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Abstract
Bone is a complex tissue that undergoes constant remodeling to maintain 
homeostasis, which requires coordinated multilineage differentiation and proper 
proliferation of mesenchymal stromal cells (MSCs). Mounting evidence indicates 
that a disturbance of bone homeostasis can trigger degenerative bone diseases, 
including osteoporosis and osteoarthritis. In addition to conventional genetic 
modifications, epigenetic modifications (i.e., DNA methylation, histone modific-
ations, and the expression of noncoding RNAs) are considered to be contributing 
factors that affect bone homeostasis. Long noncoding RNAs (lncRNAs) were 
previously regarded as ‘transcriptional noise’ with no biological functions. 
However, substantial evidence suggests that lncRNAs have roles in the epigenetic 
regulation of biological processes in MSCs and related diseases. In this review, we 
summarized the interactions between lncRNAs and epigenetic modifiers 
associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis 
of degenerative bone diseases and highlighted promising lncRNA-based 
diagnostic and therapeutic targets for bone diseases.
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Core Tip: In this review, we summarized the roles of long noncoding RNAs (lncRNAs) 
played in mesenchymal stromal cells (MSCs) differentiation and common degenerative 
bone diseases through reciprocal interactions between lncRNAs and epigenetic 
modifiers, focusing on the most common epigenetic mechanisms: DNA methylation 
and histone modifications. It is our hope that this review may provide an updated 
summary that sheds light on the lncRNA-based precise regulation of the MSC differen-
tiation process and highlights possible therapeutic targets of degenerative bone 
diseases.

Citation: Xia K, Yu LY, Huang XQ, Zhao ZH, Liu J. Epigenetic regulation by long noncoding 
RNAs in osteo-/adipogenic differentiation of mesenchymal stromal cells and degenerative bone 
diseases. World J Stem Cells 2022; 14(1): 92-103
URL: https://www.wjgnet.com/1948-0210/full/v14/i1/92.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i1.92

INTRODUCTION
The skeletal system contains bones, joints, and ligaments that function together as a 
locomotive organ and provide structural support. Originating from mesenchymal 
progenitors during embryogenesis, the skeletal system undergoes modeling and 
remodeling throughout life[1]. Mesenchymal stromal cells (MSCs) refer to a hetero-
geneous unfractionated population of cells, which include fibroblasts, myofibroblasts, 
and progenitor cells[2,3]. MSCs are able to differentiate into chondrocytes or 
osteoblasts to comply with bone formation and regeneration needs[4]. It is worth 
mentioning that adipocytes, as well as osteoblasts, derive from the same population of 
MSCs. A shift in the osteoadipogenic differentiation balance may lead to bone 
diseases, such as osteoporosis, which typically manifests as a shift toward 
adipogenesis[5,6]. Likewise, osteoarthritis is usually characterized by impairment of 
cartilage regeneration due to the attenuated chondrogenic capacity of MSCs[7,8]. 
Therefore, the differentiation of MSCs, which proceeds under the control of various 
transcription factors, influences the pathogenesis of common bone diseases[9-11].

In addition to conventional genetic and environmental factors, epigenetic modific-
ations can influence the bone phenotype and the development of skeletal diseases[12,
13]. Epigenetic mechanisms alter gene expression patterns without changing the DNA 
sequence by three major mechanisms, including DNA methylation, histone modific-
ations, and altered expression of noncoding RNAs[14]. With the rapid development of 
next-generation sequencing (NGS) and advanced bioinformatic tools, the crucial roles 
of epigenetic mechanisms in the differentiation of MSCs and the pathogenesis of bone 
diseases have begun to be elucidated[15-17].

Long noncoding RNAs (lncRNAs) are defined as a set of noncoding RNAs longer 
than 200bp that have no protein-coding ability. Evidence is rapidly accumulating on 
the functions of lncRNAs in epigenetic regulation in the differentiation of MSCs and 
the occurrence of many diseases[18-21]. In this review, we revisit the epigenetic 
regulatory mechanisms of lncRNAs involved in DNA methylation and histone 
modifications and summarize the biological functions of lncRNAs in regulation crucial 
differentiation- and bone disease-related genes by interacting with key epigenetic 
modifiers. It is our hope that this review may provide an updated summary that sheds 
light on the lncRNA-based precise regulation of the MSC differentiation process and 
highlights possible therapeutic targets of degenerative bone diseases.

