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Abstract
Gastrointestinal (GI) tumors, including liver, pancreatic, gastric, and colorectal 
cancers, have a high incidence rate and low survival rate due to the lack of 
effective therapeutic methods and frequent relapses. Surgery and postoperative 
chemoradiotherapy have largely reduced the fatality rates for most GI tumors, but 
these therapeutic approaches result in poor prognoses due to severe adverse 
reactions and the development of drug resistance. Recent studies have shown that 
ferroptosis plays an important role in the onset and progression of GI tumors. 
Ferroptosis is a new non-apoptotic form of cell death, which is iron-dependent, 
non-apoptotic cell death characterized by the accumulation of lipid reactive 
oxygen species (ROS). The activation of ferroptosis can lead to tumor cell death. 
Thus, regulating ferroptosis in tumor cells may become a new therapeutic 
approach for tumors, making it become a research hotspot. Current studies 
suggest that ferroptosis is mainly triggered by the accumulation of lipid ROS. 
Furthermore, several studies have indicated that ferroptosis may be a new 
approach for the treatment of GI tumors. Here, we review current research 
progress on the mechanism of ferroptosis, current inducers and inhibitors of 
ferroptosis, and the role of ferroptosis in GI tumors to propose new methods for 
the treatment of such tumors.

Key Words: Ferroptosis; Gastrointestinal oncology; Hepatocellular carcinoma; Pancreatic 
cancer; Gastric cancer; Colorectal cancer
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Core Tip: Ferroptosis refers to cell death triggered by iron-dependent lipid peroxidation. 
Recent studies have demonstrated that ferroptosis is involved in the onset and 
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progression of numerous gastrointestinal (GI) tumors. Hence, inducing ferroptosis in 
tumor cells may become a new therapeutic strategy against GI tumors. Here, we review 
the molecular mechanism of ferroptosis and its role in GI tumors, with the aim of 
providing new research directions and ideas for the treatment of GI tumors.

Citation: Yang F, Sun SY, Wang S, Guo JT, Liu X, Ge N, Wang GX. Molecular regulatory 
mechanism of ferroptosis and its role in gastrointestinal oncology: Progress and updates. World 
J Gastrointest Oncol 2022; 14(1): 1-18
URL: https://www.wjgnet.com/1948-5204/full/v14/i1/1.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i1.1

INTRODUCTION
Cell death is a basic life process that is pivotal to the development and homeostasis of 
multicellular organisms. Functionally, cell death can be categorized into accidental cell 
death (ACD) and regulated cell death (RCD). ACD refers to instantaneous and 
catastrophic cell death due to severe physical (e.g., high pressure, high temperature, 
and hypertonicity), chemical (e.g., drastic pH fluctuations), or mechanical (e.g., shear 
force) damage. In contrast, RCD is triggered via specific molecular mechanisms and 
can be modulated (delayed or accelerated) via pharmacologic or genetic interventions
[1]. RCD can be further categorized by onset mechanism as apoptosis, autophagic cell 
death, paraptosis, mitotic catastrophe, oncosis, pyroptosis, autoschizis, necroptosis, 
entosis, or ferroptosis[1,2].

Ferroptosis is iron-dependent, non-apoptotic cell death characterized by the 
accumulation of free iron and lipid reactive oxygen species (ROS)[3]. Studies have 
shown that the free iron concentration in gastrointestinal (GI) tumor cells is higher 
than that of normal cells, and the survival of tumor cells is highly dependent on the 
abnormally activated antioxidant system[2,3]. Additionally, in recent years, a large 
number of studies have shown that the activation of ferroptosis can lead to GI tumor 
cell death[1-4]. Thus, regulating ferroptosis in tumor cells may become a new 
therapeutic approach for GI tumors. Therefore, ferroptosis has become a research 
hotspot.

Here, we summarize recent research progress on the mechanism of ferroptosis and 
its role in GI tumors to expand ideas on clinical tumor treatment.

DISCOVERY AND CHARACTERISTICS OF FERROPTOSIS
In 2003, Dolma et al[4] identified a new compound while screening for compounds 
with killing effects against tumor cells. The identified compound, erastin, which 
selectively kills tumor cells expressing RASV12 protein, a mutated form of RAS. 
However, the erastin-mediated killing mechanism is different from that of previously 
known compounds, i.e. it does not cause nuclear morphological changes, DNA 
fragmentation, or caspase-3 activation, and its cell-killing process cannot be reversed 
by caspase inhibitors[2]. Then Yang et al[5] and Yagoda et al[6] found that erastin-
mediated cell death is inhibited by iron chelators and is accompanied by elevated 
intracellular ROS levels. Additionally, both studies identified RAS-selective lethal 
(RSL) compounds, RSL and RSL3, which trigger this type of cell death[3]. In 2012, 
Dixon et al[3] named this type of cell death ferroptosis, which is iron-dependent, non-
apoptotic cell death characterized by intracellular ROS accumulation. In 2018, the 
Nomenclature Committee on Cell Death defined ferroptosis as a form of glutathione 
peroxidase 4 (GPX4)-regulated RCD that is triggered by oxidative stress in the 
intracellular microenvironment and can be inhibited by iron chelators and lipophilic 
antioxidants[1].

Ferroptosis is a novel type of iron-dependent cell death with genetic, biochemical, 
and morphological features different from other forms of cell death including 
apoptosis, unregulated necrosis, and necroptosis[3]. The ultra-micromorphological 
features of ferroptosis include cell membrane disruption and blebbing, mitochondrial 
shrinkage, increased mitochondrial bilayer density, reduced or absent mitochondrial 
cristae, outer mitochondrial membrane disruption, normal nuclear size, and the 
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absence of chromatin condensation[7]. The main biochemical characteristics of 
ferroptosis include iron and ROS accumulation, protein kinase activation, cystine/ 
glutamate antiporter inhibition, reduced cystine uptake and glutathione (GSH) 
synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidation[8].

Ferroptosis, modulated by specific pathways, is involved in various biological 
processes and exhibits unique gene expression and molecular regulatory systems. 
Current studies suggest that ferroptosis is mainly caused by the imbalance between 
lipid ROS generation and detoxification in cells. The accumulation of lipid ROS when 
the cellular antioxidant capacity is reduced can result in oxidative stress-induced cell 
death, i.e. ferroptosis[9].

