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Abstract
In recent years, artificial intelligence has been extensively applied in the diagnosis 
of gastric cancer based on medical imaging. In particular, using deep learning as 
one of the mainstream approaches in image processing has made remarkable 
progress. In this paper, we also provide a comprehensive literature survey using 
four electronic databases, PubMed, EMBASE, Web of Science, and Cochrane. The 
literature search is performed until November 2020. This article provides a 
summary of the existing algorithm of image recognition, reviews the available 
datasets used in gastric cancer diagnosis and the current trends in applications of 
deep learning theory in image recognition of gastric cancer. covers the theory of 
deep learning on endoscopic image recognition. We further evaluate the 
advantages and disadvantages of the current algorithms and summarize the 
characteristics of the existing image datasets, then combined with the latest 
progress in deep learning theory, and propose suggestions on the applications of 
optimization algorithms. Based on the existing research and application, the label, 
quantity, size, resolutions, and other aspects of the image dataset are also 
discussed. The future developments of this field are analyzed from two 
perspectives including algorithm optimization and data support, aiming to 
improve the diagnosis accuracy and reduce the risk of misdiagnosis.

Key Words: Endoscope; Artificial intelligence; Algorithm optimization; Data support

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric cancer is a life-threatening disease with a high mortality rate. With 
the development of deep learning in the image processing of gastrointestinal 
endoscope, the efficiency and accuracy of gastric cancer diagnosis through imaging 
technology have been greatly improved. At present, there is no comprehensive 
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summary on the graphic recognition method for gastric cancer based on deep learning. 
In this review, some gastric cancer image databases and mainstream gastric cancer 
recognition models were summarized to make a prospect for the application of deep 
learning in this field.
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INTRODUCTION
Gastric cancer is a life-threatening disease with a high mortality rate[1]. Globally, more 
than 900000 individuals develop gastric cancer each year out of which more than 
700000 Lose their lives. Gastric cancer is second only to lung cancer in terms of 
mortality[2]. Unlike the developing countries, the number of diagnosed cases and the 
mortality rate of this cancer are declining in the developed countries such as those in 
the EU and North America[3,4].

Around 50% of the world's gastric cancer cases are diagnosed in Southeast Asia[5]. 
In China, gastric cancer is also second to lung cancer in terms of the number of annual 
cases, for instance, 424000 new patients are annually diagnosed with gastric cancer, 
accounting for more than 40% of the global total, out of which 392000 Lose their lives 
ranking the fifth and the sixth worldwide in annual morbidity and mortality, 
respectively[6].

The diagnosis of gastric cancer mainly relies on clinical manifestation, pathological 
images and medical imaging[7]. Compared with other methods such as pathological 
diagnosis, medical imaging provides a simple non-invasive and reliable method for 
the diagnosis of gastric cancer which is more accessible and efficient, easier to operate 
and has almost no side effects for the patients[8].

Doctors make a judgment based on medical imaging which mainly depend on their 
experience from similar cases, hence, occasional misdiagnosis is inevitable[9,10]. With 
the rapid development of computer technology and artificial intelligence, deep 
learning techniques are extremely effective in various branches of image processing 
and have been used in medical imaging to improve cancer diagnosis[11-13]. Danaee 
et al[14] established a deep learning model for colorectal cancer image recognition, the 
results showed that the deep learning method can achieve more effective information 
and is far more efficient than the way of manual extraction. Burke et al[15] found that 
deep learning could classify and predict mutations of NSCLC based on histopatho-
logical images, and the recognition efficiency of deep learning was much higher than 
that of manual recognition. Muhammad Owais et al[16] proposed a deep learning 
model to classify a variety of gastrointestinal diseases by recognizing endoscopic 
videos. This model can simultaneously extract spatiotemporal features to achieve 
better classification performance. Experimental results of the proposed models showed 
superior performance to the latest technology and indicated its potential in clinical 
application[16].

