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Abstract
Stem cells are undifferentiated cells that can self-renew and differentiate into 
diverse types of mature and functional cells while maintaining their original 
identity. This profound potential of stem cells has been thoroughly investigated 
for its significance in regenerative medicine and has laid the foundation for cell-
based therapies. Regenerative medicine is rapidly progressing in healthcare with 
the prospect of repair and restoration of specific organs or tissue injuries or 
chronic disease conditions where the body’s regenerative process is not sufficient 
to heal. In this review, the recent advances in stem cell-based therapies in 
regenerative medicine are discussed, emphasizing mesenchymal stem cell-based 
therapies as these cells have been extensively studied for clinical use. Recent 
applications of artificial intelligence algorithms in stem cell-based therapies, their 
limitation, and future prospects are highlighted.

Key Words: Artificial intelligence; Machine learning; Mesenchymal stem cells; 
Regenerative medicine; Stem cells; Therapy
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Core Tip: This article reviews some important types of stem cells in clinical treatment 
including embryonic stem cells, induced pluripotent stem cells, induced tissue-specific 
stem cells, and adult stem cells. Furthermore, the article focuses on the clinical 
treatment of mesenchymal stem cells and the application of artificial intelligence in 
induced pluripotent stem cells, their limitations, and future prospects.
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INTRODUCTION
Stem cells hold great potential in regenerative medicine as these cells are endorsed 
with indefinite self-renewal characteristics and can be differentiated into any cells of 
the body. These cells express specific markers and are karyotypically normal. Based on 
the differentiation potential, stem cells can be categorized as totipotent, pluripotent, 
multipotent, or unipotent[1,2]. Totipotent cells are those that can form the entire 
organism. In animals, only the zygote is totipotent, and therefore, cannot be used for 
therapeutic purposes. The pluripotent embryonic stem cells (ESCs) are isolated from 
the inner cell mass (ICM) of the embryo's blastocyst. These pluripotent cells can differ-
entiate into all cells, including germ cells but not the entire organism. The multipotent 
cells can generate a definite group of cells, e.g., hematopoietic stem cells (HSCs) or 
mesenchymal stem cells (MSCs). The unipotent stem cells have restricted potential and 
can differentiate into a single cell type, e.g., a neuronal stem cell. Stem cells have been 
classified according to the origin into ESCs and tissue-derived stem cells[3,4]. The 
tissue-derived stem cells may be adult stem cells (ASCs) isolated either from bone 
marrow, peripheral blood[5], adipose tissue[6], dental pulp[7], skeletal muscle[8], skin
[9], neural tissue[10], liver[11], heart[12], pancreas[13] or intestine[14]. ASCs have 
reduced potency compared to ESCs. They are still preferred over ESCs for regenerative 
medicine because of ethical issues associated with ESCs. The fetal stem cells can be 
isolated from either fetal tissue like blood, spleen, liver, kidney, or extraembryonic 
sources like an amnion, amniotic fluid, umbilical cord, Wharton's jelly, and placenta. 
The HSCs and MSCs isolated from fetal tissues or extraembryonic sources have greater 
potential than their adult counterparts. Therefore, these cells are considered a "half-
way house" between the ESCs and ASCs in terms of plasticity[15,16]. Induced 
pluripotent stem cells (iPSCs) are produced by reprogramming differentiated cells into 
an undifferentiated state[17]. These reprogrammed stem cells are artificially produced 
cells with properties of ESCs. Induced tissue-specific stem (iTS) cells have recently 
been produced by incomplete reprogramming and tissue-specific selection[18,19].

Cell therapy applies the biochemical and biophysical properties of stem cells to 
generate healthy tissues and repair damaged organs, preventing them from further 
damage[20]. The bone marrow serves as a source of stem cells from where HSCs, 
neural stem cells, and MSCs can be derived for therapeutic purposes[21]. These cells 
(termed adult cells) are non-pluripotent, limiting them to proliferate in only those 
types of tissues from which they have been isolated. Further advancement in stem cell 
therapy happened with identifying pluripotency of ESCs in 1998[22]. As the 
generation of ESCs involves the exploitation of embryos, this raised major ethical 
issues and limited the scope of stem cell-based therapies yet again until the creation of 
iPSCs in 2007[23-25]. Stem cell therapy holds the solid potential for combat 
transplantation-related issues such as graft rejection or tissue insufficiency and opens 
the door for precision medicines. Figure 1 depicts regenerative strategies, MSC differ-
entiation, iPSCs, and the role of artificial intelligence (AI) in regenerative medicines.

The non-pluripotent nature of available ASCs has restrained the scope of cell 
therapy in regenerative medicine. The ESCs have their share of ethical and fewer 
availability issues. These limitations called for an advancement in cell therapy and led 
to the creation of iPSCs. The genetic reprogramming of ASCs has imparted them with 
ESC-like functional similarity and pluripotency, generating iPSCs[26,27]. iPSCs have 
gained popularity in multiple facets of cell-based therapies by serving as an unlimited 
source of any cell type of interest[28]. It has enabled the employment of iPSCs as novel 
human disease models[29,30], which have been applied to drug discovery as well as 
the fields of precision medicine and regenerative medicine[31]. Several preclinical 
studies in animal models have established MSC suitability for regenerative medicine
[32]. Although several clinical trials have been carried out with stem cells to treat 
genetic disorders, autoimmune diseases, or degenerative disorders, several challenges 
and limitations are encountered in human clinical translation, which are being 
addressed to improve the regenerative potential of these cells.

https://www.wjgnet.com/1948-0210/full/v13/i6/521.htm
https://dx.doi.org/10.4252/wjsc.v13.i6.521
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Figure 1 Current strategies and approaches in regenerative medicine. A: Strategies in regenerative medicines; B: Mesenchymal cell differentiation; C: 
Non-integrating reprogramming to make induced pluripotent stem cells (iPSCs); D: Artificial intelligence algorithms to assist iPSC identification.