MECHANISM AND REGULATION OF FERROPTOSIS
Ferroptosis is mainly regulated by the following three mechanisms[7]: (1) regulation of 
iron metabolic pathways such as autophagy-related genes 5 and 7 (ATG5/ATG7)-
nuclear receptor coactivator 4 (NCOA4) pathway[10] and p62-Kelch-like epichloro-
hydrin-associated protein-1 (Keap1)-nuclear factor erythroid 2-related factor 2 (NRF2) 
pathway[11]; (2) regulation of lipid metabolic pathways such as the p53-serine acetyl-
transferase 1-arachidonate-15-lipoxygenase pathway[7], acyl-CoA synthase long-chain 
family member 4 (ACSL4)[12], lysophosphatidylcholine acyltransferase 3 (LPCAT3)
[13], and 15-lipoxygenase/phosphatidylethanolamine (PE)-binding protein-1 (15-
LOX/PEBP1)[14]; and (3) regulation of the GSH/GPX4 pathway such as the cystine/ 
glutamate antiporter system (System Xc

-)[15], transsulfuration pathway[16], and 
mevalonate pathway[17]. Dysregulation of these three regulatory pathways eventually 
significantly reduce GPX4 activity and increase intracellular lipid ROS levels, thereby 
leading to reduced cellular antioxidant capacity, additional lipid ROS accumulation, 
oxidative damage to the cell membrane, and ferroptosis. Ferroptosis suppressor 
protein 1 (FSP1) can inhibit lipid peroxidation and ferroptosis by directly eliminating 
lipid ROS independent of GPX4[18] (Figure 1).

Regulation of iron metabolism
Iron is an essential trace element in the human body. Iron deficiency can cause anemia 
and iron-dependent enzyme abnormalities. However, iron accumulation can lead to 
tissue damage and increase the risk of developing various diseases (e.g., tumors). ROS 
that accumulate during cell metabolism mainly include superoxide radical anions (O2-) 
and hydrogen peroxide (H2O2), which are converted by free Fe2+ ions to hydroxyl free 
radicals (HO-) that subsequently generate lipid peroxides by oxidizing macromo-
lecules, especially lipid molecules (e.g., polyunsaturated fatty acids, PUFAs). These 
reactions, which involve iron and generate hydroxyl or alkoxy radicals (RO-), are 
termed Fenton reactions[19]. Intracellular accumulation of lipid peroxides without 
timely elimination cause oxidative damage to DNA, proteins, and the cell membrane, 
eventually leading to ferroptosis[20].

Therefore, iron ions are indispensable for the accumulation of lipid peroxides and 
the initiation of ferroptotic pathways. The absorption, distribution, metabolism, 
transformation, and excretion of iron ions are closely associated with the onset of 
ferroptosis[21]. Dietary iron is mainly absorbed as ferric (Fe3+) ions in the duodenum 
and upper jejunum, where it is transported to the blood by transferrin. Some Fe3+ ions 
are transported by binding to the membrane receptor transferrin receptor 1 (TFR1), 
which are packaged into endosomes. There, Fe3+ ions are reduced to Fe2+ ions by the 
metalloreductase, six-transmembrane epithelial antigen of the prostate 3. Finally, Fe2+ 
ions are delivered by solute carrier family 11a2/divalent metal transporter 1 from 
endosomes into the cytoplasmic labile iron pool. Intracellular iron storage mainly 
occurs in the form of iron-protein complexes comprising ferritin light chain (FTL) and 
ferritin heavy chain 1 (FTH1), while the remaining excess Fe2+ ions are oxidized to Fe3+ 
ions and transported out of cells by ferroportin on the cell membrane[22].

Both increased iron uptake and decreased iron elimination can enhance the 
sensitivity of cells to oxidative damage and ferroptosis via the Fenton reaction. Supple-
mentation with exogenous iron ions but not other divalent metal ions can accelerate 
erastin-induced ferroptosis[3]. Cells with mutated RAS show significantly increased 
iron uptake and significantly decreased iron storage capacity following the onset of 
ferroptosis[23]. The intracellular level of labile iron (Fe2+ ions) is also a key factor 
affecting lipid peroxidation and ferroptosis. Upon exposure to different ferroptosis 
inducers, the intracellular Fe2+ ion level increases and various transport proteins 
associated with iron metabolism (e.g., ferritin and TFR1) are rearranged after 



Yang F et al. Ferroptosis in GI oncology

WJGO https://www.wjgnet.com 4 January 15, 2022 Volume 14 Issue 1

Figure 1 Molecular regulation mechanism of ferroptosis. ART: Artesunate; DHA: Dihydroartemisinin; GPX4: Glutathione peroxidase 4; GSH: Glutathione; 
HMOX1: Heme oxygenase 1; PUFAs: Polyunsaturated fatty acids; ROS: Reactive oxygen species; SQS: Squalene synthase; VDAC: Voltage-dependent anion 
channel.

ferroptosis[21]. Iron overload and ferroptosis can be inhibited by knocking out genes 
encoding transferrin receptors or upregulating the expression of iron-storage proteins. 
Inhibiting the main transcription factor that regulates iron metabolism, iron-
responsive element-binding protein 2 (also known as iron regulatory protein 2), can 
significantly upregulate the expression of genes associated with iron metabolism (e.g., 
FTH1 and FTL) and inhibit erastin-induced ferroptosis[24]. Blocking iron transport by 
knocking out the ferroportin gene SLC11A3 exacerbates erastin-induced ferroptosis in 
neuroblastoma cells[25]. Furthermore, Yang et al[26] observed that phosphorylase 
kinase catalytic subunit γ2 (PHKG2) positively regulates ferroptosis by modulating the 
free Fe2+ ion level, while inhibiting PHKG2 expression exhibits an iron-chelating effect. 
Autophagy can also regulate the cellular sensitivity to ferroptosis by affecting iron 
metabolism[27]. Ferritin-selective autophagy (ferritinophagy) enhances cellular 
sensitivity to ferroptosis by controlling the level of available iron[28]. NCOA4 is a 
selective cargo receptor that delivers ferritin to autophagosomes, where ferritin is 
degraded and free iron is released into the cytoplasm. Downregulating NCOA4 
expression reduces the sensitivity of human fibrosarcoma cells (HT-1080) and human 
pancreatic cancer cells (PANC1) to ferroptosis. This process is regulated by autophagy-
related genes, ATG5 and ATG7[10]. Other proteins that affect iron metabolism, such as 
NRF2[11], heat shock protein beta-1[29], and CDGSH iron-sulfur domain-containing 
protein 1 (CISD1, also referred to as mitoNEET)[30] can also affect cellular sensitivity 
to ferroptosis.