Endoscopic images are mostly used in gastric cancer diagnosis[17]. Endoscopic 
images contain a lot of useful structural information which can be used for deep 
learning algorithm, the algorithm can carry out purposeful image recognition[18]. 
Most of the image recognition based on gastric cancer diagnosis methods adopt 
supervised deep learning algorithms, mainly because the monitored network in 
supervised learning makes full use of the labeled sample data in the training and can 
obtain more accurate segmentation results[19].

In fact, the purpose of medical image recognition is to identify the tumor and we 
call this process image segmentation[20-22]. Accurate segmentation of tumor images is 
an important step in diagnosis, surgical planning and postoperative evaluation[23,24]. 
Endoscopic images segmentation can provide more comprehensive information for the 
diagnosis and treatment of gastric cancer, alleviate the doctor's heavy work for reading 
film and improve the accuracy of diagnosis[25]. However, due to the variety and 
complexity of gastric tumor types, segmentation has become an important and 
difficult problem in computer-aided diagnosis. Compared with the traditional 
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segmentation methods, the deep learning segmentation method of gastric tumor 
image has achieved obvious improved performance and rapid development[26,27].

As mentioned above, the deep learning method based on supervised learning can 
fully mine the effective information of existing data. However, when the amount of 
existing data cannot meet the requirements of model training, it is necessary to find 
ways to increase the data scale[28]. The deep learning based on unsupervised learning 
can generate samples, which are similar to the existing samples in dimension and 
structure, but not identical. At present, relevant research results have been 
obtained[29]. Researchers use semi-supervised and unsupervised image recognition 
algorithms to generate samples like training samples, to improve the accuracy of 
gastric cancer tumor recognition and enhance the robustness of the model[30].

In this paper, deep learning-based diagnosis of gastric cancer based on endoscope 
images is summarized and analyzed. The adopted segmentation networks in the 
previous works can be divided into three categories: the supervised network, semi-
supervised network, and unsupervised network. The basic idea of the recognition 
method, the basic structure of the network, the experimental results, as well as their 
advantages and disadvantages are summarized. The performance of typical methods 
above-mentioned in recognition is compared. Finally, we hope to provide insights and 
concluding remarks on the development of deep-learning-based diagnosis of gastric 
cancer.

RELEVANT DATA SETS AND ALGORITHM EVALUATION INDEXES 
Relevant datasets
To promote the progress of image recognition and make an objective comparison of 
available image recognition methods for gastric cancer diagnosis, we investigate the 
commonly used datasets including the GR-AIDS provided by Medical Image 
Computing and Computer Assisted Intervention Society as well as those internal 
datasets.

The GR-AIDS dataset established by Sun Yat-Sen University Cancer Center consists 
of 1036496 endoscopic images from 84424 individuals. This dataset is used according 
to the 8:1:1 pattern, the data is randomly selected for training and internal validation 
datasets for GR-AIDS development as well as for evaluating GR-AIDS perfor-
mance[31].

Using clinical data collected from Gil Hospital, Jang Hyung Lee et al[32] also 
established a data set containing 200 normal cases, 367 cancer cases, and 220 ulcer 
cases. The data was divided into training sets of 180, 200, 337 images and test sets of 
20, 30, 20 images. To improve the local contrast of the image and enhance the edge 
definition in each area of the image, histogram equalization was adopted to further 
enhance the image, the images’ size was adjusted to 224 × 224 pixels [32].

Hirasawa et al[32] collected 13,584 endoscopic images of gastric cancer to build an 
image database. To evaluate the diagnostic accuracy, an independent test set of 2296 
gastric images was collected from 69 patients with continuous gastric cancer lesions 
constructed as convolutional neural network (CNN). The image has an in-plane 
resolution of 512 × 512[33].

Cho et al[34] collected 5017 images from 1269 patients, of which 812 images from 212 
patients were used as the test data set. An additional 200 images from 200 patients 
were collected and used for prospective validation. The resolution of the images is 512 
× 512. The information for all major databases is shown in Table 1[34].

Introduction of evaluation indexes
To evaluate the effectiveness of each model in diagnosing gastric cancer, the following 
evaluation indicators are commonly used in the related literature (Table 2): DICE 
Similarity Coefficient (DICE, 1945), Jaccard Coefficient (Jaccard, 1912), Volumetric 
Over-lap Error (VOE), and Relative Volume Difference (RVD).

