines 
of research have shown that the brain may directly control endogenous glucose production. Recent evidence suggests that the brain may also control the rate of lipid 
turnover in the liver, thus promoting or defending from metabolic associated fatty liver disease (MAFLD). The liver is anatomically in close relationship to the gut, 
which represents the first line of defense against gut-derived endotoxins and signaling molecules (e.g., short-chain fatty acids). Altered gut microbiota and/or a leaky 
gut may contribute directly to establishment of MAFLD. The gut also produces substantial amounts of hormones that, through endocrine signals, act on the brain and 
the liver. The autonomic nervous system and the vagus nerve constitute the basis of the brain, gut and liver axis interconnections. Orange line: liver–brain–gut neural 
arc; dotted line: other ways of communication (e.g., hormonal, adipocytokines). Red star denotes the hypothalamic nuclei; yellow star denotes the nucleus tractus 
solitaries. αMSH: α-melanocyte-stimulating hormone; AgRP: Agouti-related protein; ANS: Autonomous nervous system; ARC: Arcuate nucleus; CART: Cocaine- and 
amphetamine-regulated transcript; EGP: Endogenous glucose production; MAFLD: Metabolic associated fatty liver disease; NPY: Neuropeptide Y; NTS: Nucleus 
tractus solitarius; ROS: Reactive oxygen species; SCF: Short-chain fatty acid.

MAFLD-INSULIN RESISTANCE-INFLAMMATION: A VICIOUS CIRCLE
Whereas the association between MAFLD and insulin resistance is well established, 
there is debate on their cause-effect relationships. Thus, it is not clear whether systemic 
insulin resistance induces the accumulation of lipids in the liver[11] or if hepatic 
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steatosis is a major determinant of systemic insulin resistance[14]. In any case, once 
hepatic steatosis is established, other typical characteristics are observed such as 
insulin resistance, insufficient suppression of endogenous glucose production (EGP), 
increased insulin secretion, decreased whole-body glucose disposal, increased lipolysis 
with consequent enhanced lipid oxidation[11], decreased insulin clearance[15], and 
chronic oxidative stress[16]. Both insulin resistance and MAFLD are characterized by 
elevated circulating inflammatory markers[17,18]. The interplay between insulin 
resistance, ectopic fat accumulation in the liver, and inflammation is characterized by 
mutual positive regulation, i.e. a vicious circle[19]. On one hand, ectopic fat accumu-
lation in the liver leads to lipotoxicity, low-grade inflammation and insulin resistance 
in the liver[19]. On the other hand, insulin resistance enhances lipotoxicity through 
unsuppressed lipolysis[19]. Finally, proinflammatory markers such as tumor necrosis 
factor (TNF)-α and interleukin (IL)-6, which are typically increased in conditions of 
insulin resistance may further aggravate both insulin resistance and MAFLD[19].

In MAFLD patients, intrahepatic inflammation is the most important prognostic 
determinant of liver disease progression and systemic inflammatory markers correlate 
with hepatic inflammation[20]. A plausible hypothesis holds that in the context of 
MAFLD, inflammation (hepatic and/or systemic) acts as major disease accelerator[13].

BRAIN-LIVER AND BLG AXIS
Control of EGP
Preclinical studies have shown that insulin acting directly on the brain may affect EGP. 
More specifically, Obici et al[21] have shown that an intracerebroventricular (ICV) 
injection of insulin suppresses EGP in rats. Human evidence is slowly accumulating, 
and recent clinical studies have confirmed the presence of a “brain-liver axis”. More 
specifically, intranasal insulin (INI) administration during the euglycemic hyper-
insulinemic clamp was shown to suppress EGP in lean, but not in overweight, 
individuals[22]. Under the same euglycemic hyper-insulinemic conditions, brain 
imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has 
shown that brain glucose uptake (BGU) correlates positively with EGP in morbidly 
obese individuals, but not in healthy lean individuals[23]. On the contrary, when INI 
was given during fasting conditions EGP was not affected, and similarly no correlation 
was found between BGU and EGP in the post-absorptive state. Taken together, the 
data suggest that under conditions of high systemic insulin levels like those typically 
seen in the postprandial state, the brain may directly control (i.e. suppress) EGP, but 
the control is lost with increased adiposity.

Other lines of research also suggest that the brain may control EGP. Intrac-
erebroventricular administration of brain-derived neurotrophic factor (BDNF) lowers 
blood glucose levels and suppresses hepatic glucose production (HGP) and hyperglu-
cagonemia[24]. Of note, leptin activates BDNF-expressing hypothalamic neurons, 
which in turn stimulate BDNF synthesis[25]. Also, Bercik et al[26] have shown that the 
intestinal microbiota affects both the central levels of BDNF and behavior in mice.