Iron chelators can directly act on iron-containing enzymes, most likely lipoxy-
genases, because they can catalyze PUFA oxidation and be directly inactivated by 
lipophilic iron chelators. Dixon et al[31] suggested that iron is extremely prone to 
electron exchange under aerobic conditions. Thus, the inhibition of ferroptosis by iron 
chelators may be attributed to the fact that iron is a cofactor of numerous important 
metalloenzymes and that iron chelators prevent electron transfer from iron to oxides, 
thereby inhibiting oxygen free radical generation and preventing ferroptosis by 
inhibiting lipid peroxidation. Therefore, regulating iron metabolism and ferriti-
nophagy may serve as a new target and approach for modulating ferroptosis.

Regulation of lipid metabolism
Lipids are important regulators of cell death. In mammals, both apoptotic and non-
apoptotic pathways can be induced, regulated, or inhibited by different lipid signals
[34]. For example, increasing the intracellular saturated fatty acid-to-monounsaturated 
fatty acid ratio can trigger apoptotic pathways. Increased long-chain fatty acid levels 
can trigger necrotic pathways[32], and exogenous monosaturated fatty acids can 
reduce cell death via acyl-CoA synthetase long chain family member 3 (ACSL3). All of 
these pathways exert a lipotoxic effect[33].
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Unlike other forms of cell death, ferroptosis does not require an effector (e.g., pore-
forming proteins). Instead, lipid-mediated oxidative stress and subsequent membrane 
damage are key factors leading to the onset of ferroptosis. In particular, PUFAs, which 
contain bis-allylic protons that are vulnerable to hydrogen abstraction, are more likely 
to form lipid peroxides and induce ferroptosis[26]. PUFA abundance and localization 
determine the degree of lipid peroxidation in cells, and thus, the extent of ferroptosis
[7].

The intracellular accumulation of lipid peroxides is the core process of ferroptosis. 
Lipid peroxidation in cells may be enzymatic or non-enzymatic. Non-enzymatic lipid 
peroxidation, also known as lipid autoxidation, is a free radical-mediated chain 
reaction, in which PUFAs are oxidized to lipid hydroperoxides by hydroxyl radicals 
generated via the Fenton reaction[19]. In contrast, enzymatic lipid peroxidation refers 
to lipoxygenase (LOX)-catalyzed generation of various lipid hydroperoxides from free 
PUFAs. Then lipid hydroperoxides are catalyzed by Fe2+ ions to generate free alkoxy 
radicals, which participate in the next lipid peroxidation reaction. Continuous PUFA 
oxidation and depletion alters the fluid mosaic structure of cell membrane and 
increases its permeability, eventually leading to cell death[17,20].

Fe2+ ions participate in the formation of free radicals and are an important catalyst in 
lipid peroxidation. Free PUFAs serve as substrates for the synthesis of lipid signaling 
mediators, but they must be esterified to membrane phospholipids and oxidized to 
become ferroptotic signals[17]. These toxic mediators are sparsely distributed within 
the cell membrane, mitochondrial membranes, lysosomal membranes, and endoplas-
mic reticulum membranes[26]. A lipidomic study uncovered that lipid metabolism 
disorders are closely associated with ferroptosis, where the key phospholipids— 
PEs—which contain arachidonic acid (C20:4) or its derivative adrenic acid (C22:4), are 
oxidized to ox-phosphatidylethanolamines (ox-PEs) that induce the onset of ferrop-
tosis[34]. PUFAs are converted to coenzyme A derivatives, which are incorporated 
into phospholipids to become ferroptotic signals. Thus, the regulatory enzymes 
involved in PUFA biosynthesis from membrane phospholipids can trigger or prevent 
ferroptosis. Indeed, PUFA formation requires various lipid metabolism enzymes, such 
as ACSL4[14], LPCAT3[13], and 15-LOX/PEBP1[14]. In addition, lipid peroxidation 
promotes ferroptosis due to the generation of toxic aldehydes, such as 4-hydroxy-2-
nonenal and malondialdehyde that can inactivate some proteins involved in normal 
physiological functions[35].

PUFAs are activated by ACSL4 and transported by LPCAT3 to the inner and outer 
leaflets of the cell membrane, where they undergo esterification and participate in the 
oxidation of negatively charged membrane phospholipids. Under normal circum-
stances, 15-LOX/PEBP1 and GPX4 co-regulate the oxidation of esterified fatty acids, 
but during oxidant/antioxidant imbalance, long-chain PUFAs in the cell membrane 
are often oxidized and trigger ferroptosis, especially when being induced by other 
factors such as RSL3[22].

ACSL4, which belongs to the long-chain acyl-CoA synthetase family, catalyzes the 
activation of fatty acids to form fatty acyl CoA in the body. It is also the key enzyme 
required in the first step of fatty acid catabolism. Previous studies have revealed that 
knocking out enzymes of the ACSL family other than ACSL4 in mouse embryonic 
fibroblasts does not cause ferroptosis[12]. Unlike other members of the ACSL family, 
ACSL4 can activate long-chain PUFAs and participate in the synthesis of membrane 
phospholipids. For example, ACSL4 catalyzes the conversion of arachidonic acid and 
adrenergic acid to arachidonoyl-CoA and adrenyl-CoA, respectively, which participate 
in the synthesis of negatively charged membrane phospholipids (e.g., phosphatidyleth-
anolamines and phosphatidylinositol) and their incorporation into the cell membrane. 
LPCAT3 knockout cells display only a slight alleviation of ferroptosis compared to 
ACSL4 knockout cells. Additionally, ACSL4 is required for lipid peroxides to inhibit 
GPX4[12,36]. These results suggest that ACSL4 may be a crucial determinant of 
ferroptosis. Another study revealed that thiazolidinediones exhibit a protective effect 
on ACSL4-knockout embryonic fibroblasts. The combination of thiazolidinediones and 
RSL3 alleviated membrane lipid oxidation and cell death and significantly improved 
the survival of ACSL4-knockout mice[12]. Hence, ACSL4 inhibition may be a new 
target for the treatment of diseases associated with ferroptosis.