Here we define the following variables: P and N are used for judgment of the model 
results, T and F evaluation model of the judgment is correct, FP is on behalf of the 
false-positive cases, FN represents false-negative cases, TP is on behalf of the real 
example, TN represents true negative cases[38]. A represents the theory of 
segmentation, results for comparison with the resulting image. B represents the 
segmentation results[39]. The relationship among them is shown in Figure 1.

DICE coefficient: DICE coefficient also known as the overlap index, is one of the most 
commonly used indexes for verification of image segmentation. The DICE coefficient 
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Table 1 Commonly used databases in image recognition of gastric cancer

Database Time collected Number of samples Resolution Training set Test set

GR-AIDS[31] 2019 1036496 512 × 512 829197 103650

Jang Hyung Lee[32] 2019 787 224 × 224 717 70

Toshiaki Hirasawa[33] 2018 13584 512 × 512 13584 2496

Bum-Joo Cho[34] 2019 5017 512 × 512 4205 812

Hiroya Ueyama[35] 2020 7874 512 × 512 5574 2300

Lan Li[36] 2020 2088 512 × 512 1747 341

Mads Sylvest Bergholt[37] 2011 1063 512 × 512 850 213

Table 2 Specific concepts of the main evaluation indicators

Index Description Usage Unit

DICE Repeat rate between the segmentation results and markers Commonly %

RMSD The root mean square of the symmetrical position surface distance between the segmentation results and the markers Commonly mm

VOE The degree of overlap between the segmentation results and the actual segmentation results represents the error rate Commonly %

RVD The difference in volume between the segmentation results and the markers Rarely %

DICE: DICE Similarity Coefficient; RMSD: Root-Mean-Square Deviation; VOE: Volumetric Over-lap Error; RVD: Relative Volume Difference.

Figure 1 Schematic diagram of each evaluation index relationship. TP: True positive; FP: False-positive; TN: True negative; FN: False negative.

represents the repetition rate between the segmentation results and the markers. The 
value range of DICE is 0-1, where 0 indicates that the experimental segmentation result 
significantly deviates from the labeled result, and 1 indicates that the experimental 
segmentation result completely coincides with the labeled result[40]. DICE coefficient 
is defined as the following:

DICE = (2|A ∩ B|)/(|A| + |B|) = (2TP)/(2TP + FP + FN)

Jaccard coefficient: Jaccard coefficient represents the similarity and difference between 
the segmentation result and the standard. The larger the coefficient, the higher the 
sample similarity. Besides, the Jaccard coefficient and DICE coefficient are 
correlated[41]. Jaccard coefficient is defined as the following:

JAC = (|A ∩ B|)/(|A| U |B|) = TP/(TP + FP + FN) = DICE/(2 - DICE)

VOE: VOE stands for error rate, derived from Jaccard. VOE is represented as %, where 
0% indicates complete segmentation. If there is no overlap between the segmentation 
result and the markers, the VOE is 100%[42]. VOE is defined as the following:

VOE = 1 - (|A ∩ B|)/(|A| U |B|) = 1 - TP/(TP + FP + FN)

RVD: RVD represents the noise difference between the segmentation result and the 
markers. RVD is presented as %, where 0% denotes the same volume between the 
segmentation result and the markers[42]. The formula is:
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RVD = (|B| - |A|)/|A| = FP/(TP + FN)
The specific concepts of all indicators are shown in Table 2.

CLASSIFICATION OF THE ALGORITHM 
Supervised learning-based diagnosis of gastric cancer
Deep neural networks are often trained based on deep learning algorithms using large 
labeled datasets (i.e., images in this case)[43]. The network is therefore able to learn 
how features are related to the target[44]. Since the data is already labeled, this 
learning method is referred to as supervised learning. Most of the existing studies on 
diagnosing gastric cancer are based on supervised learning in image recognition 
tasks[45-47]. This is because the network makes full use of the labeled dataset in the 
training, hence can obtain more accurate segmentation results.