CURRENT TRENDS IN THE THERAPEUTIC USE OF STEM CELLS
ESCs
ESCs exhibit pluripotency and differentiate into the three germ layers: ectoderm, 
mesoderm, and endoderm. These cells are derived from the ICM layer of the embryo's 
blastocyst. Mouse ESC was first derived in 1981 by Evans and Kaufman[33] in the 
United Kingdom and Martin[34] in the United States from the ICM of the blastocyst 
(d2.5). Human ESCs (hESCs) were derived by Thomson and colleagues isolated from 
preimplantation blastocysts[22]. hESCs have been an excellent source of pluripotent 
cells for therapeutic use[35]. Derivation of pluripotent ESCs from the blastocyst’s ICM 
layer is usually done by a standardized immunosurgery technique[36]. The ESCs are 
isolated and seeded on feeder layers in culture plates. The cells may be characterized 
for pluripotency markers by immunostaining using specific antibodies to octamer-
binding transcription factor ¾ (Oct3/4), stage-specific embryonic antigen 3 (SSEA-3), 
SSEA-4, TRA-1-60, and TRA-1-81 or by assessing alkaline phosphatase activity. ESCs 
are karyotypically normal and possess a high telomerase activity[37,38]. However, 
there are severe concerns in using ESC in regenerative medicine despite being a 
promising candidate. Severe ethical concerns prevail in using human embryos for the 
isolation of hESCs[39]. Different legal guidelines are governing ESC research in 
various countries. In the United States, the destruction of human embryos for any form 
of research is banned. According to the guidelines, hESC-lines derived before August 
9, 2001 can be used for research. The development of hESC therapies is restricted, and 
most research studies are focused on animals[40]. In the United Kingdom, research 
using hESCs derived from discarded embryos in in vitro fertilization clinics is allowed; 
however, hESC research is prohibited in Italy[41-43].

It is also essential to analyze the safety issues associated with ESCs in regenerative 
medicine. The ESCs can differentiate into any cell type of the body. However, when 
these undifferentiated cells are implanted in vivo, this plasticity poses the risk of 
developing teratomas and tumors[44-47]. The alternative method is to differentiate the 
undifferentiated ESCs in vitro into a specific cell type along a lineage and then 
transplant the differentiated cell in vivo. hESC-derived cardiomyocytes, when 
transplanted in mice, did not result in teratoma[48]. However, in certain instances, the 
transplanted progenitor cells continue to proliferate, as, for example, nestin+ 
dopaminergic neurons derived from hESCs continue to proliferate in the striatum[49]. 
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The screening of the undifferentiated cells by specific markers and their subsequent 
purification before transplantation may solve the problem.

There are some reported methods to overcome the risk of tumorigenesis, such that 
ESCs can be used for regenerative therapies[50]. One of the recent findings involves 
cluster of differentiation 133 (CD133) (prominin 1), a transmembrane protein generally 
expressed on cancer stem cells is highly expressed on hESCs. CD133-deficient knock-
out hESC line retained the capacity to differentiate into the three embryonic germ 
layers in vivo. Still, the proliferating potential is reduced and results in reduced 
teratoma formation[51]. Therefore, CD133 may be used to sort ESCs for transplan-
tation[52].

Despite the safety issues, hESC-derived progenitor cells are still considered 
promising candidates in regenerative medicine under controlled conditions[53]. The 
first approval of the hESC trial for spinal cord injury was received in 2009, in which 
hESC-derived oligodendrocytes progenitor cells were used[54]. The hESC-based 
clinical trials have been performed for the treatment of macular degeneration with 
some positive results in follow-up studies[55-58], diabetes mellitus[59], and ischemic 
heart disease[60]. One clinical trial has been approved for Type 1 diabetes produced by 
the company ViaCyte (ClinicalTrials.gov Identifier: NCT03163511, NCT02239354)[61]. 
These pancreatic progenitor cells are produced from human pluripotent stem cells in 
vitro and differentiate into beta cells after transplantation in an immune isolation 
device in vivo[62]. Clinical trials for Parkinson’s disease with hESCs are being 
conducted in Australia (NCT02452723) and China (NCT03119636)[63].

iPSCs
iPSCs were first successfully generated by Takahashi and Yamanaka[64] in 2006 by 
inserting the reprogramming factors known as “Yamanaka factors,” Oct4/3, Sox2, 
Klf4, and c-Myc in mouse fibroblast cells. Initially, Yamanaka and his group (Okita et 
al[65]) started transducing mouse fibroblasts with a recombinant retrovirus carrying 24 
genes responsible for maintaining the ESC characteristics. The mouse fibroblasts were 
selected by antibiotic-resistant gene cassette under the promoter, Fbx15, which is 
active only in the ESCs. The number of genes was narrowed down to ten and finally to 
four genes, Oct3/4, c-Myc, Sox2, and Klf4. The first generation induced pluripotent 
cells selected by Fbx15 possessed unlimited self-renewal and differentiation capacity, 
produced embryoid bodies and fetal chimeras but failed to produce adult chimeras. 
However, the DNA methylation pattern, post-translational modifications, and 
epigenetic changes revealed that the generated iPSCs were intermediate between 
fibroblasts and ESCs. Yamanaka and his group further generated second-generation 
iPSCs using the selection for Nanog instead of Fbx15 selection. The second-generation 
iPSCs showed greater ES cell-like characteristics, DNA methylation pattern, and 
germline competence[65]. However, 20% of the chimeric mice developed cancer as two 
of the genes, c-Myc, and Klf4, are oncogenic. Human-induced pluripotent cells were 
generated from somatic cells in 2007 by two independent groups simultaneously by 
introducing Oct3/4 and Sox2 with either Klf4 and c-Myc or Nanog and Lin28[66]. The 
latter group has shown that reprogramming of human somatic cells is possible even 
when the reprogramming factors are not integrated into the genome. The use of non-
integrated episomal vectors makes these cells more suitable for clinical use[67]. iPSCs 
have also been derived from peripheral blood mononuclear cells[68]. Adenovirus has 
also been used vector for the delivery of reprogramming factors.