DNA METHYLATION
DNA methylation functions as a regulator of osteogenesis and adipogenesis of MSCs 
and is involved in common bone diseases[22-24]. In humans, the majority of DNA 
methylation occurs at cytosines in cytosine-phospho-guanosine (CpG) dinucleotides
[25,26]. Approximately 75% of all gene promoters are within CpG-rich regions, known 
as CpG islands, that are mostly unmethylated[27]. It is generally accepted that the 
methylation of these CpG islands is associated with the repression of gene expression

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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[28]. Nevertheless, it is worth mentioning that DNA methylation is also associated 
with upregulated gene expression under certain circumstances[29].

As writer enzymes, DNA methyltransferases (DNMTs) catalyze DNA methylation 
by transferring a methyl group onto the C5 position of a cytosine at CpG dinucleotide 
sites to form 5mCpG[30]. A member of the DNMT family, DNMT1, which is also 
called the maintenance DNMT, maintains the original methylation pattern during 
DNA replication, while DNMT3a and DNMT3b are involved in de novo methylation
[30,31]. The interaction of lncRNAs with DNMTs is varied and reciprocal. For 
example, lncRNAs can recruit DNMTs to the promoters of target genes and regulate 
their expression patterns. In turn, the changes in the methylation level of specific 
lncRNA gene promoters can alter the expression of lncRNAs, including downstream 
lncRNA-regulated genes[32,33]. In MSCs, lncRNAs, as regulators of DNA methylation, 
have received increasing attention due to their great importance in the regulation of 
differentiation and bone-related diseases (Figure 1).

LncRNAs regulate DNA methylation during osteogenic differentiation
H19, a well-known lncRNA, plays a crucial role in embryo development, cell differen-
tiation, and the occurrence and development of bone diseases[34-37]. In human dental 
pulp stromal cells (hDPSCs), H19 positively regulates odontogenic differentiation via 
hypomethylation of distal-less homeobox 3 (DLX3), a key factor in odontogenic differ-
entiation[32]. H19 decreases SAHH and DNMT3B activity, consequently promoting 
the expression of DLX3[32]. In turn, a mutation of DLX3 identified in dentin 
hypoplasia patients could increase DNMT3B activity, and the subsequently repressed 
H19/miR-675 axis impairs the odontoblastic differentiation of hDPSCs[38]. Similarly, 
in valve interstitial cells (VICs), which have a mesenchymal origin[39], the knockdown 
of H19 attenuated their osteogenic differentiation capacity by increasing the 
transcription of NOTCH1 and decreasing the levels of RUNX2 and BMP2[40]. In 
mineralized aortic valve tissue, H19 was upregulated as a result of hypomethylation of 
CpG in its promoter region[40]. These results suggest the possibility that H19 forms a 
positive feedback loop with DNMTs and promotes the osteogenic differentiation of 
MSCs.

Another study found an inverse association between the methylation level of 
perinatal CDKN2A, which encodes the lncRNA antisense noncoding RNA in the INK4 
Locus (ANRIL), and bone mass at ages 4 and 6 years[41]. Considering that transitional 
hypomethylation of CDKN2A has been identified in human bone marrow stromal cells 
(hBMSCs) during osteogenic differentiation[42], the authors further verified that the 
methylation of CDKN2A decreased the binding of transcription factors SMAD3/4 and 
consequently downregulated the expression of ANRIL[41]. In terms of the functional 
mechanism of ANRIL, it has been demonstrated that the knockdown of ANRIL 
decreased the number of live cells and induced cell apoptosis of SaOS-2 cells[41].

Given the crucial roles of HOX genes in development and differentiation, it is 
reasonable to believe that the lncRNAs encoded by the HOX gene cluster could also 
exert their function as critical biological regulators (i.e., HOTAIR in the HOXC cluster 
and HOTAIRM1 in the HOXA cluster)[43-45]. In human dental follicle stromal cells 
(hDFSCs), lncRNA HOTAIRM1 promoted osteogenesis by inhibiting the enrichment 
of DNMT1 in the HOXA2 promoter region and subsequently maintaining two CpG 
islands in a hypomethylated state, which guaranteed the transcriptional activation of 
HOXA2[17].

LncRNAs regulate DNA methylation during adipogenic differentiation
lncRNA HOTAIR, encoded by the HOXC gene cluster as mentioned above, could also 
inhibit the adipogenic differentiation of hBMSCs[46]. In this process, HOTAIR 
probably directly interacts with DNMTs or is involved in gene regulation by triple 
helix formation[46].

Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and CCAAT enhancer 
binding protein-alpha (C/EBP-α) are key transcription factors involved in 
adipogenesis. They synergistically promote the transcriptional activation of genes that 
induce the adipocyte phenotype and maintain their expression throughout the entire 
differentiation process and the entire life of the adipocytes[47,48]. In mouse ST-2 cells 
(bone marrow stromal cells), 3T3-L1 cells (committed preadipocytes derived from 
MSCs), and C3H10T1/2 cells (embryonic stem cells) as well as in bone marrow stromal 
cells, lncRNA Plnc1 promotes adipogenesis by increasing Ppar-γ2 transcription 
through reducing the DNA methylation level on its promoter[49].

Upregulation of lncRNA slincRAD is also observed in the early stages of adipocyte 
differentiation in 3T3-L1 cells[50]. LncRNA slincRAD guides Dnmt1 to translocate to 
the perinuclear region in S phase and direct Dnmt1 to the promoter of cell cycle-
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Figure 1 A brief illustration of the interactions between long noncoding RNAs and the epigenetic modification associated with osteo-
/adipogenic differentiation of mesenchymal stromal cells and osteoarthritis. Histone acetylation and H3K4me3 are believed to promote transcription, 
whereas DNA methylation, H3K9me3 and H3K27me3 restrict gene expression. OD: Osteogenic differentiation; AD: Adipogenic differentiation; OA: Osteoarthritis.

related genes, including p21 (Cdkn1a)[50]. As p21 is a cyclin-dependent kinase 
inhibitor that plays an important role in the differentiation of 3T3-L1 cells, this effect 
facilitates the progression of differentiation[50,51].

HISTONE MODIFICATIONS
The building block of chromatin is the nucleosome, which consists of a complex of 
DNA and four types of core histone subunits (H2A, H2B, H3, and H4)[52]. Histone 
proteins are subject to a variety of modifications, with most studies focusing on 
methylation and acetylation. Lysine (K) residues in histone H3 are commonly 
modified by methylation, which is orchestrated by histone methyltransferases (HMTS) 
and histone demethylases (HDMs)[53,54]. Previous studies have revealed that 
trimethylation of H3K4 (H3K4me3) promotes transcription, whereas H3K9me3 and 
H3K27me3 restrict gene expression[53]. Likewise, acetylation and deacetylation of 
lysine residues in histones are regulated by histone acetyltransferases (HATs) and 
histone deacetylases (HDACs), respectively. It is believed that the addition of an acetyl 
group to lysine residues alters the structure and folding of the nucleosome and 
consequently loosens the chromatin to enable transcription[55]. During cellular 
biological and pathologic processes, including cell differentiation, bone regeneration 
and disease, histone modifications are dynamically changed[53,56]. This process is at 
least in part mediated by lncRNAs that recruit histone-modifying enzymes to targeted 
gene promoters and alter histone modification enrichment (Figure 1).

Involvement of lncRNAs in osteogenic differentiation through histone modifications
As mentioned earlier, a mutation of DLX3 identified in dentin hypoplasia patients 
could increase DNMT3B activity[38]. This study also reported that this mutation was 
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capable of repressing H19 expression by increasing the enrichment of H3K9me3 in the 
promoter region of the H19 gene and retarding the odontoblastic differentiation of 
hDPSCs[38].

Similar to RUNX2, Osterix (OSX) is considered a master transcription factor that 
regulates the osteogenic differentiation of MSCs and it is required for the maturation 
of functional osteoblasts[57]. lnc-OB1 promotes osteogenic differentiation of MSCs, 
probably by upregulating OSX via the inhibition of H3K27me3 in the OSX promoter 
region[58]. In human osteoblast cells, this regulation might be mediated by an 
interaction between lnc-OB1 and SUZ12, which is an integral component of polycomb 
repressive complex 2 (PRC2), responsible for H3K27me3[58,59].

Another core part of PRC2, EZH2[59], was also found to interact with lncRNAs and 
regulate osteogenic differentiation. It has been shown that lncRNA SNHG1 inhibits the 
osteogenic differentiation of human periodontal ligament stromal cells by repressing 
the expression of KLF2, a positive regulator of osteoblast differentiation[60], through 
EZH2-mediated H3K27me3 of its promoter[61]. Likewise, lncRNA HOXA-AS3 inhibits 
hBMSC osteogenesis, possibly via EZH2-dependent H3K27me3, and represses RUNX2 
expression[62].