Recent research works showed that CNN achieves outstanding performance in 
various image recognition tasks[48,49]. Toshiaki Hirasawa built a CNN-based 
diagnostic system based on a single-shot Multi-Box detector, Adejub, with a total 
sensitivity of 92.2% and trained their CNN using 13584 endoscopic images of gastric 
cancer. The trained CNN correctly called 71 out of 77 cases of gastric cancer, i.e., a total 
sensitivity of 92.2%, also detected 161 non-cancerous samples as gastric cancer, i.e., a 
positive predictive value of 30.6%. The CNN also correctly detected 70 of 71 cases of 
gastric cancer (98.6%) with a diameter of 6 mm or larger, as well as all invasive 
cancers[33]. Ueyama et al[35] also constructed an AI-assisted CNN based computer-
aided diagnosis system with narrow band imaging-magnifying endoscopy images.

The above studies show that the CNN-based approach is far more accurate than 
human in recognition of cancer. This makes us believe that the method based on deep 
CNN can effectively solve the identification problem of gastric cancer.

However, the issue with the CNN is that only partial features could be 
extracted[50]. Due to the imbalanced information of gastric cancer image data, 
extracting the local features does not reflect all the information and might harm the 
efficiency of the image recognition. To address the problem, Shelhamer et al[51] 
proposed full convolutional neural network (FCN) for image segmentation. This 
network attempts to recover the category of each pixel from the abstract feature, in 
other words, instead of image-level classification, the network uses pixel-level 
classification[51]. This addresses the semantic level image segmentation problem and 
is the core component of many advanced semantic segmentation models[52,53].

The segmentation method of gastric cancer images based on the FCN network is 
mainly based on the idea of code-decoding design[54]. In practice, the image is 
classified at the pixel level and the network is pre-trained with supervision. In this 
method, the input image can have any arbitrary size and the output of the same size 
can be generated through effective reasoning and learning[55]. Typical FCN network-
based image segmentation architecture for gastric cancer is shown in Figure 2.

The FCN is improved based on the CNN by transforming the last three full 
connections into three convolutional layers. The success of FCN network is largely 
attributed to the excellent ability of CNN network to extract hierarchical repres-
entation. In the concrete implementation process, the network realizes the 
segmentation of gastric tumor by down-sampling and up-sampling through 
convolution-deconvolution operation. The down-sampling path consists of 
convolution layer and maximum or average pooling layer, which can extract high-
level semantic information, but its spatial resolution is often low. The up-sample path 
consists of convolution and a deconvolution layer (also known as transpose 
convolution) and uses the output of the down-sample path to predicting the fraction of 
each class at the pixel level[56,57]. However, the output image of deconvolution 
operations might be very rough and lost a lot of detail. The skip structure of the FCN 
network presented in the classified forecast comes from the deep layer (thick) semantic 
information and information from the appearance of the shallow layer (fine), thus, 
achieving a more accurate and robust segmentation result. As a deep neural network, 
FCN has shown good performance in many challenging medical image segmentation 
tasks, including liver tumor segmentation[58,59].

One of the most important features of the FCN is the use of skip structure. It is used 
to fuse the feature information of both the high and low layers. Through the cross-
layer connection structure, the texture information of the shallow layer and the 
semantic information of the deep layer of the network are then combined to achieve 
the precise segmentation task[60,61]. Jang Hyung Lee improved the original FCN 
framework by applying the pre-trained Inception, Res-Net, and VGG-Net models on 
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Figure 2 The basic architecture of image segmentation for gastric cancer based on full convolutional network.

ImageNet. The areas under the operating characteristic curves of each receiver are 
0.95, 0.97, and 0.85, respectively, hence, Res-Net shows the highest level of 
performance. Under normal conditions, the classification between normal and ulcer or 
cancer, is more than 90 percent accurate[32].