Lipid delivery into the upper intestine has also been shown to suppress EGP 
through central action. More specifically, lipid delivery leads to long chain fatty acyl-
CoA production that suppresses EGP, and the effect is abolished either after coadmin-
istration of the anesthetic tetracaine, by gut vagal deafferentation, or by hepatic 
vagotomy[27]. Wang and colleagues further demonstrated that in rats with insulin 
resistance induced by a high-fat diet (HFD), upper intestine lipid delivery failed to 
suppress EGP, suggesting a potential mechanism for dysregulated EGP in the context 
of insulin resistance. Along the same line, cholecystokinin (CCK) has also been 
reported to trigger gut-brain-liver axis control of HGP, and that HFD impaired CCK-
induced afferent vagal signals to suppress HGP[28].

Enteric hormones (enteroendocrine system)
The gastrointestinal tract is a major producer of hormones, among which GLP-1, 
ghrelin, cholecystokinin are particularly involved in the BGL axis. GLP-1, an incretin 
hormone secreted from the L cells of the intestine in response to a meal, exhibits high 
fasting levels in subjects with insulin resistance and in whom GLP-1 does not increase 
sufficiently in response to a meal[29]. GLP-1-receptor mRNA has been found both in 
the hepatic portal region and in neurons[30]. Preclinical studies have suggested that 
GLP-1 may act on the liver through the nerve endings of the intestinal wall. Insulin 
clamp studies in GLP-1 receptor knockout mice showed a defective suppression of 
EGP[31], and the intraportal GLP-1 injection in rats increased the firing rate of the 
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hepatic afferent of the vagus nerve[32]. In healthy individuals under conditions of 
pancreatic clamping (i.e. with stable insulin and glucagon concentrations), GLP-1 
inhibits EGP, and the effect is mediated either through direct GLP-1 action on the liver 
or through neuron-mediated inhibition[33]. GLP-1 also contributes to suppression of 
appetite[34]. Thus, GLP-1 may play an important role in the pathophysiology of 
MAFLD; and in preliminary clinical studies, exenatide, a GLP-1 receptor agonist, was 
shown to decrease hepatic fat content and liver enzymes[35], and to improve liver 
histology[36]. Similarly, liraglutide was shown to improve NASH[37].

Ghrelin is a hormone that is mainly derived from the stomach and duodenum, and 
its main function is to control food intake by inducing appetite. Ghrelin has recently 
been shown to participate in the BGL axis, as under conditions of pancreatic clamping, 
intraduodenal ghrelin infusion resulted in increased HGP through neural-mediated 
action, as administration of ghrelin, while inhibiting the vagal afferent neurotrans-
mission, abolished the ghrelin-induced increase of HGP[38]. Similarly, vagotomy or 
use of N-Methyl-D-aspartate blockers abolished the ghrelin effects on HGP. Ghrelin 
has also been shown to block the action of cholecystokinin. The ghrelin nutrient-
sensitive effects on the gut may thus be attributed to its inhibition of cholecystokinin.

CCK is released from intestinal endocrine cells during feeding, and it binds to CCK-
A receptors on gut vagal fibers that project the signal to the brainstem, causing 
termination of the meal[39]. Insulin and CCK have complimentary actions in inducing 
satiety, as ICV administration of insulin enhances the satiety effect of CCK[40], 
whereas fasting decreases it[41]. Similar complementary effects with CCK have been 
proposed for leptin, as ob/ob mice and Zucker rats have been shown to be relatively 
insensitive to the satiety effects of CCK[42].

Adipocytokine signaling
Leptin is an adipokine, or adipocytokine with structural similarities with the cytokines 
of the type I cytokine family. Circulating leptin levels are directly related to expanded 
fat mass, but obesity is characterized by leptin resistance, and leptin resistance consists 
at least partially in a decreased capacity for leptin transport into the brain[43]. Even 
though secreted by adipose tissue, the main site of action of leptin is the central 
nervous system (CNS), and particularly in the hypothalamic nuclei. Leptin and insulin 
central actions are largely interconnected; both act on the arcuate nucleus to suppress 
the expression of the orexigenic peptides neuropeptide Y and agouti-related protein. 
Their action on other neurons is different and more complex, as leptin stimulates while 
insulin inhibits proopiomelanocortin neurons[44]. Apart from controlling EGP, 
appetite (and thus body weight), leptin is also implicated in MAFLD as it has been 
demonstrated that leptin deficient ob/ob mice have marked steatosis[45]. A recent 
preclinical study has shown that CNS-leptin signaling promotes hepatic triglyceride 
export and decreases de novo lipogenesis[46]; the authors propose intranasal leptin 
administration as potential new treatment of MAFLD.