However, virus-mediated delivery systems sometimes threaten iPSCs' clinical use 
due to insertional mutagenesis, mainly caused by cMyc[69-71]. RNA, proteins, and 
small molecules enhance iPSCs' efficiency and safety. Reprogramming of somatic cells 
by mRNA or microRNA became very successful and effective[72-75]. It has been 
reported that activation of the innate immune system enhances the efficiency of 
induced pluripotent cells by mRNA transfection[76]. Insertion of recombinant proteins 
such as Oct 4, sex-determining region Y-box 2 (Sox2), Kruppel-like factor 4 (Klf4), and 
cMyc can be used to reprogram somatic cells to induce pluripotent cells[77-79]. The 
protein-based approach has been used to generate dopaminergic neurons from iPSCs 
to treat Parkinson’s disease in rats[80].

The iPSCs have potential similar to that of ESCs, and additionally overcome the 
ethical concerns associated with ESC research and clinical use. The iPSCs have gained 
much attention in recent years because of their advancement in regenerative medicine, 
organoid formation, and scope for personalized therapies. The first human clinical trial 
with iPSCs was done for macular degeneration in which retinal pigmented epithelial 
cells generated from autologous iPSCs were transplanted into a patient[81]. There 
have been several in vitro[82,83] and in vivo preclinical studies investigating the safety 
and efficacy of iPSCs[84-87]. A human clinical trial was recently conducted to treat 
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Parkinson’s disease in Kyoto, Japan, by transplanting dopaminergic neurons 
generated from iPSCs. The clinical-grade iPSCs are produced from cells taken from 
healthy volunteers[88]. Autologous iPSC-derived dopaminergic neurons transplanted 
in a patient with Parkinson’s disease retained the function until 2 years without any 
adverse effect[89]. Autologous iPSCs are more advantageous to avoid immunological 
rejection, but the development of autologous iPSC is time-consuming and costly.

The iPSC technology has enormous potential in regenerative medicine. However, 
more interventional studies[90] must be conducted to address the challenges of routine 
clinical applications of these cells e.g., genomic instability[91], carcinogenicity[92], 
immunological rejection[93]. Humanized mouse models, e.g., a mouse with human 
immune cells, may be developed in the future to investigate the immunogenicity of 
human pluripotent stem cells[94].

iTS
iTS are produced by incomplete reprogramming of somatic cells by transient overex-
pression of reprogramming factors by plasmids and performing a tissue-specific 
selection. These cells have the potential to self-renew but also express tissue-specific 
markers. iTS have been produced from mouse pancreatic cells, which can self-renewal 
and express pancreatic tissue-specific transcription factor, Pdx1[13]. These generated 
iTS can differentiate into insulin-producing cells more efficiently than ESCs or iPSCs 
and, probably, can be utilized to treat diabetes. iTS with neural stem cell-like charac-
teristics have also been reported[95-98]. Teratoma formation is not reported when iTS 
are transplanted in nude mice. In this respect, iTS are advantageous over the ESCs or 
iPSCs in terms of clinical applications due to the risk of tumorigenicity associated with 
the use of pluripotent stem cells. These cells are “incompletely reprogrammed” cells 
and have different methylation patterns than ESCs or iPSCs. The iTS retain the donor 
tissue’s epigenetic memory and can be explored as a potential candidate for cell 
replacement therapy.

Fetal stem cells and ASCs
Fetal stem cells are collected from aborted fetal tissues and extraembryonic structures 
like amniotic fluid, umbilical cord, Wharton’s jelly, and placenta[99]. The fetal stem 
cells are multipotent HSCs or MSCs. HSCs collected from fetal bone marrow or 
umbilical cord express CD34 and CD45 Like adult HSCs but show greater proliferating 
capacity, low immunogenicity, and lower risk of graft vs host disease (GvHD) 
compared to adult HSCs. Fetal MSCs can be isolated from fetal blood, bone marrow, 
liver, lung, or pancreas. These cells have more differentiation capacity than the adult 
MSCs. Fetal MSCs have active telomerase and express low levels of human leukocyte 
antigen (HLA) I and lack intracellular HLA II[100]. First trimester fetal MSCs express 
baseline levels of pluripotent stem cell markers such as Oct4, Nanog, Rex1 SSEA3, 
SSEA4, Tra-1-60, and Tra-1-81. Umbilical cord blood MSCs are easy to harvest and can 
be stored under controlled conditions for longer periods for future clinical use[101]. 
Although the ethical concerns associated with fetal stem cells are minimal, there are 
several reports on the adverse effects of fetal stem cells in vitro in animals and humans
[102]. Thromboembolism has been reported in patients who received transplantation 
of umbilical cord blood MSCs[103]. Placental-derived MSCs express higher levels of 
tissue factor[104,105], which aggravates the thrombotic events in patients infused with 
these MSCs for treatment of Crohn’s disease[106]. The ASCs are less prevalent and 
undifferentiated cells present in various adult tissues with a primary role of repair and 
maintenance of residing tissues.