The deep network structure leads to the problem of decreased training 
accuracy[62]. In Sun et al[63] the basic form of convolution is replaced with the 
deformable convolution and Atrous convolution in a specific layer to adapt to the non-
rigid characteristics and large receiving fields. The Atrous space pyramid pooling 
module and the semantic-level embedded network based on encoder/decoder are 
used for multi-scale segmentation. Besides, they proposed a lightweight decoder to 
fuse the context information and further used dense up-sampled convolution for the 
boundary optimization at the end of the decoder. The model achieves 91.60% pixel-
level accuracy and 82.65% average degree of the intersection[63].

Cho et al[34] established the Inception-ResNET-V2 model, which is an FCN model. 
In this model, they divided the images into five categories: advanced gastric cancer, 
early gastric cancer, high atypical hyperplasia, low atypical hyperplasia and non-
neoplastic. For the above five categories, the Inception- ResNet-v2 model has a 
weighted average accuracy of 84.6%. The mean area under the curve of the model for 
differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively[34].

The above works show that FCN addresses the issue with the CNN hence can 
extract the local features. This is why the FCN is considered as the mainstream in 
gastric cancer image classification methods.

In addition to the application of FCN to address the shortcomings of CNN, 
researchers also tried other approaches such as fusion of multiple CNN methods to 
obtain an Ensemble of CNN algorithm to get more accurate classification results. 
Nguyen et al[64] trained three different CNN model architectures, including VGG-
based, Inception-based Network and Dense-Net. In their study, the VGG-based 
network was used as a conventional deep CNN for classification problems, which 
consists of a linear stack of the convolutional layer. The network-based on Dense-net 
can be used as a very deep CNN with a short path, which is also helpful to train the 
network and extract more abstract and effective image features easily. The three 
models were trained separately, the AVERAGE combination rule is then used to 
combine the classification results of the three CNN-based Models. The final result was 
70.369% of overall classification accuracy, 68.452% of sensitivity and 72.571% of 
specificity. The overall classification accuracy is higher than that generated by the 
listed model based on a single CNN[64].

Both the use of a fully convolutional network and the fusion of several CNN 
algorithms are significantly effective in improving the accuracy of gastric cancer image 
recognition. They are also effective in addressing the issues with the quality of images 
in the database. Table 3 shows the performance comparison of gastric cancer image 
recognition by using CNN, FCN, and Ensemble CNN.

Image recognition based on semi-supervised and unsupervised learning in gastric 
cancer 
Most gastric cancer image recognition methods adopt supervised learning algorithms 
because the monitored network makes full use of the labeled sample data in the 
training and can obtain more accurate segmentation results. Nevertheless, there are 
very few accurately labeled image datasets, hence researchers have carried out studies 
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Table 3 Comparison of recognition performance of convolutional neural network, full convolutional neural network, and ensemble 
convolutional neural network models

Methods DICE/% VOE/% RMSD/mm

Toshiaki Hirasawa (CNN) 0.5738 0.5977 6.491

Hiroya Ueyama (CNN) 0.6327 0.5373 7.257

Jang Hyung Lee (FCN) 0.8102 0.319 2.468

Bum-Joo Cho (FCN) 0.9350 0.1221 -

Dat Tien Nguyen (ECNN) 0.8947 0.113 -

CNN: Convolutional neural network; FCN: Full convolutional neural network; ECNN: Evolutionary convolutional neural network; DICE: DICE Similarity 
Coefficient; VOE: Volumetric Over-lap Error; RMSD: Root-Mean-Square Deviation.

based on semi-supervised and unsupervised image recognition algorithms for gastric 
cancer. In such studies, they trained a small number of samples through generative 
models to generate similar samples to improve the accuracy and robustness of gastric 
cancer tumor recognition[65].

Generative adversarial network (GAN) is a generative model proposed by 
Goodfellow et al[66] It uses an unsupervised training method that is trained by 
adversarial learning. The objective is to estimate the potential distribution of data 
samples and generate new data samples. GAN is composed of a generation model 
(Goodfellow et al[66], 2014) and a discrimination model (Denton et al, 2015). The 
generation model learns the distribution of a given noise (generally refers to uniform 
distribution or normal distribution) and synthesizes it, whereas the discrimination 
model distinguishes the real data from generated data. In theory, the former is trying 
to produce data that is closed to the real data. The latter is also constantly 
strengthening the "counterfeit detection" ability[67]. The success of GAN lies in its 
ability to capture high-level semantic information using adversarial learning 
techniques. Luc et al[68] first applied GAN to image segmentation. However, GAN has 
several drawbacks: (1) Crash problem: when the generation model crashes, all 
different inputs are mapped to the same data[69]; and (2) Instability: It causes the same 
input to produce different outputs. The main reason is due to gradient vanishing 
problem during the optimization process[66,70].