Vagus nerve and the enteric nervous system
As already highlighted, the tenth cranial, or vagus nerve, plays a pivotal role in the 
BGL axis communications, which are summarized in Figure 1. The enteric nervous 
system, also named the “second brain” or “brain in the gut” is considered as one of the 
autonomic nervous system divisions and consists of approximately 500 million 
neurons which produce a variety of neurotransmitters including acetylcholine, 
adrenaline, VIP and serotonin (5-HT). It has been shown that 5-HT promotes lipid 
accumulation in hepatocytes in vitro[47]. In line with that, short-term treatment with 
tryptophan inhibitors prevented the formation of 5-HT, which is a metabolite of 
tryptophan, and inhibited the development of hepatic steatosis in mice fed with a high 
carbohydrate diet without increasing the energy expenditure in adipose tissues[48]. In 
addition, the same study showed that inhibition of gut-derived serotonin ameliorated 
hepatic steatosis. Taken together, the data suggest that gut-derived serotonin is a 
regulator of hepatic lipid metabolism through a gut-liver axis. On the other hand, the 
gut microbiota regulates both the 5-HT synthesis and its release from the enteroen-
docrine cells, and 5-HT plays its role on the CNS as one of the most important central 
neurotransmitters in the regulation of mood, sleep, and pain[49]. Consistently, 
modification of central 5-HT levels was shown by Pagoto et al[50] to affect food 
preferences. Following acute tryptophan depletion (transient decrease of both 
peripheral and central 5-HT levels), overweight individuals increased their sweet 
calorie intake and preferred sweet foods. Of significant note is that most tryptophan 
was converted to kynurenine rather than to 5-HT, and under conditions of inflam-
mation, the rate-limiting enzyme for this transformation could be upregulated. As 
kynurenine and 5-HT compete to cross the blood-brain barrier through the same 
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transporter, it follows that inflammation-associated changes in kynurenine levels 
could impact on central 5-HT concentrations[51,52]. Thus, this is another pathway 
through which inflammation could decrease central 5-HT levels to prompt affected 
patients to increase their intake of sweets.

Gut microbiota
An altered gut microbiota composition is associated with obesity[53], and in obese 
humans specific microbiota compositions may be associated with impaired glucose 
control[54]. It is well established that a diet rich in fibers is healthy, with improvement 
of insulin sensitivity and glucose tolerance. The beneficial effects of increased fiber 
consumption are hypothesized to be mediated by the production of the short-chain 
fatty acids (SCFAs) acetate, propionate, and butyrate after fermentation of the fibers by 
the gut microbiota. SCFAs do not act just as substrate for colonocytes and enterocytes
[55], but also as signaling molecules. For instance, SCFAs can stimulate the secretion of 
GLP-1 and peptide YY, and decrease the secretion of ghrelin[56-58]. Propionate and 
butyrate have been shown to activate intestinal gluconeogenesis (IGN), and 
interestingly, increased IGN was shown to have beneficial effects on glucose home-
ostasis even if the resulting increase in EGP is a key feature of T2D[59]. In the case of 
propionate, the effect occurs via a gut-brain neural circuit[60], as it was shown that 
after denervation of the periportal nervous system, propionate feeding no longer 
affected IGN. Even though butyrate feeding (which has a direct effect on IGN shown 
by gene expression via a cAMP-dependent mechanism) could still enhance IGN, both 
the beneficial effects of IGN and portal glucose sensing were lost[60].

Decreased levels of the SCFA butyrate have also been associated with tight-junction 
abnormalities and increased intestinal permeability[61], which have been implicated in 
MAFLD pathogenesis and progression. Other microbiota-derived molecules might 
play also an important role. Deficiency of the macronutrient choline, which is 
implicated in the prevention of liver steatosis by promoting the assembly and 
excretion of very-low-density lipoprotein[62], has been observed in NAFLD patients 
and was associated with abundance of specific bacteria (Erysipelotrichia taxa), which 
are able to metabolize choline to trimethylamine (TMA) and its oxidized form TMAO, 
with the net effect of reducing choline bioavailability and increasing that of steatogenic 
TMAO[63].

Amino acid metabolism is also important. The branched-chain amino acids 
(BCAAs) valine, isoleucine and leucine, contribute to insulin resistance and hepatic 
steatosis, and can be synthesized and metabolized by specific gut bacteria. An 
intervention study in rats showed that the dietary administration of BCAA reduced 
the accumulation of liver fat through the modification of gut microbiota[64]. The effect 
occurred through the gut-brain axis, accompanied by microbiota-mediated production 
of the SCFA acetate, which activated the parasympathetic nervous system[65]. Other 
amino acids, such as tryptophan, phenylalanine, and tyrosine can be metabolized by 
gut bacteria that produce derivates with effects on metabolism and inflammation. For 
example, the essential amino acid tryptophan is the precursor of serotonin and can be 
converted into its indole intermediate, which in turn can reduce hepatic lipogenesis 
and inflammation[66].