HSCs
ASCs are derived from different tissues and have limited potency compared to the 
ESCs or iPSCs. ASCs are named depending on the tissue of origin, e.g., HSCs, 
pancreatic stem cells, corneal stem cells, etc. HSCs were the first multipotent ASCs 
isolated from the bone marrow[107]. HSC transplantation is used as therapy for 
several malignant and non-malignant disorders and autoimmune diseases. These cells 
are also used for the recovery of patients undergoing chemotherapy and radiotherapy
[108]. The allogeneic transplantation requires matching HLA, Class I, and Class II 
between donor and recipient[109]; however, there are risks of GvHD[110]. The 
emergence of more modern and less toxic methods of treatments replaces HSC 
transplantation in hematologic malignancies. Recent reports suggest that risks of 
bloodstream infections caused by Gram-negative bacteria are associated with 
allogeneic hematopoietic transplantation[111,112]. Hemorrhagic cystitis is another 
complication that has been reported in patients post-HSC transplantation[113].
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MSCs
Cell-based therapy using MSCs is currently an essential domain of research. MSCs 
may be isolated from various sources, including bone marrow, adipose tissues, dental 
pulp, peripheral blood, synovium, and extraembryonic sources, as described earlier. 
These cells are plastic adherent and multipotential and can differentiate into bones, 
cartilage, fat tissues, muscles, and tendons[114]. The International Society for Cellular 
Therapy defined MSCs as plastic adherent cells expressing CD73, CD105, CD90 (≥ 
90%), and not expressing hematopoietic markers CD34, CD45, CD14, CD19, and HLA-
DR (≤ 2%) and have the potential of multilineage differentiation to osteogenic, 
adipogenic and chondrogenic lineage[115]. There is, however, no single marker to 
identify MSCs from various sources[116-118]. Figure 2 shows immune-modulatory 
characteristics and the ability of differentiation of MSCs.

The three primary characteristics of MSCs are: Differentiation into specific cell types 
and their incorporation into tissues that make it suitable for regenerative medicine; 
secretion of cytokines and exosomes that stimulate cell growth and proliferation and 
modulate inflammation; and direct contact with the host tissue and regulate effector 
function[119,120]. MSCs are therapeutically more successful due to the multipoten-
tiality, immunomodulatory, anti-inflammatory, efficient homing capacity to injured 
sites, and minimum ethical issues[121-123]. However, there are disparities in MSC 
potency and pharmacological functionality, depending on tissue sources, cell 
handling, method of harvest, cultural expansion, dose, and route of delivery[124].

The most important sources of MSCs for clinical trials are bone marrow and adipose 
tissues[125]. Although MSCs isolated from the bone marrow have been extensively 
studied. However, there are several challenges in the clinical use of these cells. Cells 
collected from bone marrow are contaminated with HSCs, and a very small fraction 
(0.001%-0.01%) of MSCs are harvested from bone marrow. The cells isolated also show 
early signs of senescence during culture[126]. Although the collection of bone marrow 
aspirate is considered safe, certain complications and morbidity have been reported 
during collection from the sternum and posterior iliac crest[127]. Adipose tissue-
derived stem cells are another potential source of MSCs by less invasive procedures
[128]. Adipose tissue is abundant in the body and can be easily collected by 
liposuction, and the yield of stem cells is comparatively greater without any adverse 
effects. Adipose tissue-derived stem cells have more stability in the culture and have 
greater differentiation potential to osteocytes, chondrocytes, adipocytes, 
cardiomyocytes, and neurocytes[129]. Several studies have reported adipose tissue-
derived MCSs' efficacy and safety for regenerative medicine[130,131]. The other 
sources include dental pulp, tendon, or from the perivascular fraction of any tissue
[132].

MSCs have immunomodulatory properties and can reduce the inflammatory 
response. These cells can modulate the function of the innate and adaptive immune 
response. MSCs have very low levels of major histocompatibility complex and reduced 
expression of FasL (Fas Ligand) or costimulatory signals like B7, CD40, or CD40L
[133]. MSCs secrete extracellular vesicles containing various growth factors and 
cytokines that suppress B lymphocyte and T lymphocyte function and maturation of 
dendritic cells while activating T regulatory cells. MSCs also secrete angiogenic, 
antiapoptotic, and antioxidative effects[134]. Table 1 summarizes the discovery time, 
sources, advantages, disadvantages, current clinical applications and prospects of 
various stem cells.

TRENDS IN APPLICATIONS OF MSC-BASED THERAPIES IN REGENE-
RATIVE MEDICINE
MSCs have been utilized for preclinical and clinical studies for a wide range of 
diseases owing to multipotentiality, immunomodulation, and regeneration. The first 
clinical trials involved the infusion of MSCs post high dose chemotherapy and 
reversing GvHD, which is resistant to steroids[135]. To date, numerous clinical trials 
have been undertaken using MSCs for various diseases like myocardial infarction, 
Crohn’s disease, multiple sclerosis, diabetes, GvHD, amyotrophic lateral sclerosis, 
arthritis, neurodegenerative disorders, trauma, coronavirus disease 2019, and many 
more[136] (Table 2). According to recent reports, 10000 patients have undergone 
treatment with MSCs for different diseases, and 1094 clinical trials are registered at 
present in different phases[137]. Due to the relative ease of isolation and efficacy, the 
most prevalent source of MSCs for therapeutic purposes remains bone marrow, 
followed by the umbilical cord and then adipose tissue. Placental MSCs represent less 
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Table 1 Summary of the clinical applications of different types of stem cells

Type of stem 
cell Discovery time Source Advantages Disadvantages Clinical applications and 

prospects

Embryonic 
stem cells

mESC was first 
derived in 1980 by 
Evans and Kaufman
[33] in the United 
Kingdom and Martin
[34] in the United 
States. hESC was 
derived by Thomson 
et al[22] isolated from 
preimplantation 
blastocysts in 1998