Although batch normalization is often used to solve the instability of GAN, it is 
often not enough to achieve optimal stability of GAN performance. Therefore, many 
GAN derived models have emerged to solve these gaps, e.g., conditional GAN, deep 
convolutional GAN, information maxi-mizing GAN, Wassertein GAN, etc[71]. In the 
GAN-based image recognition for gastric cancer, the generator is used to perform the 
segmentation task. The discriminator is then used to train the refining generator. A 
typical gastric cancer image recognition architecture based on the generative 
adversarial network is illustrated in Figure 3.

Since its proposal generative adversarial network has been widely considered and 
rapidly developed in different application areas. In medical image processing, it is 
very challenging to construct a large enough dataset due to the difficulty of data 
acquisition and annotation[72]. To overcome this problem, traditional image 
enhancement technology such as geometric transformation is often used to generate 
new data. This technique cannot learn biological changes in medical data and can 
produce images that are not credible[73]. Although GAN is unable to know in advance 
hypothesis distribution due to the limitation of segmentation performance 
improvement. it can automatically infer real data sets, further expand the scale and 
diversity of data, and provide a new method for data expansion, thus improving the 
efficiency of model training[74,75].

Almalioglu et al[76] showed that the poor resolution of the capsule endoscope is a 
limiting factor in the accuracy of diagnosis. They designed an image synthesis 
technology based on GAN to enrich the training data. First, the standard data 
expansion method was used to enlarge the dataset. Then the dataset was used to train 
GAN and the proposed Endol2h method was used to synthesize gastric cancer images 
with higher resolution[76]. Wang proposed an unsupervised image classification 
method for tumors based on prototype migration generated against the network 
(Prototype Transfer Generative Adversarial Network). Using different data acquisition 
devices and parameter settings caused differences in the stye of tumor image and data 
distribution. These differences can be reduced by designing the target domain to 
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Figure 3 Basic architecture of gastric cancer image recognition methods based on generative adversarial network.

generate network, training process through the domain discriminant and performing 
generator reconstruction between source domain and target domain. The method 
achieved an average accuracy of 87.6% for unsupervised breast tumor image 
dichotomy under different magnifications and shows good scalability[77].

In conclusion, the GAN-based image segmentation method for gastric cancer can 
generate realistic gastric cancer images through the GAN network in the training 
stage, thus avoid the imbalance of the training samples. Moreover, due to the 
amplification of limited labeled sample data, the deep network is well-trained and 
achieves a high segmentation efficiency. However, there are still many problems in 
GAN, such as the instability of training and the breakdown of the training network. 
Therefore, researchers have optimized the original GAN network to reduce data noise 
or deal with class imbalance and other problems. In order to solve the problem that 
medical images are often polluted by different amounts and types of praise, T.Y Zhang 
et al. propose a novel Noise Adaptation Generative Adversarial Network (NAGAN), 
which contains a generator and two discriminators. The generator aims to map the 
data from source domain to target domain. Among the two discriminators, one 
discriminator enforces the generated images to have the same noise patterns as those 
from the target domain, and the second discriminator enforces the content to be 
preserved in the generated images. They apply the proposed NAGAN on both optical 
coherence tomography images and ultrasound images. Results show that the method 
is able to translate the noise style[74]. In the traditional GAN network training, the 
small number of samples of the minority classes in the training data makes the 
learning of optimal classification challenging, while the more frequently occurring 
samples of the majority class hamper the generalization of the classification boundary 
between infrequently occurring target objects and classes. Mina Rezaei et al. developed 
a novel generative multi-adversarial network, called Ensemble-GAN, for mitigating 
this class imbalance problem in the semantic segmentation of abdominal images. The 
Ensemble-GAN framework is composed of a single-generator and a multi-discrim-
inator variant for handling the class imbalance problem to provide a better general-
ization than existing approaches[73]. In addition, there are other studies on the 
optimization of GAN network in medical image segmentation. Klages et al[78] 
proposed the patch-based generative adversarial neural network models, this model 
can significantly reduce errors in data generation. Nuo Tong et al[79] proposed the 
self-paced Dense-Net with boundary constraint for automated multi-organ 
segmentation on abdominal CT images. Specifically, a learning-based attention 
mechanism and dense connection block are seamlessly integrated into the proposed 
self-paced Dense-Net to improve the learning capability and efficiency of the backbone 
network. In a word, in the process of optimizing GAN network, whether it is 
optimizing generator or discriminant, the purpose of optimization is to generate new 
data which is as equal to the real data as possible. Therefore, more studies will be 
devoted to the optimization of GAN network to provide strong support for improving 
the image recognition of gastric cancer.