Furthermore, the bacterial-derived endotoxin lipopolysaccharide (LPS) might 
contribute to local and systemic inflammation by the activation of the toll-like receptor 
4 pathway. Increased abundance of endotoxin-producing bacterial strains has been 
found in the gut of obese patients compared with controls[67], suggesting its potential 
implication in the development of MAFLD and its progression to NASH, with the 
involvement of CNS dysfunction and inflammation.

Dietary patterns are able to modulate brain lipid composition and function[68] as 
well as hepatic lipid content[69]. It has been shown that unhealthy diets rich in 
saturated or monounsaturated fatty acids have unfavorable effects on gut microbiota 
composition[70], promoting an increase of LPS-producing bacteria and reduction of 
SCFAs leading to a systemic proinflammatory state occurring through the BGL axis
[71].

Finally, gut microbiota-dependent regulation of neurotransmitters interacts with 
vagal afferent pathways to affect liver metabolism through the gut-brain axis. Gut 
bacteria can modify serotonin release[72], which has a brain-dependent effect on 
gastrointestinal motility and secretion, and energy expenditure. It promotes liver 
steatosis by local endocrine mechanisms[73], and modulates the production of several 
other molecules, such as gamma-aminobutyric acid, acetylcholine, histamine, 
norepinephrine, dopamine, and endocannabinoids that affect glucose and lipid 
metabolism and inflammation, as deeply reviewed elsewhere[74].
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A useful experimental model for studying the effects of specific microbiota on host 
metabolism is provided by germ-free mice, which are resistant to high-fat diet-induced 
obesity[75] and protected from MAFLD. In a seminal study Le Roy et al[76] showed 
that germ-free mice that received fecal transplantation from C57BL/6J mice with HFD-
induced hyperglycemia and increased plasma concentrations of proinflammatory 
cytokines, developed hepatic steatosis. On the contrary, germ-free mice that received 
stool from C57BL/6J mice that were non-responders to HFD and without hyper-
glycemia and increased proinflammatory cytokines, did not develop hepatic steatosis. 
Moreover, the gut microbiota controlling the balance between proinflammatory and 
anti-inflammatory signals may contribute to the progression to NASH. Consistently, 
short-term treatment of patients with steatosis and NASH with rifaximin led to an 
improvement of liver enzymes levels[77]. The effect was thought to have been caused 
by a change of the gut microbiota composition leading to a direct reduction of leaky 
gut, and consequent improvement of hepatic inflammation, rather than an effect on 
insulin sensitivity. It was recently demonstrated by Finlin et al[10] that rifaximin did 
not improve insulin resistance.

Bile acids
Bile acids (BAs) are synthesized in the liver from cholesterol, stored in the gallbladder, 
and secreted after gallbladder emptying into the intestinal lumen upon food ingestion. 
As BAs move along the intestinal lumen, they contribute to the absorption of lipids 
and lipophilic vitamins. The majority of BAs (~95%) are re-absorbed by enterocytes 
and then transferred back to the liver where they are reused (i.e. enterohepatic 
circulation). BA are transformed to secondary BAs by the gut microbiota[78] and only 
in a small amount reach the systemic circulation and increases of plasma BA levels 
were reported after meals, suggesting that BAs could be a postprandial systemic signal
[79].

In the last decades, important new insights have been gained, proposing BAs as 
important determinants of glucose homeostasis. Early studies showed that KO of the 
BA farnesoid X receptor (FXR) induced insulin resistance, whereas administration of 
BA agonists enhanced insulin sensitivity[80]. BA receptors are also present in the CNS, 
and it is now believed that the BA signal reaches the brain through three different 
pathways, one direct and two indirect[81]. The direct pathway consists in activating 
central FXR and Takeda G protein-coupled receptor (TGR5R) signaling after crossing 
the blood-brain barrier. Indirect activation of intestinal FXR and TGR5R results in the 
release of FGF19 and GLP-1, both of which can signal to the CNS. The pathways have 
been extensively reviewed by Mertens et al[81]. Even though major pathways of 
communication of the BGL axis through BAs were identified, their importance in 
pathophysiology warrants further investigation.