ICM of 
embryo

Maximum potency and these 
cells have the potential to 
differentiate into any cell 
type of the body

Ethical concerns, risk of 
developing teratomas 
and tumors when these 
undifferentiated cells are 
implanted in vivo[44-47]

Spinal cord injury[54], macular 
degeneration[55-58], diabetes mellitus
[59], ischemic heart disease[60]

Induced 
pluripotent 
stem cells

Induced pluripotent 
stem cells were first 
successfully 
generated by 
Takahashi and 
Yamanaka[64] in 2006

Fibroblast 
cells

These cells have the potential 
to differentiate into any cell 
type of the body. Overcomes 
the ethical concerns 
associated with embryonic 
stem cell research and 
clinical use. Organoid 
formation, and scope for 
personalized therapies

Genomic instability, 
carcinogenicity, 
immunological rejection

Macular degeneration[81] and 
Parkinson's disease[89]

Umbilical 
cord blood 
cells

High availability and 
reduced ethical concerns. 
Higher expansion rate. 
Possess osteogenic 
differentiation capabilities. 
Produce 2.5-fold more 
insulin than bone marrow 
derived cells

May not have adipogenic 
potential

Pancreatic islet cell generation in vitro. 
GvHD and systemic lupus 
erythematosus

Fetal stem cells First isolated and 
cultured by John 
Gearhart and his team 
at the Johns Hopkins 
University School of 
Medicine in 1998[185]

Amniotic 
fluid and 
placenta

Harvested with minimal 
invasiveness

No clinical trials have yet 
been conducted to assess 
the safety and 
effectiveness of these 
stem cells

Potential treatment for nerve injuries 
or neuronal degenerative diseases. 
Bladder regeneration, kidney, lung, 
heart, heart valve, diaphragm, bone, 
cartilage and blood vessel formation. 
Treatment for skin and ocular 
diseases, inflammatory bowel disease, 
lung injuries, cartilage defects, 
Duchenne muscular dystrophy, and 
stroke. Also used in peripheral nerve 
regeneration

Adult stem cells

Hematopoietic 
stem cells

First discovered for 
clinical use in mice in 
1950’s and for clinical 
use in human in 1970
[186,187]

Bone marrow Multipotent cells Risks of GvHD[110]. 
Risks of bloodstream 
infections caused by 
Gram-negative bacteria 
associated with 
allogeneic hematopoietic 
transplantation[111,112]. 
Hemorrhagic cystitis is 
another complication 
that has been reported in 
patients post 
hematopoietic stem cell 
transplantation[113]

Hematopoietic stem cell 
transplantation is used as therapy for 
several malignant and non-malignant 
disorders and autoimmune diseases. 
These cells are also used for the 
recovery of patients undergoing 
chemotherapy and radiotherapy[108]

Mesenchymal 
stem cells

First derived in 1970 
and first report of 
clinical use in 2004
[188]

Bone marrow Potential to differentiate 
osteocytes, chondrocytes, 
adipocyte. Multipotentiality, 
immunomodulatory, anti-
inflammatory, efficient 
homing capacity to injured 
sites, and minimum ethical 
issues[121-123]

Procurement of cells 
from this source is often 
painful and carries the 
risk of infection. Cell 
yield and differentiation 
potential is dependent 
on donor characteristics

Generation of pancreatic cells in vitro. 
Orthopedic conditions characterized 
by large bone defects, including 
articular cartilage repair and 
osteoarthritis, rheumatoid arthritis. 
BM-MSCs may also be used to treat 
non-unions, osteonecrosis of the 
femoral head and to promote growth 
in osteogenesis imperfecta. Potentially 
promising treatment for myocardial 
infarction, GvHD, systemic lupus 
erythematosus and multiple sclerosis

Adipose 
tissue 
isolated from 
liposuction, 
lipoplasty or 

This source results in the 
isolation of up to 500 times 
more stem cells than BM (5 × 
103 cells from 1 g of AT). AT 
is accessible and abundant 

Immunosuppressive GvHD therapy. 
Potential for cell-based therapy for 
radiculopathy, myocardial infarction, 
and neuropathic pain. 
Cosmetic/dermatological 

First derived in 2001
[185]

Cells from this source 
have inferior osteogenic 
and chondrogenic 
potential in comparison 
to BM-MSCs
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lipectomy 
materials

and secretes several 
angiogenic and antiapoptotic 
cytokines. The 
immunosuppressive effects 
of AT-MSCs are stronger 
than those of BM-MSCs

applications. Successfully used in the 
treatment of skeletal muscle-injuries, 
meniscus damage and tendon, rotator 
cuff and peripheral nerve 
regeneration

AT: Adipose tissue; AT-MSCs: Adipose-tissue derived mesenchymal stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; GvDH: Graft vs 
host disease; hESC: Human embryonic stem cell; ICM: Inner cell mass; mESC: Mouse embryonic stem cell.