Table 4 shows comparison results of the three current mainstream methods for 
image recognition of gastric cancer.
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Table 4 Comparison of convolutional neural network, full convolutional neural network, and generative adversarial network models

Model 
features Contributions Advantages Disadvantages Scope of application

CNN The topology can be extracted from 
a two-dimensional image, and the 
backpropagation algorithm is used 
to optimize the network structure 
and solve the unknown parameters 
in the network

Shared convolution 
kernel, processing high-
dimensional data without 
pressure; Feature 
extraction can be done 
automatically

When the network layer is too deep, the 
parameters near the input layer will be changed 
slowly by using BP propagation to modify 
parameters. A gradient descent algorithm is 
used to make the training results converge to 
the local minimum rather than the global 
minimum. The pooling layer will lose a lot of 
valuable information

Suitable for data scenarios 
with similar network 
structures

FCN The end-to-end convolutional 
network is extended to semantic 
segmentation. The deconvolution 
layer is used for up-sampling; A 
skip connection is proposed to 
improve the roughness of the 
upper sampling

Can accept any size; Input 
image; Jump junction; The 
structure combines fine 
layers and coarse; Rough 
layers, generating precise 
segmentation

The receptive field is too small to obtain the 
global information;Small storage overhead

Applicable to large 
sample data

GAN With adversarial learning criteria, 
there are two No's: The same 
network, not a single network

Can produce a clearer, 
more realistic sample; any 
generated network can be 
trained

Training is unstable and difficult to train; GAN 
is not suitable for processing data in discrete 
form

Suitable for data 
generation (e.g., there are 
not many data sets with 
labels), image style 
transfer; Image denoising 
and restoration; Used to 
counter attacks

CNN: Convolutional neural network; FCN: Full convolutional neural network; GAN: Generative adversarial network.

CONCLUSION
At the present, the development direction of deep learning in image recognition of 
gastric cancer mainly focuses on the following aspects: (1) Training of deep learning 
algorithms relies on the availability of large datasets, because medical images are often 
difficult to obtain, medical professionals need to spend a lot of time on data collection 
and annotation which is time-consuming and costly. Besides, medical workers need 
not only to provide a large amount of data support but also to make use of all the 
effective information in the data as much as possible. Deep neural networks enable full 
mining of the information content of the data. Using deep networks seems to be the 
dominant future research direction in this field; (2) Multimodal gastric image 
segmentation combined with several different deep neural networks are used to 
extract the deeper information of the image and improve the accuracy of tumor 
segmentation and recognition. This is a promising major research direction in this 
field; and (3) Currently, most of the medical image segmentation techniques use 
supervised deep learning algorithms. However, for some of the rare diseases lacking a 
large number of data samples, supervised deep learning algorithms cannot reach their 
full efficiency. To overcome the issue with the lack of large datasets, some researchers 
utilize semi-supervised or unsupervised techniques such as GAN and combine the 
generated adversarial network with other higher performance networks. This might be 
another emerging research trend in this area.
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