Nutrient intake: Role of fructose
In Western societies, increased consumption of fructose began in the 1970s after the 
introduction of high-fructose corn syrup as a sweetener in soft drinks. Since then, the 
prevalence of obesity and T2D have substantially increased and a link between high 
fructose consumption and MAFLD has been established[82]. Fructose is a 5-carbon 
carbohydrate with peculiar characteristics, as upon entry in the cell it is phospho-
rylated to fructose-1-phosphate by phosphofructokinase, decreasing the cell’s ATP 
levels because of the rapid depletion of phosphate. AMP degradation increases uric 
acid levels, which has a proinflammatory affect in the intracellular compartment. In 
the liver, fructose can be transformed into free fatty acids that can either be secreted 
into the circulation as triglycerides or stored as intrahepatic lipids, contributing to 
MAFLD. How does fructose affect the liver through the BGL axis? Studies in mice 
have shown that fructose consumption causes a strong binge-eating response that is 
attributed to release of orexin from the lateral hypothalamus[83]. Chronic fructose 
intake leads to leptin resistance and weight gain[84]. Similar findings were confirmed 
in humans, who after fructose assumption, experienced increased hunger and desire 
for sweet foods than after glucose administration[85]. Furthermore, Spruss et al[86] 
showed that the long-term intake of fructose was associated with a marked reduction 
of the protein in the tight junctions of the duodenum that led to an increase in translo-
cation of bacterial endotoxin and activation of toll-receptor-4-dependent signaling 
cascades in the liver. Interestingly, metformin a drug that reduces insulin resistance, 
was shown to protect from fructose-induced steatosis[86].
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RESULTS OBTAINED FROM TISSUE-TARGETED ANIMAL MODELS
Based on the frequent coexistence of fatty liver, steatohepatitis, obesity, T2D, dysbiosis, 
insulin resistance, and low-grade inflammation, there is general acceptance of their 
possible causal interactions. However, their exact nature and implication in different 
subgroups of patients remains to be elucidated. In order to identify more specific 
causal relationships, we reviewed studies in tissue-targeted animal models in which 
the known primary event was either insulin resistance or hepatic steatosis or gut 
microbiota depletion or the induction or reduction of inflammation (Figures 2 and 3; 
Figure 2 is given more extensively in Supplementary Table 1). All the studies indicate 
that unless extreme lipodystrophy occurs (FIRKO-90%), severe insulin resistance in the 
whole body or skeletal muscle and/or adipose tissue does not cause hepatic steatosis 
and liver insulin resistance or inflammation[87-89]. GLUT4-null mice do not have 
hepatic steatosis or glucose intolerance and have normal EGP-related enzyme 
expression in their liver[90-92]. In the absence of insulin receptors or GLUT4 in both 
muscle and adipose tissue, glucose tolerance is normal or is less affected than expected 
from the degree of insulin resistance[93-95]. The key compensatory organs appeared to 
be adipose tissue (with upregulation in glucose uptake, increase in small adipocyte 
number), and the liver (with upregulated glucose uptake, balanced increase in lipid 
synthesis vs export). A chronic lack of insulin action in only the liver leads to 
unsuppressed EGP, resulting in severe glucose intolerance from early life onward, low 
insulin clearance, glycogen depletion, low expression of lipogenesis pathways, and 
resistance to high-fat diet-induced steatosis[96-99]. The effects of a short-term lack of 
insulin action are controversial[98,100]. With a normal diet in the chronic model, 
moderate liver steatosis occurs in older animals, with an elevation in liver enzymes, 
focal dysplasia, no fibrosis, and low circulating triglycerides, which may depend on 
blunted triglyceride export because of chronic brain exposure to hyperinsulinemia. In 
fact, acute vs chronic central insulin infusions have shown a transition from 
stimulation to suppression of hepatic triglyceride export[101], modulating liver fat 
content. Lack of insulin action in the brain also causes a moderate degree of 
hyperphagia in females (either with or without overweight), insulin resistance without 
hyperglycemia, or glucose intolerance and high or normal triglyceride levels[101-103]. 
Instead, the selective KO of brain GLUT4 results in normal peripheral insulin 
sensitivity, but unsuppressed EGP leading to glucose intolerance[104]. Although the 
intestine is assumed to contribute little to EGP, it was noted that the absence of insulin 
action in enterocytes ameliorated glucose tolerance, via reduced intestinal glucose 
absorption and downregulation of intestinal EGP enzyme expression[105,106]. From 
these studies, EGP (dys)regulation resulting from the action of insulin on the liver, 
brain, and gut seems to be the most prominent determinant of glucose (in)tolerance.

On the other hand, the primary induction of liver steatosis does not cause whole-
body insulin resistance, glucose intolerance, or hepatic inflammation, but provokes an 
increase in hepatic ceramide and diacylglycerol content, and the enrichment of liver 
triglycerides with polyunsaturated fatty acids, which may increase susceptibility to 
inflammatory damage[107-111]. The exposure to toxins (including LPS) caused liver 
and lipid inflammation and reduced fasting glucose, insulin and triglyceride levels
[108-111]. Consistently, older studies have shown that an injection of LPS leads to a 
major increase in fasting glucose consumption by the whole body, with a several-fold 
elevation in the liver and spleen glucose uptake lasting 48 h, possibly because of the 
content of macrophages[112]. More recent studies on chronic LPS infusion have 
revealed that, while inducing overweight and inflammation in the liver and in adipose 
tissue and muscle in chow and HFD fed mice, LPS caused steatosis and extra-hepatic 
insulin resistance only in HFD mice or hepatic insulin resistance (EGP) only in chow-
fed mice, with a small impact on glucose tolerance[113]. This is in agreement with 
observations in germ-free mice lacking LPS showing lower liver fat, better glucose 
tolerance, higher insulin sensitivity, and normal circulating triglyceride and free fatty 
acid levels compared with colonized mice[114-116]. However, the selective inoculation 
of bacteria producing or not producing LPS in germ-free mice showed a direct effect 
only on adipose tissue inflammation and without hepatic or systemic impact[116]. All 
the evidence suggests that both the metabolic and hepatic effects of LPS require other 
microbial or dietary components and support a role for liver inflammation, but not 
steatosis per se, in the regulation of peripheral metabolism. In line with this, anti-
inflammatory drugs have been shown to ameliorate liver function, steatosis, inflam-
mation, and insulin resistance, with glucose and lipid lowering effects observed only 
in diabetic animals[117-121].