Table 2 Status of mesenchymal cell-based therapies for different diseases

Disease category Target disease
Clinical 
trial 
phase

Cell source Company Product 
name ID No. Status

GvHD GvHD Phase III Mesenchymal 
stem cells 
(allogenic bone 
marrow derived)

Osiris 
Therapeutics

Prochymal NCT00366145 Approved via Notice of 
Compliance with 
conditions (NOC/c)[32]

Pediatric 
(GvHD, Grade 
III and IV)

Phase III Mesenchymal 
stem cells 
(allogenic bone 
marrow derived)

Mesoblast Remestemcel-
L (Ryoncil™)

NCT02336230 Prescription Drug User 
Fee Act (PDUFA) set by 
US FDA action and 
Remestemcel-L will be 
commercially available in 
the United States (if 
approved)[124,139-141]

Crohn’s disease Phase III Autologous AT-
MSC

Cellerix - NCT00475410 Completed in 2009 but 
failed

Phase III Allogenic, AT-
MSC

TiGenix Alofisel® NCT01541579 Approved in 2018, by the 
European Medicines 
Agency[142,143]

Cardiovascular 
diseases

Chronic 
advanced 
ischemic heart 
failure

Phase III Autologous BM-
MSC

- - NCT01768702 Beneficial but not 
approved yet, further 
studies need to be 
undertaken[144-146]

Autoimmune 
diseases

Systemic lupus 
erythematosus

Phase 
I/II

Allogenic BM-
MSC, UC-MSC

- - NCT01741857, 
NCT00698191

Ongoing[147,148]

Type I diabetes Phase 
I/II

Allogenic, UC-
MSC combined 
with aulogous 
BM-MSC

- - NCT01374854 Ongoing[149]

Neurodegenerative 
diseases

Parkinson’s 
disease

Phase 
I/II

Allogenic BM-
MSC

- - NCT02611167 Completed but more 
interventional studies 
underway[150]

Alzheimer’s 
disease

Phase I Allogenic UC 
MSC, 
Longeveron 
MSC, BM MSC

- - NCT04040348, 
NCT02600130, 
NCT02600130

Ongoing[151]

SARS-CoV-2 COVID-19 Phase 
II/III

BM-MSC, AT-
MSC, Placenta 
derived MSC

Mesoblast, 
Athersys; 
Tigenix/Takeda; 
Pluristem

MultiStem; 
SPECELL

Ongoing[136,152]

AT-MSC: Adipose-tissue derived mesenchymal stem cells; BM-MSC: Bone marrow derived mesenchymal stem cells; COVID19: Coronavirus-induced 
disease 2019; SARSCoV-2: Severe acute respiratory distress syndrome coronavirus-2; UC-MSC: Umbilical cord derived mesenchymal stem cells.

than 2% of all clinical trials, and then MSCs from other sources are utilized[138].

RECENT AI-BASED MODELS FOR STEM CELLS THERAPY
The conventional approach of regenerative medicine and cell-based therapies faced 
multiple challenges related to the enormous amount of data analysis, rising quantity 
and complexity, standardization methods, manual errors, and extremely difficult data 
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Figure 2 Characteristics and therapeutic potential of mesenchymal stem cells. Sources of mesenchymal stem cells (MSCs) are shown as adipose 
tissue, umbilical cord, and bone marrow. MSCs are characterized by positive and negative markers and may be differentiated for clinical applications. The 
immunomodulatory properties of MSCs make them a promising candidate for cell-based therapies. NK cell: Natural killer cell.

handling. This further complicates the process of conclusion derivation and decision-
making practices without the risk of errors involved. The implementation of iPSCs in 
different experimental and therapeutic approaches requires identifying iPSC-derived 
cells, a thorough estimation of iPSC quality, and characterization of the cell type. 
Evaluation of colony morphology through a manual approach is a tedious and error-
prone process, and it is not feasible for large-scale cultures. Various study groups have 
implemented different AI algorithms to install an automated approach for accurate 
segmentation and colony quality estimation to overcome this limitation.

AI raised major hopes in this aspect and became a synergistic approach that 
augments human expertise[153-155]. AI refers to an imitation of human intelligence 
that imparts to a machine the ability to interpret and learn from external data[156] and 
later use those learnings to anticipate and do self-amendment in similar or novel 
scenarios[157]. AI uses automated algorithms to solve problems and assist in tasks like 
data mining and analyzing enormous amounts of datasets, observe patterns and 
predict outcomes that would not be possible by human intelligence[158]. AI-based 
technologies potentially aid clinical decision support in real-time, resulting in 
improved precision medicine[159].

The two AI algorithms which are most widely adopted in the healthcare industry 
are machine learning (ML) and deep learning (DL) (Figure 3)[160,161]. ML refers to a 
data-based algorithm that allows the software to learn from first-hand information and 
become "intelligent" enough to perform predictive analysis and classification without 
being programmed for it[162]. The ML learning methods have been categorized into 
three types: supervised, unsupervised, and reinforcement learning. Supervised 
learning holds most of the ML tasks, and its training dataset consists of class labels. 
The label is a specific known outcome of interest, and the ML algorithm finds the best 
way to predict that outcome[163]. Unsupervised learning predicts the outcome 
without any prespecified labels and predicts the unknown patterns within the data. 
The supervised ML algorithms used in the field of medicine commonly include 
artificial neural network (ANN), support vector machine (SVM), naïve bayes, random 
forest (RF), k-Nearest Neighbors, decision tree (DT), and adaptive boosting 
(Adaboost), etc.[164]. Among these, ANN is the most widely used ML algorithm 
alongside SVM. ANN is a simulation of the human neuronal structure where neurons 
serve as the basic unit for communication and are arranged in sequential layers, with 
varying strength connections between layers. The input layer receives the training 
signal in pixel series or a speech series, relayed through the hidden layer where the 
data is analyzed. The concepts within the data are extracted to make the predictions 
and passed on to the output layer. The output layer further refines the data by 
performing classification/regression tasks[165]. DL's revolutionary concept emerged 



Mukherjee S et al. Recent trends in stem cell-based therapies

WJSC https://www.wjgnet.com 530 June 26, 2021 Volume 13 Issue 6

Figure 3 Commonly used machine learning and deep learning algorithms.

with an increased number of hidden layers, making it a more complex and, 
subsequently, even more, advanced concept of AI. DL techniques utilize these massive 
hidden neuronal units to automatically learn the complex relationship among the raw 
and noisy data, eliminating the tedious manual feature extraction required in ML 
algorithms[166]. Convolutional neural network (CNN) is a DL network robustly 
implemented in medical-imaging to perform image-classification and disease 
diagnosis tasks[167]. Figure 4 illustrates the general schema for AI-based prediction 
model development.