LOXs are non-heme, iron-containing enzymatic effector proteins essential for 
mediating the formation of ferroptosis-related peroxides. Knocking out LOXs, which 
prefer free PUFAs as substrates, can alleviate erastin-induced ferroptosis and cellular 
damage[3]. Vitamin E can inhibit LOX activity, which provides a foundation for the 
protective effect of vitamin E against ferroptosis[37]. Current studies suggest that 
LOXs primarily form a complex with PEBP1, which allosterically regulate LOXs to 
accommodate the ferroptotic signal sn2-15-Hydroperoxy-eicasotetraenoyl-phosphati-
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dylethanolamines (sn2-15-HpETE-PE) at the catalytic site. Two major LOX subtypes 
mediate lipid peroxidation: 15-LO1 and 15-LO2. These two LOX subtypes have tissue-
specific distribution patterns. For example, 15-LO1 is highly expressed in human aortic 
endothelial cells, while 15-LO2 is highly expressed in renal tubular endothelial cells 
and neuronal cells[14]. A previous redox metabolomic analysis revealed the similarity 
between 15-LO1 and 15-LO2. Both enzymes are involved in ferroptosis-associated 
diseases, such as traumatic brain injury, asthma, and acute renal ischemic injury[7]. 
LOX-mediated free PUFA oxidation requires 15-LOX/PEBP1 complex formation. In 
this complex, PEBP1 allosterically regulates LOXs and initiates downstream 
phospholipase A2-related oxidation pathways for specific PUFAs. PEBP1, also known 
as RAF1 kinase inhibitor protein, is a small scaffold protein that binds to RAF1 and 
inhibits activity under steady-state conditions. 15-LOs are newly identified partners of 
PEBP1. 15-LO/PEBP1 complexes allosterically activate LOXs, which convert 15-
hydroxyperoxyeicosatetraenoic acid (15-HpETE) to the pro-ferroptotic signal, 15-
HpETE-PE, thereby triggering ferroptosis[38]. The mechanism by which the 
LOX/PEBP1 complex selects specific PUFAs for oxidation among diverse unsaturated 
fatty acids remains unknown. Clearly, this issue urgently needs to be addressed in 
investigating the regulatory mechanism of ferroptosis.

Regulation of amino acid metabolism
Amino acid metabolism is an important component of metabolic networks, and amino 
acid metabolism disorders are closely associated with ferroptosis[7]. GSH is an 
important antioxidant and free radical scavenger in the body. Many free radicals 
produced via metabolism can damage cell membranes, attack biological macro-
molecules, promote aging, and induce the onset of tumors or atherosclerosis. 
Functionally, GSH can bind and convert harmful, toxic molecules (e.g., free radicals 
and heavy metals) into harmless substances that can be excreted from the body[39]. 
GSH is a tripeptide consisting of three amino acid residues: glutamic acid, cysteine, 
and glycine. It exists in reduced (G-SH) and oxidized (G-S-S-G) forms and is the first 
line of defense for free-radical scavenging in the body due to the presence of an active 
sulfhydryl (-SH) group that is susceptible to oxidization and dehydrogenation. 
Together with non-enzymatic antioxidants (reduced nicotinamide adenine dinu-
cleotide phosphate/nicotinamide adenine dinucleoside phosphate), GSH exerts a 
strong protective effect on the body[40]. The synthesis of GSH requires cysteine as the 
starting material. Therefore, cellular resistance to lipid oxidation relies on intracellular 
cysteine levels, which are mainly produced by the System Xc

- and transsulfuration 
pathways.

System Xc
- plays an important role in maintaining GSH homeostasis and distri-

bution. This molecule is a disulfide-linked heterodimer that comprises the regulatory 
subunit solute carrier family 3 member 2 (SLC3A2) and the catalytic subunit solute 
carrier family 7 member 11 (SLC7A11). System Xc

- promotes a 1:1 cystine and glutamic 
acid exchange across the plasma membrane. Cystine is reduced to cysteine upon 
entering cells[41]. Thus, System Xc

- regulates GSH synthesis by affecting extracellular 
glutamic acid levels[42]. A previous study found that System Xc

--knockout mice have 
significantly lower glutamic acid levels around neurons and a milder drug-induced 
neurotoxic response than normal mice[43]. Previous pharmacological studies revealed 
that erastin, sulfasalazine, and high glutamic acid concentrations induce ferroptosis by 
inhibiting System Xc

-[3,44]. These findings indicate that System Xc
- may mediate 

ferroptosis initiation by affecting glutamic acid uptake and GSH synthesis.
Methionine can be converted to adenosylhomocysteine and cysteine in cells via the 

transsulfuration pathway[16]. During cysteine insufficiency, homocysteine is 
converted to cystathionine (a cysteine precursor), which eventually enters the cysteine 
pool via the transsulfuration pathway. Numerous studies have demonstrated that 
more than 40% of cysteine in mammals is obtained from food. Cysteine is mainly used 
to synthesize GSH, antioxidant peptides, and thioredoxin (Trx) in the body. Under 
oxidative stress, cystathionine-b-synthetase promotes the conversion of methionine to 
cysteine and subsequent GSH synthesis, thereby protecting cells from oxidative stress-
induced damage[16,45]. Hence, cysteine can be synthesized in cells via the transsul-
furation pathway even when intracellular System Xc

- is inhibited, indicating that 
ferroptosis inducers, which inhibit System Xc

-, cannot completely and effectively kill 
cells. Hayano et al[46] showed that inhibiting cysteinyl-tRNA synthetase (CARS) 
expression using RNA interference upregulates the transsulfuration pathway and 
enhances cellular resistance to erastin-induced ferroptosis but is unable to inhibit 
RSL3- or buthionine sulfoximine-induced ferroptosis, suggesting that the transsul-
furation pathway negatively regulates ferroptosis.
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Glutamic acid and glutamine are additional ferroptosis regulators. A high 
extracellular concentration of glutamic acid can inhibit System Xc

- and trigger 
ferroptosis. Ottestad-Hansen et al[43] found that knocking out System Xc

- protects mice 
against neurotoxic injuries caused by glutamic acid accumulation. Additionally, iron 
chelators and ferroptosis inhibitors can inhibit glutamic acid-mediated neurotoxicity. 
Glutamine naturally exists in human tissues and plasma at substantial concentrations. 
Its degradation fuels the tricarboxylic acid cycle and provides fundamental materials 
for biosynthetic processes. During glutamine deficiency or the inhibition of glutamine 
degradation, ROS accumulation, lipid peroxidation, and ferroptosis cannot be induced 
by depleting cysteine or blocking cystine uptake, probably because the product of 
glutamine degradation, α-ketoglutarate, is essential for the onset of ferroptosis[3]. 
However, not all glutamic acid metabolic pathways can induce ferroptosis. The first 
step of glutamic acid metabolism is the conversion of glutamine into glutamic acid by 
the glutaminases GLS1 and GLS2. These glutaminases have similar structures and 
enzymatic properties, but only GLS2 can induce ferroptosis, probably because GLS2 is 
a transcriptional target of p53. Indeed, GLS2 upregulation can induce p53-dependent 
ferroptosis[47,48]. Under certain circumstances, p53 can suppress ferroptosis by 
blocking dipeptidyl-peptidase-4 activity in a transcription-independent manner[49]. 
Inhibiting glutamine degradation has been demonstrated to alleviate cardiac, renal, 
and brain injury caused by ischemia-reperfusion in an experimental model[50]. Hence, 
the regulation of glutamine anabolism may provide new approaches for alleviating 
ferroptosis-induced organ injuries.