https://f6publishing.blob.core.windows.net/32c98e09-cbe9-4dd5-8796-61fb492a7e2c/WJG-27-4999-supplementary-material.pdf
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Figure 2 Tissue-targeted animal models evaluating the independent effects of tissue-specific insulin receptor knockout, or GLUT4 
knockout, or the induction of steatosis or inflammation on metabolic outcomes, including liver steatosis, endogenous glucose 
production, glucose tolerance, and body weight. Negative effects are shown in red and abnormalities reported as mild-moderate or not consistent in all 
studies in light red. Beneficial effects (dark) or no effect (light) are shown in green. Orange indicates opposite (high vs low) findings between studies. Light blue refers 
to a decrease that cannot be unequivocally interpreted as being beneficial or adverse to health. BDL: Bile duct ligation; ConA: Concanavalin A; DGAT2: Diacylglycerol 
O-acyltransferase 2; FFA: Free fatty acids; FIRKO: Fat-specific insulin receptor knockout; GK: Goto-Kakizaki; HFD: High-fat diet; IL-Ra: Interleukin-1 receptor 
antagonist; IR: Insulin resistance; IRKO: Insulin receptor knockout; KO: Knockout; LDLR-KO: Low-density lipoprotein cholesterol receptor knockout; LIRKO: Liver-



Rebelos E et al. BGL and insulin resistance

WJG https://www.wjgnet.com 5008 August 14, 2021 Volume 27 Issue 30

specific insulin receptor knockout; LGSKO: Liver glycogen synthase knockout; LPS: Lipopolysaccharide; MIRKO: Muscle-specific insulin receptor knockout; MTTP: 
Microsomal triglyceride transfer protein; NIRKO: Brain-specific deletion of the insulin receptor; PEA: P. aeruginosa exotoxin A; TAA: Thioacetamide; TG: Triglycerides

Figure 3 Summary of the outcomes yielded by targeted animal models. AT: Adipose tissue; LPS: Lipopolysaccharide; GS: Glycogen synthase; GU: 
Glucose uptake; WB: Whole body.

DISEASE MONITORING BY DIGITAL IMAGING: FOCUS ON PET AND 
MECHANISTIC UNDERSTANDING
Liver biopsy is the current gold standard in both the diagnosis and follow-up of liver 
disease. The presence of ballooning degeneration of hepatocytes being the hallmark of 
steatohepatitis, but biopsy is invasive and unsuitable for frequent monitoring[122]. 
Liver function tests are useful, but not diagnostic or predictive of NASH and/or 
fibrosis in individual patient. Imaging tools can capture and measure liver steatosis. 
Among them, magnetic resonance imaging (MRI)-magnetic resonance spectroscopy 
(MRS) has the highest sensitivity, but it is complex and not always accessible. Recently 
mono- and multiparametric scores obtained by the AI-processing of common 
ultrasound images have been proposed for repeated follow-up of liver fat and are 
validated against spectroscopic magnetic resonance technology[123]. Vibration-
controlled transient elastography and magnetic resonance elastography provide useful 
measures of the combined inflammation-fibrosis index, but a reliable distinction 
between them remains to be achieved in the diagnostic field[12].

MRI can measure the proton density fat fraction (PDFF) and has been shown to be 
an objective, accurate, and reproducible quantitative indicator of hepatic fat content 
across the entire liver. MRI-PDFF has been validated against liver histology, and 
shown to be more sensitive in detecting changes in hepatic fat content and treatment 
response in clinical trials[124-126].