Involvement of lncRNAs in adipogenic differentiation through histone modifications
As a critical transcription factor for adipogenesis, C/EBP-α was found to be 
upregulated via the recruitment of the MLL3/4 complex to its promoter, which is 
guided by the binding of PA1 (a component of the MLL3/4 complex) to lncRNA 
ADINR during adipogenic differentiation of human adipose-derived stromal cells 
(hASCs)[63]. It is believed that MLL3/4 complexes are involved in the maintenance of 
H3K4me3 and the removal of H3K27me3, thereby regulating downstream gene 
expression[64,65].

Adipocyte fatty acid-binding protein (A-FABP, also known as FABP4 or aP2), a 
downstream target gene of PPAR-γ and C/EBP-α, is considered a marker of 
adipogenic differentiation[66,67]. The knockdown of lncRNA MIR31HG suppressed 
FABP4 expression by reducing the enrichment of acetylated histone 3 (AcH3) and 
H3K4me3 in the FABP4 promoter, leading to the inhibition of adipogenic differen-
tiation of hASCs[16].

H19 and miR-675 (derived from H19) inhibited the adipogenic differentiation of 
hBMSCs through the miRNA-mediated repression of HDAC4, 5 and 6. In turn, the 
inhibition of HDACs decreased CCCTC-binding factor (CTCF) occupancy on the 
imprinting control region (ICR) of H19 and reduced H19 expression[68]. This 
evidence, combined with that mentioned in an earlier section that H19 is considered a 
positive regulator of osteogenic differentiation, suggests that DNA methylation and 
histone modifications might be linked together by H19 and shift the osteoadipogenic 
differentiation balance toward osteogenesis.

ROLE OF LNCRNAS IN DEGENERATIVE BONE DISEASES
More recently, epigenetic regulation of bone homeostasis has been considered as an 
important factor in the pathogenesis of degenerative bone diseases, such as 
osteoporosis, arthritis, post menopausal osteoporosis, etc.[69,70]. As mentioned above, 
lncRNAs have attracted considerable attention in the epigenetic regulation of bone 
homeostasis. The potential link between degenerative bone diseases and lncRNAs at 
the epigenetic level is also an intriguing area for exploration.

LncRNAs regulate DNA methylation in osteoarthritis and osteoporosis
Osteoarthritis (OA) is a common degenerative joint disease that is associated with the 
impairment of cartilage regeneration, chondrocyte apoptosis, and the degradation of 
the cartilage extracellular matrix (ECM)[71,72]. In this sophisticated balance between 
biosynthesis and degradation, lncRNAs play a role in the survival of chondrocytes and 
the regulation of arthritis-associated factors[73].

It has been reported that the overexpression of lncRNA CTBP1-AS2 downregulates 
miR-130a by increasing the methylation level of the miR-130a gene, which finally leads 
to a decreased proliferation rate of chondrocytes in OA patients[74].

As a natural inhibitor of matrix metalloproteinases (MMPs), TIMP-3 deficiency can 
lead to mild cartilage degeneration in patients with OA[75]. lncRNA XIST is capable of 
downregulating the expression of TIMP-3 through the recruitment of DNMT1, 
DNMT3A, and DNMT3B, which increased the methylation ratio of the CpG island in 
the TIMP-3 promoter region, and consequently increased collagen degradation in OA 
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Table 1 Interactions between long noncoding RNAs and epigenetic modifiers during osteogenic differentiation of mesenchymal stromal 
cells

LncRNAs Samples Expression Epigenetic regulatory mechanisms Target genes Effects Ref.

H19 hDPSCs Up Decreasing DNMT3B activity DLX3 Promote odontogenic 
differentiation

Zeng et al
[32]

H19 hDPSCs Down H19 was inhibited by the recruitment of DNMT3B 
and the enrichment of H3K9me3 in its promoter

miR-675 
(derived from 
H19)

Inhibit odontogenic 
differentiation

Zeng et al
[38]

H19 VICs Up H19 was upregulated by hypomethylation of its 
promoter

NR Promote osteogenic 
differentiation

Hadji et 
al[40]

ANRIL Umbilical 
cord

Down ANRIL was inhibited by methylation of its 
promoter

NR Decrease bone mass Curtis et 
al[41]

HOTAIRM1 hDFSCs Up Inhibiting the recruitment of DNMT1 HOXA2 Promote osteogenic 
differentiation

Chen et al
[17]

HOXA-AS3 hBMSCs Up Facilitating EZH2-mediated H3K27me3 RUNX2 Inhibit osteogenic 
differentiation

Zhu et al
[62]

SNHG1 hPDLSCs Up Facilitating EZH2-mediated H3K27me3 KLF2 Inhibit osteogenic 
differentiation

Li et al
[61]

OB1 human 
osteoblasts

Up Inhibiting H3K27me3 by interacting with SUZ12 (a 
core part of PRC2)