In addition, oxidant/antioxidant imbalance may also induce ferroptosis[7]. ROS 
levels in the body are regulated by an antioxidative defense system comprising antiox-
idants, such as Nrf2, GPX4, and catalase. However, inhibitors of the antioxidative 
system (e.g., superoxide dismutase inhibitors and thioredoxin reductase inhibitors) can 
induce human epithelial/fibroblast cell death only when intracellular GSH is depleted
[51], indicating that erastin may induce ferroptosis by interacting with a specific 
downstream target of GSH. GPX4, which belongs to the GPX antioxidative defense 
system, is a key enzyme in maintaining the balance between GSH and GS-SG. High 
SLC7A11 expression in various tumor types increases cystine uptake and GPX4 
synthesis in cells, thereby promoting tumor growth by reducing cellular oxidative 
stress and inhibiting ferroptosis[41].

GPX4 is a GSH-dependent enzyme. Selenocysteine is an amino acid within the 
catalytic center of GPX4, but since it is encoded by a UGA codon (which is also a stop 
codon), selenocysteine needs to be inserted into GPX4 by a specific carrier. Seleno-
cysteine-specific tRNA (sec-tRNA) contains isopentenyladenosine and can decode the 
selenocysteine UGA codon, thereby allowing the accurate insertion of selenocysteine 
into corresponding proteins. Importantly, sec-tRNA maturation can also be regulated 
by the mevalonate pathway acting on GPX4 because its maturation requires tRNA-
isopentenyltransferase to catalyze the transfer of the isopentenyl group of isopentenyl 
pyrophosphate (IPP) to the specific adenine sites of sec-tRNA precursors. Since IPP is 
an important product of the mevalonate pathway, inhibitors of the mevalonate 
pathway (e.g., statins) can inhibit sec-tRNA maturation and GPX4 synthesis[16,17], 
thereby affecting the progression of ferroptosis. IPP and mevalonate pathway 
inhibitors regulate the onset of ferroptosis by affecting GPX4. At present, GPX4 is a 
key target to induce ferroptosis and is activated by numerous ferroptosis inducers, 
such as erastin and RSL3. Erastin inhibits GPX4 activity by depleting GSH, while RSL3 
directly inhibits GPX4 activity[7], resulting in lipid peroxide accumulation that 
triggers ferroptosis. Additionally, other ferroptosis inducers (e.g., diphenylene 
iodonium (DPI), DPI7, DPI10, and DPI12) exert similar effects by directly inhibiting 
GPX4 activity. Knocking out GPX4 Leads to excess intracellular lipid peroxide 
accumulation and cell death[52]. Therefore, GPX4 is an important target for triggering 
ferroptosis.

OTHER REGULATORY PATHWAYS
FSP1/CoQ/NADPH pathway
In addition to the above-mentioned metabolic regulatory pathways, other cellular 
pathways are involved in the regulation of ferroptosis. Bersuker et al[18] and Doll et al
[53] found that the FSP1/coenzyme Q (CoQ)/NADPH pathway also inhibits 
ferroptosis. FSP1 was previously known as apoptosis-inducing-factor mitochondria-
as-2. Both research groups found that FSP1 exhibited CoQ oxidoreductase activity, 
which mediates NAD(P)H-dependent CoQ10 regeneration. Ubiquinol, the reduced 
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form of CoQ10, captures free radicals that drive lipid peroxidation, thereby preventing 
oxidative damage to plasma membranes. FSP1 exerts its cellular protective effect 
against ferroptosis by catalyzing continuous CoQ10 regeneration and improving the 
free-radical scavenging capacity within cells. Hence, FSP1 catalyzes the synthesis of 
lipophilic free-radical scavengers and has a protective effect against ferroptosis caused 
by GPX4 deletion. It is currently believed that the FSP1/NADPH/CoQ10 pathway is 
independent and parallel to GPX4. Even in the absence of GPX4, FSP1, CoQ10, 
NADPH, and GSH serve as important antioxidants and free-radical scavengers that 
exhibit cellular protective effects against ferroptosis in the body.

Voltage-dependent anion channels
Voltage-dependent anion channels (VDACs) are transmembrane channels located on 
the outer mitochondrial membrane that transport ions and metabolites. VDACs 
regulate mitochondrial metabolism and energy production and participate in 
regulating signaling pathways, leading to both cell survival and death. There are 
numerous VDAC subtypes including VDAC1, VDAC2, and VDAC3. The open state of 
VDACs mediates the influx of respiratory substrates, ADP, and phosphoric acid into 
the mitochondria, while its closure blocks transport across mitochondrial membranes
[54]. Tubulin, a globular protein on VDACs, can dynamically regulate mitochondrial 
metabolism and ion transportation by blocking VDACs[55]. Tubulin-induced VDAC 
closure restricts metabolite influx into the mitochondria and limits ATP production, 
leading to attenuated oxidative stress due to the inhibition of mitochondrial 
metabolism and a relatively low ATP/ADP ratio. Erastin can inhibit the effect of 
tubulin on VDACs and maintain an open state by preventing free tubulins in the 
cytoplasm from blocking VDACs. The open VDAC state leads to increased mito-
chondrial metabolism, decreased glycolysis, and elevated ROS production. Exposure 
of VDACs to the ferroptosis inducer, erastin, causes increased permeability of outer 
mitochondrial membranes, membrane ion channel opening, and disrupted cellular 
homeostasis, which results in dysfunctional mitochondrial metabolism and oxidation, 
increased ROS production, and enhanced lipid peroxidation, eventually triggering 
ferroptosis[56]. A previous study showed that inhibiting VDAC2 or VDAC3 
expression renders cells insensitive to erastin-induced ferroptosis, but upregulating 
VDAC2 or VDAC3 expression does not significantly increase cellular sensitivity to 
erastin-induced ferroptosis. These data suggest that despite being involved in the 
regulation of ferroptosis, neither VDAC2 nor VDAC3 is a prerequisite of ferroptosis
[57]. VDAC1 is closely related to the onset of ferroptosis, as it mainly maintains 
calcium homeostasis and ROS levels in the mitochondria.