Finally, multiparametric MRI makes it possible to establish scores for assessment 
and quantification of liver fibrosis and inflammation, with accurate prediction of 
clinical outcomes in patients with chronic liver disease of mixed etiologies and/or 
steatosis[127]. The animal studies discussed above showed that LPS-induced liver 
inflammation is characterized by very high hepatic glucose uptake, possibly because of 
macrophages. The notion that activated macrophages and lymphocytes have high 
glucose-avidity has supported the use studies with PET imaging of the glucose 
analogue (18F)-FDG in inflammatory conditions, such as osteomyelitis, sarcoidosis, 
vasculitis, or vulnerable atherosclerosis plaques[128,129]. Some studies, although 
lacking liver biopsies, have explored the relationship between computed tomography-
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determined steatosis and fasting (18F)-FDG-PET imaging[130-132], yielding contro-
versial results. Two recent reports that used biopsy-proven liver diagnosis and 
compartmental modeling of (18F)-FDG in the liver, found an inverse relationship 
between hepatic inflammation grades and liver blood flow, i.e. the K1 rate constant 
representing the flow-dependent delivery of (18F)-FDG to the liver[133,134]. Other rate 
constants (e.g., fractional extraction) did not correlate with histology grades. Unfortu-
nately, these human studies addressed relative indices and not the absolute rate of 
hepatic glucose uptake (HGU), which is given by the product of (18F)-FDG fractional 
uptake × circulating glucose levels, and they did not quantify EGP.

We have previously validated a method to simultaneously estimate EGP [by (18F)-
FDG plasma clearance] together with HGU (by imaging) during (18F)-FDG-PET, 
addressing their relationship with liver steatosis (by MRI-MRS) in type 2 diabetic or 
morbidly obese patients. The studies indicate that hepatic insulin resistance and 
steatosis are, to some extent, proportional and improve after weight loss by bariatric 
surgery in morbidly obese individuals[135]. However, very-low-calorie diets in less 
severe obesity had effects on glucose tolerance, EGP, and liver fat, but not on HGU
[136], whereas glucose lowering by SGTL2 inhibitors in diabetic patients had a 
significant effect on glucose control and liver fat, but not on EGP or HGU[137]. Taken 
together, the studies suggest that liver fat is not a cause of hepatic dysmetabolism, but 
rather a consequence of glucose intolerance. It is also important to keep in mind that 
the euglycemic insulin clamp that was used in the studies, did not reflect the daily 
metabolic physiology of patients, in which glucose and insulin levels increase and 
decrease together after meals or under fasting conditions. HGU and EGP are 
dependent on the changing insulin and glucose levels, and chronic hyperglycemia and 
hyperinsulinemia are commonly present. For example, PET imaging studies in 
minipigs underscore the relevance of circulating glucose by showing that 
hyperglycemic- compared with euglycemic-hyperinsulinemia enhanced HGU, hepatic 
triglyceride content and triglyceride release in proportion to glycemia[138]. The 
euglycemic clamp thus provides relevant information on the sole action of insulin on 
tissue metabolism, being insufficient to characterize the more complex relationship 
between glucose and lipid metabolism occurring in the liver in real life.

By using a fatty acid PET tracer, we demonstrated that overweight was charac-
terized by an elevation in fasting hepatic fatty acid oxidation, with normal rates of 
triglyceride incorporation[139]. Liver steatosis occurred in obese subjects, in whom 
weight loss was able to reduce hepatic fatty acid uptake and liver steatosis in a propor-
tional manner, and EGP[140]. Notably, a chronic, i.e. 1-wk treatment with acipimox, 
suppressing fatty acid levels and liver fatty acid uptake provoked a significant 
improvement in systemic and liver insulin sensitivity and decreased circulating trigly-
cerides and liver enzymes, but did not change liver fat content, as measured with MRS 
in healthy individuals[140]. Thus, liver and systemic insulin sensitivity were 
improved, together with liver function and independent of hepatic triglyceride 
accumulation. Again, in spite of cross-sectional correlations and consensual changes 
after weight loss, intervention studies disconnect liver steatosis per se from other 
adverse metabolic consequences, at least in healthy subjects.

In spite of the new light on pathophysiology shed by the above studies, two major 
needs remain unmet. Firstly, none of the above PET imaging studies included 
sufficient histologic information to address the progression of liver steatosis into 
steatohepatitis and/or fibrosis, thus the specific factors of disease progression are not 
yet identified. However, sufficient knowledge exists to design targeted studies for a 
more effective demonstration of the potential of PET-CT as diagnostic tools. Secondly, 
the relevance of other organs in compensating or aggravating liver disease needs a 
better understanding in order to address appropriate treatment strategies and targets, 
and intervention-time windows. We have just started to examine the brain-liver-gut 
axis in humans by PET imaging. Our studies during euglycemic clamp revealed a 
positive relationship between BGU and EGP and the predictive value of BGU of 
glucose homeostasis in diabetic subjects following bariatric surgery[23]. We also 
detected a high fasting-uptake of fatty acids in the brain in obese and morbidly obese 
individuals[141]. A greater elevation of BGU was also observed in reward-related but 
not in behavior-controlling regions in response to sensory stimulation by chocolate 
stimuli in overweight women with high food-addiction scores, compared with women 
with lower scores, independent of peripheral substrate and hormone levels, which 
were shown to be similar. Only in the former group was BGU reduced after a low-
calorie diet, independent of similar peripheral changes[142]. Thus, high or unbalanced 
BGU is associated with a variety of high-risk behavioral and metabolic aspects. More 
important, the study underscores that the same phenotype can result from different 
mechanisms, and that mechanistic or intervention studies pooling patients based on a 