Joutsijoki et al[168] conducted a study focusing on an automated approach to 
identify iPSC colony images with 1608 × 1208 resolution by using ML classifiers- SVMs 
and k-NN. The authors also used scale-invariant feature transform descriptors in 
feature extraction. The k-NN classifier with Euclidean measure and equal weighting 
yielded the best result with an accuracy of 62.4%, which was a measured value 
compared to previous studies.

Kavitha et al[169] conducted a study to evaluate different automated texture 
features extracted from the segmented colony sections of iPSCs and use ML techniques 
to confirm their potential for characterization of colonies. They quantified 151 features 
obtained from the iPSCs images from phase-contrast microscope using moment-based, 
shape-based, spectral texture feature and statistical groups. A forward stepwise 
regression model was used to select the most relevant features for categorizing the 
colonies. Five ML classifiers- SVM, RF, MLP, Adaboost, and DT were used with 10-
fold cross-validation to estimate the texture features within each texture-feature group 
and fused-feature groups to characterize diseased and healthy iPSC colonies. Based on 
one of their findings, SVM, RF, and Adaboost classifiers were concluded to exhibit 
superior performances compared to MLP and DT.

Several studies have reported the implementation of the DL algorithm through 
CNNs in iPSC studies. Kavitha et al[170], in their study, developed a vector-based 
CNN (V-CNN) using extracted features of the iPSC colony for finding out colony 
characteristics. They compared the V-CNN model with an SVM classifier using 
textural, morphological, and combined features. The study applied 5-fold cross-
validation to examine the V-CNN performance. The precision, recall, and F-measure 
values were comparatively much higher than SVM (87%-93%). The V-CNN model was 
also subjected to determine the colony quality where the accuracy values on textural 
(91.0%), morphological (95.5%), and combined features (93.2%) bases were also found 
to be much higher than those of SVM values, which were 83.3%, 87.6%, and 83.4% 
respectively. In another study by Kusumoto et al[171], CNN's were utilized to identify 
iPSC-derived endothelial cells without immunostaining or lineage tracing. They 
obtained a dataset of 200 images from four experimental setups, of which 64 were 
applied for training alongside 160 for testing purposes. iPSC-derived endothelial cells' 
morphological descriptors (Phase-contrast images-based) were used to train the 
network. Its prediction validation was done by comparing with immunofluorescence 
staining for CD31, which is an endothelial cells marker. The method parameters were 
iteratively and automatically improved to obtain an error-free prediction. It was found 
that prediction accuracy was a function of the pixel size of the images and network 
depth in question. The k-fold cross validation also suggested that morphological 
features alone could be enough for optimizing CNNs, and they can deliver a high-
value prediction. The next year, Waisman et al[172] used CNNs to separate pluripotent 
cells from initial differentiating cells. The authors used light microscopic images of 
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Figure 4 General schema for artificial intelligence-based prediction models development. CNN: Convolutional neural network.

PSCs to train the CNN model. Images of mouse-embryonic cells induced to epiblast-
like cells were taken at different intervals after induction. The findings suggested that 
CNN can be trained to distinguish among differentiated and undifferentiated cells 
with an accuracy of 99%.

The well-established role of iPSCs in disease modeling and AI in therapeutics has 
also been exploited in several studies. Juhola et al[173] used iPSC-derived 
cardiomyocytes to study drug effects and their calcium transient signals with ML. Six 
iPSC-lines containing various catecholaminergic polymorphic ventricular tachycardia 
causing mutations were used to assess the drug-effect. The drug being studied was 
dantrolene after adrenaline stimulation by ML analysis of Ca2+ signals.

They identified the beats of transient signals with a previously proposed analytical 
algorithm[174], which recognizes signal abnormality depending upon whether the 
assessed cell signal has at least one abnormal transient peak-based on characteristics of 
a single peak. They computed 12 peak-variables for all identified signal-peaks. These 
data were used to classify the signals into various classes that correspond to those 
influenced by dantrolene or adrenaline. The algorithm's best classification accuracy 
was found to be nearly 79% suggesting a significant role of ML in the analysis of iPSC-
cardiomyocytes drug effects.

In a similar study, Hwang et al[175] employed advanced ML techniques with an 
Analytical Algorithm to build an analytical pipeline for automatic evaluation of Ca2+ 
transient anomaly in cardiomyocytes. The pipeline was made up of peak detection, 
peak and signal abnormality assessment, and peak and signal variable detection. A 
peak-level SVM classifier was trained by using manual expertise. Two hundred cells 
were used as training data to train the SVM (cell-level), and other datasets of 54 cells 
were used to test the accuracy. The training and test accuracies were found to be 88% 
and 87%, respectively.

In a recent study, Nishino et al[176] developed a linear classification learning model 
to differentiate between iPSCs, ESCs, somatic cells, and embryonal carcinoma cells 
based on DNA methylation profiles. The accuracy of the ML model in identifying 
various cell types was found to be 94.23%. Furthermore, component analysis of the 
learned models identified the distinct epigenetic signatures of the iPSCs. Studies about 
recent AI-based stem cell therapies are summarized in Table 3.