FERROPTOSIS INDUCERS AND INHIBITORS
Common ferroptosis inducers
Ferroptosis inducers can be divided into four categories according to their targets 
(Table 1): System Xc

-; GPX4; GSH; and iron ions and ROS.

Common ferroptosis inhibitors
Ferroptosis inhibitors can be divided into two categories according to their 
mechanisms of action (Table 2): reduction of intracellular iron accumulation; and 
inhibition of lipid peroxidation.

FERROPTOSIS AND GI DISEASES
Numerous studies have demonstrated that ferroptosis leads to cell death in GI tumors 
(e.g., pancreatic, liver, colorectal, and gastric cancers) and plays an important role in 
inhibiting tumor growth. Therefore, inducing ferroptosis in tumor cells is expected to 
become a novel therapeutic strategy. Although only limited in vitro and in vivo 
experiments on ferroptosis inducers have been conducted, a few small-molecule 
ferroptosis inducers have been discovered that display excellent therapeutic or 
synergistic outcomes against tumors.

Ferroptosis and pancreatic cancer
Pancreatic cancer is a highly malignant GI tumor with a poor prognosis. Although 
there are drugs available to treat pancreatic cancer, patients receiving pharmaco-
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Table 1 Common ferroptosis inducers

Target Inducer Function Ref.

Erastin Inhibits the activity of System Xc
- and affects the synthesis of GSH; binds 

to VDAC2/3 to induce mitochondrial dysfunction
[3,6]

Erastin analogs, piperazine erastin, 
imidazole ketone erastin

Inhibits the activity of System Xc
- and affects the synthesis of GSH [103,104]

Sulfasalazine Inhibits the activity of System Xc
- (weaker inhibitory effect than erastin) [3,105,106]

Sorafenib Inhibits the activity of System Xc
- (directly affects the synthesis of GSH in a 

narrow concentration range)
[107]

System Xc
-

Glutamate Inhibits the activity of System Xc
-, high extracellular glutamate 

concentrations prevent cystine import
[3,7]

(1S,3R)-RSL3 Covalently binds to the selenocysteine residue of GPX4 [5,26]

DPI7 (ML162), DPI12, DPI17 Covalently bind to GPX4 (at the same binding site as RSL3) [7,26]

DPI10 (ML120), DPI13 Indirectly inhibit GPX4 activity or bind to a site different from RSL3 [26,103]

FIN56 Induces GPX4 degradation; binds and activates SQS to deplete CoQ10 [108]

GPX4

Altretamine Inhibits the activity of GPX4 [64]

BSO GSH depletion [7,103]

Cisplatin Binds to GSH to inactivate GXP4 [109]

DPI2 Depletes GSH [7,103]

Cysteinase Depletes cysteine, resulting in GSH depletion [7]

GSH

Piperlongumine Depletes GSH and inhibits the activity of GXP4 [7,64]

FINO2 Oxidizes Fe2+ ions and promotes intracellular accumulation of ROS; 
indirectly inactivates GPX4; directly oxidizes PUFAs

[110]

Ferric ammonium citrate Increases iron abundance [7]

Silica-based nanoparticles Delivers iron into cells and reduce GSH abundance [7]

Heme Upregulates HMOX1 expression and increases the intracellular level of 
labile iron

[111]

ART, DHA Oxidize Fe2+ ions and promote intracellular accumulation of ROS; induce 
ferritinophagy and the release of labile iron

[7,51,65]

ROS and iron

Siramesine and lapatinib Downregulate FPN expression and upregulate TRF expression to increase 
intracellular labile iron levels

[112]

ART: Artesunate; DHA: Dihydroartemisinin; GPX4: Glutathione peroxidase 4; GSH: Glutathione; HMOX1: Heme oxygenase 1; PUFAs: Polyunsaturated 
fatty acids; ROS: Reactive oxygen species; SQS: Squalene synthase; VDAC: Voltage-dependent anion channel.

therapy rarely survive more than 6 mo. Gemcitabine is the first-line chemotherapeutic 
agent for pancreatic cancer, but pharmacotherapy and immunotherapy still fail to 
yield an ideal therapeutic outcome. Therefore, it is imperative to develop new 
strategies for enhancing the sensitivity of pancreatic cancer to immunotherapy and 
reducing its resistance to gemcitabine[58]. Tang et al[59] utilized public databases to 
systematically analyze the expression of 43 ferroptosis regulators in 31 cancer types 
and constructed a highly accurate prognostic prediction model for pancreatic cancer 
based on ferroptosis regulators. A follow-up investigation on the effect of ferroptosis 
on the tumor microenvironment revealed that tumors that are highly sensitive to 
ferroptosis may also be sensitive to immune checkpoint inhibitors and vice versa. The 
authors also found that gemcitabine-resistant cancer cells had increased expression 
levels of SLC7A11 and SLC3A2, but their effects on ferroptosis sensitivity require 
further investigation. Zhu et al[60] found that heat shock protein family A55 (HSPA5) 
is closely associated with the prognosis of pancreatic cancer patients who received 
gemcitabine treatment. Activating the HSPA5-GPX4 pathway in pancreatic cancer cells 
may lead to gemcitabine resistance that may be reversed by inhibiting HSPA5 or GPX4 
expression, which may also induce ferroptosis. Shintoku et al[61] demonstrated that 
erastin and RSL3 can induce pancreatic cancer cell death, and LOXs can increase the 
sensitivity of tumor cells with mutated RAS to erastin and RSL3. A subsequent study 
by Kuang et al[62] showed that the redox regulator quinazolindione (QD) inhibits 
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Table 2 Common ferroptosis inhibitors

Target Inhibitors Function Ref.