Rebelos E et al. BGL and insulin resistance

WJG https://www.wjgnet.com 5010 August 14, 2021 Volume 27 Issue 30

Figure 4 Threesome ballooning hallmark of progressive fatty liver disease. Liver steatosis is associated with cardiovascular, digestive, metabolic, 
neoplastic, and neurodegenerative diseases; but it is the concomitant presence of inflammation that markedly accelerates the progression of these diseases. We 
illustrate this concept, representing steatosis as a “pedal” on which a series of aggravating factors may press as a “foot” that pushes on the “throttle”, namely 
inflammation.

similar phenotype (e.g., obesity or T2D) may be misleading both on detection of cause 
and on the evaluation of treatment efficacy. Evaluating the BGL axis by PET imaging 
with double-tracer oral glucose loading, we showed that the administration of 
exenatide (a GLP-1R agonist) in subjects with impaired glucose tolerance decreased 
EGP and HGU. A decrease in the intestinal absorption of oral glucose resulted in 
lower insulin levels, with an increased proportion of orally ingested glucose that was 
retained by the liver and increased BGU in most brain regions[143]. That underlines 
the importance of integrating intestinal metabolism and absorptive effects under real 
life circumstances in the study of the BGL axis. The quantification of intestinal glucose 
uptake by PET imaging has been recently validated, showing that intestinal insulin 
resistance in the jejunum was improved by bariatric surgery in obese subjects and in 
the large and small intestine by metformin and mildly improved in the small intestine 
of diabetic patients by rosiglitazone. Intestinal fatty acid uptake was elevated and 
further increased in obese subjects after bariatric surgery. Interestingly, parallel animal 
model observations showed that the human body could release glucose and fatty acids 
from the circulation into the gut lumen[144], which suggests that the gut can be a way 
to actively eliminate excess substrate and that the body feeds substrates to the gut 
microbiota, potentially modulating its composition and function. EGP was either 
decreased, unchanged or increased in the studies, again indicating a possible 
confounding effect of morbid obesity or a disconnect between insulin action in gut and 
liver. These studies, primarily planned to address insulin sensitivity, have set the stage 
for the design of gut-targeted and BGL-targeted imaging approaches under metabolic 
conditions that are relevant to this interaction, including the study of microbiomics.

CONCLUSION
We reviewed the most recent knowledge of the complex interplay among the organs of 
the BGL axis in the pathophysiology of insulin resistance and MAFLD, presenting the 
best established interconnections between brain, gut and liver in the context of insulin 
resistance and hepatic steatosis. From studies using tissue-targeted animal models it 
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emerges that insulin resistance per se does not induce hepatic steatosis, nor does 
steatosis induce whole-body insulin resistance. However, it is evident that reducing 
inflammation has several beneficial effects both at the hepatic and whole-body level. In 
fact, inflammation (either hepatic or systemic) acts as major throttle of progressive 
liver and systemic diseases. This paradigm is illustrated in Figure 4 together with the 
important diagnostic and prognostic role of the three hallmark characteristics of 
progressive fatty liver disease, namely visceral obesity (abdominal ballooning) and/or 
ballooning degeneration of hepatocytes and adipocytes (thus predominant adipocyte 
hypertrophy rather than hyperplasia).

There is currently no approved treatment for MAFLD, which is a multifaceted 
syndrome caused by pathogenetic mechanisms that, in animal studies, consistently 
appear to be diverse. Understanding and being able to identify and measure different 
factors that trigger and/or accelerate the pathogenesis of steatosis and its progression 
is a key issue for successful risk-stratification, prevention, and drug development.

With several drugs being potentially beneficial in the treatment of MAFLD, future 
clinical investigations should address carefully the most appropriate stratification of 
MAFLD patients to study their specific effects on liver and systemic inflammation, 
liver fat, and insulin resistance. On the other hand, the approach of both system 
biology and medicine has to be applied to address the unmet needs in the 
understanding of the pathophysiology of insulin resistance in different subsets of 
patients with MAFLD. The pooling of MAFLD patients just on the basis of their 
common phenotypic characteristic in clinical studies and trials can be highly 
misleading for both mechanistic understanding and for new drug development as the 
same phenotype can result from different and time/stage-evolving mechanisms, each 
requiring a very targeted approach (i.e. personalized, timely, and adequate for the 
disease-stage). Studies targeting the BGL axis might unveil new underlying 
mechanisms and fill the existing knowledge gaps in the causal links between insulin 
resistance and MAFLD pathophysiology, paving the way for the development of 
innovative diagnostic and therapeutic approaches.
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