Apart from the above-mentioned studies that demonstrate applications of AI in cell 
culture stages, sufficient evidences are available that AI could play a significant role in 
predicting the MSC’s therapeutic outcomes[177-179]. Precise therapeutic outcome 
prediction of the MSC therapy could provide vital information for clinicians to assist 
them in decision support and decide the optimized treatment strategies. AI algorithms 
could be applied to optimize the clinical trials of innovative stem cell therapies for 
various diseases by precise treatment-planning for patients, clinical outcomes 
prediction, and patient recruitment, thereby reducing the complexity of the study and 
overall costs[180]. Machine and human intelligence together could have an exponen-
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Table 3 Summary of recent artificial intelligence-based stem cells therapies

Study objectives Applied AI 
algorithm Important conclusions Study group

iPSC-derived endothelial cells Identification 
without the application of molecular labelling 
using CNN

CNN Prediction accuracy was a function of pixel size of the images 
and network depth. The k-fold cross validation suggested that 
morphological features alone could be enough for optimizing 
CNNs and they can deliver a high value prediction

Kusumoto and 
Yuasa[167] 
(2019)

Automated identification of the iPSC colony 
images quality

SVM, k-NN k-NN yielded 62% of the accuracy which was found to be better 
than the previous studies of that time

Joutsijoki et al
[168] (2016)

Assess automated texture descriptors of 
segmented colony regions of iPSCs and to 
check their potential

SVM, RF, MLP, 
Adaboost, DT

SVM, RF and Adaboost classifiers were concluded to exhibit 
superior classification ability than MLP and DT

Kavitha et al
[169] (2018)

Develop a V-CNN model to distinguish the 
colony-characteristics on the basis of extracted 
descriptors of the iPSC colony

CNN Recall, precision, and F-measure values by CNN were found to 
be comparatively much higher than the SVM. Colony quality 
accuracy was found to be 95.5% (morphological), 91.0% 
(textural) and 93.2% (textural)

Kavitha et al
[170] (2017)

Use CNNs with transmitted light microscopy 
images to find out pluripotent stem cells from 
initial differentiating cells

CNN CNN can be trained to distinguish among differentiated and 
undifferentiated cells with an accuracy of 99%

Waisman et al
[172] (2019)

Use machine learning algorithms to analyze 
drug effects on iPSC cardiomyocytes

NB, KNN, LS-SVM, 
DT, multinomial 
logistic regression

Classification accuracy of the algorithm developed was found to 
be nearly 79%

Juhola et al
[173] (2021)

To build an analytical procedure for 
automatic evaluation of Ca2+ transient 
abnormality, by applying SVM together with 
an analytical algorithm

SVM The training and test accuracies were found to be 88% and 87% 
respectively

Hwang et al
[175] (2020)

To develop a linear classification-learning 
model to differentiate among somatic cells, 
iPSCs, ESCs, and ECCs on the basis of their 
DNA methylation profiles

Jubatus (ML 
analytical platform)

The accuracy of the ML model in identifying various cell types 
was found to be 94.23%. Also, component analysis of the learned 
models identified the distinct epigenetic signatures of the iPSCs

Nishino et al
[176] (2021)

AI: Artificial intelligence; CNN: Convolution neural network; DT: Decision tree; ECCs: Embryonal carcinoma cells; ESCs: Embryonic stem cells; iPSC: 
Induced pluripotent stem cells; k-NN: K-nearest neighbor; LS-SVM: Least-squares support-vector machines; MLP: Multilayer perceptron; RF: Random 
forest; SVM: Support vector machine.

tially high impact on the continual progress of stem cell-based therapy.

CONCLUSION
Research gaps and future prospect
Regenerative medicines offer enormous potentials for better treatment of patients and 
quick recovery. However, there are certain drawbacks due to inefficient production, 
lengthy and complex processes, and human errors due to excessive human efforts. 
Understanding genetic components that influence the development of shape, size and 
orientation of an organ is extremely vital. Although the mechanism of most of the 
regenerative models is available with diagrams depicting the gene regulations, 
however, the stepwise dynamics to produce a particular shape of an organ are lacking. 
The AI-driven models and constructive algorithms could be a powerful solution for a 
deeper understanding of such mechanisms. These models could make the 
development of regenerative medicines automated and minimize human error factors.

The regenerative medicines' manufacturing has its own set of challenges, viz. 
efficient, cost-effective, large-scale production, lack of automation and quality control 
systems, and absence of closed and modular systems[181].

A vast number of datasets are published every year for experimental regenerative 
biology, but there is no international guideline for standard and high-quality datasets 
for regenerative medicines. Also, the tools for analyzing available datasets to get 
deeper insights and meaningful patterns are lacking. There have been some limited 
non-AI-based computational methods, platforms, and tools available to assist 
regenerative therapies. In an effort to derive such computational methods, Lobo and 
Levin developed a computational method to understand the physiological controls in 
planarian regeneration[182]. The exceptional ability of planaria to regenerate its body 
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parts could be a potential model for leading regenerative medicine research. Another 
computational platform, KeyGene[183], can predict the tissue origin of various cell 
types. It could find out the equivalent stage of human PSC differentiation products 
along with the identification of stem cell derivatives. The KeyGene algorithm applies 
next-generation sequencing and microarray datasets and could be used to predict 
human adult tissue identity. This tool also helps monitor the cell-differentiation 
conditions and evaluate in-vitro cell-differentiation efficacy, thereby fetching 
improved protocol outcomes. CellNet[184] is among the recent computational tools 
that provide cell identity parameters, evaluate cell fate conversions, and rank suitable 
candidates for future interventions. However, it cannot differentiate between cell 
subtypes and cell heterogenicity, which remains a challenge to solve to date.

Nevertheless, AI-driven methods have emerged as an important component of stem 
cell research. Over the last decade, AI algorithms have advanced very rapidly, and 
along with enormous progress, methods to apply them have also enhanced 
subsequently. Many algorithms and tools can be expected in the recent future, which 
could efficiently assist stem cell-based regenerative medicines development, outcome 
prediction, and decision support to healthcare providers.
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