Vitamin E, α-tocopherol, trolox, tocotrienols Block propagation of lipid peroxidation, may inhibit lipoxygenases [7]

Deuterated polyunsaturated fatty acids Block initiation and propagation of lipid peroxidation [7]

Butylated hydroxytoluene, butylated 
hydroxyanisole

Block lipid peroxidation [7]

Ferrostatins, liproxstatins Scavenge ROS and inhibit lipid peroxidation; regulate the expression of 
oxidation-related proteins

[7]

CoQ10, idebenone Block lipid peroxidation [7]

Baicalein, PD-146176, AA-861, zileuton Block lipoxygenase-induced lipid peroxidation [7]

Troglitazone Specifically inhibits ACSL4 [12]

Zileuton Specifically inhibits LOX [113]

Lipid 
peroxidation

Vildagliptin, alogliptin, linagliptin Block DPP4-mediated lipid peroxidation [7,
49]

Deferoxamine, cyclipirox, deferiprone Deplete iron and prevent iron-dependent lipid peroxidation [7]

Nitrogen oxides Block the Fenton reaction and inhibit the production of hydroxyl radicals [114]

Iron

Curcumin Chelates iron to reduce iron accumulation; activates the Nrf2 signaling pathway [115]

ACSL4: Acyl-CoA synthase long-chain family member 4; LOX: Lipoxygenase; ROS: Reactive oxygen species.

pancreatic cancer cell proliferation by inducing ferroptosis. Further, the compound 
QD325 significantly inhibits the growth of transplanted tumors in mice and is well 
tolerated in vivo. Kasukabe et al[63] showed that the combination of cotylenin A (CN-
A) and phenethyl isothiocyanate significantly inhibits pancreatic cancer cell prolif-
eration by promoting ferroptosis. A study carried out by Yamaguchi et al[64] 
suggested that piperlongumine could synergistically kill human pancreatic cancer cells 
with CN-A or sulfasalazine via ferroptosis. In recent years, some Chinese herbal 
medicines have also been found to exert antitumor effects by inducing ferroptosis. 
Previous in vitro and in vivo assays showed that the antimalarial drug, artesunate, 
could cause excessive intracellular ROS accumulation by promoting lipid peroxidation 
and regulating iron metabolism. Additionally, artesunate can specifically induce 
ferroptosis in pancreatic cancer cells with a mutated Kras gene while exerting minimal 
toxic effects on normal cells[65], primarily by increasing ROS production[51]. A further 
study revealed that inhibiting glucose regulatory protein 78 expression reverses the 
resistance of pancreatic cancer cells to ferroptosis and enhances the sensitivity of 
tumors to artesunate[66]. The animal model constructed by Badgley et al[67] showed 
that therapeutic cysteine depletion can induce ferroptosis in pancreatic tumors in mice 
with mutated Kras/p53. However, Dai et al[68] recently found that ferroptosis can 
promote dead cancer cells to release KRAS protein, which will then be packaged into 
exosomes and taken up by macrophages. Then, the macrophages undergo polarization 
to M2 macrophages, which promote the malignant growth of pancreatic cancer. These 
results indicate that ferroptosis may exhibit complicated biological effects in the 
treatment of pancreatic cancer.

Ferroptosis and liver cancer
Surgery is the most important therapeutic approach for patients with hepatocellular 
carcinoma (HCC), but the rate of postoperative recurrence and metastasis is relatively 
high. Sorafenib is a commonly used chemotherapeutic drug against HCC, but it is 
difficult to clinically determine the prognosis of HCC and reduce sorafenib resistance
[69]. Shan et al[70] analyzed two different public HCC databases and found that 
ubiquitin-like modifier activating enzyme 1 (UBA1) can regulate ferroptosis in HCC 
cells via the Nrf2 pathway. The authors subsequently confirmed that silencing UBA1 
gene expression inhibits HCC proliferation, migration, and invasion, increasing Fe2+ 
and MDA levels in cancer cells. These results indicate that UBA1 can be used as an 
independent indicator of liver cancer progression. Liang et al[71] systematically 
analyzed the expression of 60 ferroptosis-associated genes in HCC tumor tissues and 
their relationships with the overall survival of patients. The authors proposed and 
validated a prognostic model comprising 10 ferroptosis-associated genes (ACACA, 
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ACSL3, CISD1, CARS, G6PD, GPX4, NQO1, NFS1, SLC7A11, and SLC1A5). These 
efforts provided an important approach for elucidating mechanisms underlying HCC 
development and predicting its prognosis.

Studies on the mechanisms through which sorafenib and erastin induce ferroptosis 
in HCC have provided new approaches for addressing chemotherapeutic drug 
resistance. Louandre et al[72] showed that sorafenib-treated HCC cells had signi-
ficantly lower retinoblastoma protein expression than untreated HCC cells, with a 
mortality rate two to three times higher than that of the untreated group. Sub-
sequently, in vivo experiments on mice implanted with HCC cells and in vitro 
experiments on shRb-transfected Huh7 cells clarified the mechanism through which 
Rb regulates sorafenib-induced ferroptosis in HCC. Sorafenib induces ferroptosis in 
HCC by enhancing mitochondrial ROS generation, while Rb inactivation aggravates 
ferroptosis by increasing mitochondrial ROS levels and oxidative stress. Sun et al[11] 
reported that the p62-Keap1-Nrf2 signaling pathway plays an important role in 
erastin/sorafenib-induced ferroptosis in HCC, where it modulates ferroptosis by 
regulating the expression of downstream iron- and ROS metabolism-related genes. 
Interfering with p62 expression can enhance erastin/sorafenib-induced ferroptosis in 
HCC. Additionally, experiments in Nrf2-shRNA-transfected HCC cells and mice 
implanted with Nrf2-shRNA-transfected HCC cells showed that Nrf2 knockdown 
enhances the antitumor activity of erastin/sorafenib against HCC[73]. Qi et al[74] 
found that erastin significantly inhibits the expression of GA binding protein 
transcription factor subunit β 1 (GABPB1) protein and peroxidase genes in HCC cells, 
thereby resulting in intracellular ROS and malondialdehyde accumulation, which 
leads to cell death. Therefore, GABPB1 may be a key molecule that mediates erastin-
induced ferroptosis in HCC. Further, ACSL3 and ACSL4 expression is significantly 
upregulated in HCC[75], and ACSL4 contributes to erastin-induced ferroptosis via 5-
hydroxyeicosatetraenoic acid-mediated lipotoxicity[14]. Additional studies[76-78] 
have shown that inhibiting metallothionein 1G and oxidative stress-related protein 
sigma 1 receptor enhances the sensitivity of liver cancer cells to sorafenib by inducing 
ferroptosis. Wang et al[79] identified and explored branched-chain amino acid 
aminotransferase 2 (BCAT2), which is involved in System Xc

- inhibitor-induced 
ferroptosis in liver cancer. In addition, BCAT2 also participates in ferroptosis 
synergistically induced by sulfasalazine and sorafenib.

Combination therapy may improve the clinical outcomes of patients with liver 
cancer by partially addressing the issue of drug resistance. Low-density lipoprotein 
nanoparticles reconstituted with the natural omega-3 PUFA, docosahexaenoic acid 
(LDL-DHA), can effectively kill liver cancer cells by triggering ferroptosis[80]. The 
combined treatment of liver cancer cells with erastin, sorafenib, and haloperidol can 
elevate intracellular iron ion concentrations, which generate excessive ROS via the 
Fenton reaction and increase lipid oxidation, thereby inducing ferroptosis in liver 
cancer cells[77]. Shang et al[81] found that ceruloplasmin (CP) inhibits ferroptosis by 
regulating iron homeostasis in HCC cells, while inhibiting CP significantly increases 
intracellular Fe2+ and ROS accumulation, thereby promoting erastin- and RSL3-
induced ferroptosis in HCC. Li et al[82] reported that sorafenib and artesunate 
synergistically suppress liver cancer by inducing ferroptosis. Further, nanoparticle-
based drugs also offer a new direction for in situ induction of ferroptosis in liver 
cancer. Tang et al[83] showed that manganese-silica nanodrugs induce ferroptosis in 
tumor cells by rapidly depleting intracellular GSH. LDL-DHA nanoparticles increase 
lipid peroxidation in liver cancer cells, reduce GSH levels, and inhibit GPX4 activity, 
thereby inducing ferroptosis that kills liver cancer cells and inhibits the in situ growth 
of liver tumors in rats[80].

Ferroptosis and gastric cancer
Gastric cancer (GC) is among the most common causes of cancer-related deaths 
worldwide, with nearly one million cases diagnosed each year and more than 730000 
deaths. Conventional treatments for GC include surgery, chemotherapy, and 
radiotherapy. Chemotherapy, despite being the primary therapeutic approach, causes 
significant side effects for most patients and often cannot cure patients with advanced 
GC[84]. Therefore, it is necessary to develop a better therapeutic approach for GC. Lee 
et al[85] found that the sensitivity of GC cells to ferroptosis depends on PUFA biosyn-
thesis. Stearoyl-CoA desaturase 1 (SCD1) promotes tumor growth and makes GC cells 
resistant to ferroptosis. Notably, GC patients with high SCD1 expression may not have 
an optimistic prognosis. Taken together, this study provides new insights into the 
potential of SCD1 as a biomarker and therapeutic target for GC[86]. Hao et al[87] 
found that inhibiting cysteine dioxygenase 1 (CDO1) expression could inhibit 
ferroptosis in GC by upregulating GPX4 expression and preventing ROS production. 
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Sun et al[88] showed that perilipin2 inhibits ferroptosis in GC by regulating ACSL3 
and 15-LOX. Some ingredients of Chinese medicines, such as Actinidia chinensis planch
[89] and Tanshinone IIA[90] also exhibit anticancer effects against GC by participating 
in ferroptosis.

Ferroptosis and colorectal cancer
Colorectal cancer (CRC) is the most common malignant GI tumor that poses a major 
threat to human health. Recently, an increasing trend in CRC incidence and fatality 
rates has been observed, resulting from improved living standards and dietary 
changes[91,92]. A previous study showed that the ferroptosis inducer RSL3 triggers 
ferroptosis in various CRC cell types by affecting GPX4 activity in a dose- and time-
dependent manner[93]. Acyl-CoA dehydrogenase, short/branched chain (ACADSB), 
which belongs to the acyl-CoA dehydrogenase family, reduces GSH concentration by 
negatively regulating GSH reductase and GPX4 expression. Further, ACADSB affects 
CRC cell migration, invasion, and proliferation by regulating ferroptosis[94]. Another 
study on ferroptosis-related mechanisms in CRC laid the foundation for the 
development of anticancer drugs against CRC. Park et al[95] showed that bromelain 
affects ferroptosis by regulating ACSL4 expression in CRC cells with Kras mutations. 
Additionally, talaroconvolutin A[96], 2-imino-6-methoxy-2H-chromene-3-carbo-
thioamide[97], and resibufogenin[98] have been found to inhibit CRC cell proliferation 
and tumorigenesis by modulating ferroptosis in CRC cells. Some studies also found 
that combination therapy could partially address the issue of CRC resistance to 
chemotherapeutic drugs via ferroptosis. Andrographis enhances the sensitivity of CRC 
cells to 5-fluorouracil by promoting ferroptosis[99]. The combination therapy using the 
natural products β-elemene and cetuximab can kill CRC cells with mutated KRAS 
genes by inducing ferroptosis and inhibiting epithelial-mesenchymal transition[100]. 
The combination of high-dose vitamin C and cetuximab can improve the drug 
sensitivity of CRC by triggering ferroptosis, thereby laying the foundation for the 
treatment of CRC[101].

CONCLUSION
Ferroptosis has received increasing attention since being proposed as a form of RCD 
by Dixon et al[3] in 2012. Numerous in-depth studies have been conducted on the 
complex molecular mechanisms underlying ferroptosis. These studies facilitate a 
deeper understanding of the onset and progression of ferroptosis-associated diseases. 
The further development of relevant targeted drugs has also led to the emergence of a 
new research field associated with ferroptosis onset and progression for the treatment 
of GI tumors[59]. Following the discovery of erastin in 2003, numerous ferroptosis 
inducers and inhibitors have been identified because of the increasing importance of 
the relationship between ferroptosis and GI tumors[7]. Sorafenib, the sole first-line 
drug for liver cancer, is believed to kill hepatocytes via ferroptosis. Additionally, some 
in vitro and in vivo drug trials on pancreatic cancer have provided new theoretical 
bases and research directions for the pharmacotherapy of pancreatic cancer. Some 
studies on ferroptosis in GC and CRC indicated that inducing ferroptosis could cause 
cell death in GI tumors and exert a synergistic effect with other anticancer drugs, 
thereby enhancing tumor sensitivity to existing treatments. Hence, inducing 
ferroptosis may have considerable potential for treating GI tumors[102]. However, 
research on ferroptosis is still at a preliminary stage, and it is of great theoretical and 
practical significance to continuously explore the mechanisms and roles of ferroptosis 
in various diseases. These studies will reveal highly effective and targeted therapeutic 
approaches. For instance, the mechanism and key regulators of ferroptosis as well as 
its relationships with tumor-associated genes and other RCDs (e.g., autophagy and 
apoptosis), are potential directions and goals for future studies. Collectively, these 
studies will facilitate an in-depth understanding of the molecular mechanism through 
which GI tumors evade cell death and promote the development of novel effective 
therapeutic strategies. Therefore, further discoveries and investigation of ferroptosis 
inducers and inhibitors will provide a theoretical foundation and new method for the 
treatment of GI tumors.
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