Osterix Promote osteogenic 
differentiation

Sun et al
[58]

hDPSCs: Human dental pulp stromal cells; VICs: Valve interstitial cells; hDFSCs: Human dental follicle stromal cells; hBMSCs: Human bone marrow 
stromal cells; hPDLSCs: Human periodontal ligament stromal cells; NR: Not reported.

chondrocytes[76].
Increasing evidence suggests that small nucleolar RNA host gene (SNHG) family 

members are involved in the pathogenesis of OA[77-79]. The overexpression of 
lncRNA SNHG15 alleviated ECM degradation and promoted chondrocyte formation 
via competing endogenous RNA (ceRNA) SNHG15/miR-7/KLF4 axis[33]. In human 
OA cartilage tissues, however, the promoter region of lncRNA SNHG15 had a higher 
level of methylation than in normal cartilage tissues, and this might be a promising 
therapeutic target for OA[33]. Another SNHG family member, lncRNA SNHG9, was 
found to be downregulated in chondrocytes from OA patients[80]. Functional studies 
indicated that the overexpression of SNHG9 led to a decreased apoptotic rate through 
increased methylation of the miR-34a gene that suppressed the expression of miR-34a
[80].

Osteoporosis is characterized by a loss of bone mass and microarchitectural deteri-
oration of the skeletal structure[81]. The imbalance of bone homeostasis between 
osteoblastic bone formation and osteoclastic bone resorption plays a fundamental role 
in the pathogenesis of osteoporosis[82]. Emerging evidence suggests that epigenetic 
modifications are deeply involved in bone metabolism, which contributes to the 
development of osteoporosis.

The ERK-MAPK signaling pathway is a well-established pathway with critical roles 
in immune responses and embryonic development, including the regulation of bone 
mass via controlling osteoblast differentiation[83]. A previous study suggested that 
lncRNA H19 promoted tension-induced osteogenesis of hBMSCs through the FAK-
ERK1/2-RUNX2 signaling pathway[84]. Likewise, an alteration in H19 methylation 
may also be involved in the disruption of bone formation in disuse osteoporosis. It has 
been shown that DNMT1-induced hypermethylation of the H19 promoter results in 
H19 downregulation and ERK-MAPK signaling inhibition, which leads to osteogenesis 
impairment both in vivo and in vitro (rat osteoblast/osteocyte-like UMR-106 cells)[85].

LncRNAs regulate histone modifications in osteoarthritis 
An abnormality of cartilage regeneration can be related to attenuated chondrogenic 
differentiation of MSCs in OA patients[8]. Similar to other MSCs derived from other 
tissues, synovium-derived mesenchymal stromal cells (SMSCs) are multipotent but 
have the greatest chondrogenesis potential, representing a promising stem cell source 
for cartilage repair in OA patients[86]. lncRNA MEG3 was reported to have the ability 
to inhibit the chondrogenic differentiation of SMSCs and the expression of cartilage-
associated genes (aggrecan and Col2A1) by inhibiting TRIB2 expression through 
EZH2-mediated H3K27me3[87].
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Table 2 Interactions between long noncoding RNAs and epigenetic modifiers during adipogenic differentiation of mesenchymal stromal 
cells

LncRNAs Samples Expression Epigenetic regulatory mechanisms Target 
genes Effects Ref.

HOTAIR hBMSCs Up Interacting with DNMTs NR Inhibit adipogenic 
differentiation

Kalwa et 
al[46]

Plnc1 BMSCs Up Reducing the DNA methylation level Ppar-γ2 Promote adipogenic 
differentiation

Zhu et al
[49]

slincRAD 3T3-L1 Up Facilitating the recruitment of Dnmt1 Cdkn1a Promote adipogenic 
differentiation

Yi et al[50]

ADINR hASCs Up Facilitating the recruitment of MLL3/4 complex (involved in the 
maintenance of H3K4me3 and the removal of H3K27me3) by 
binding PA1

C/EBP-α Promote adipogenic 
differentiation

Xiao et al
[63]

MIR31HG hASCs Down Reducing the enrichment of AcH3 and H3K4me3 FABP4 Inhibit adipogenic 
differentiation

Huang et 
al[16]

H19 hBMSCs Up facilitating miR-675-mediated repression of HDACs NR Inhibit adipogenic 
differentiation

Huang et 
al[68]

hBMSCs: Human bone marrow stromal cells; BMSCs: Bone marrow stromal cells; hASCs: Human adipose-derived stromal cells; NR: Not reported.

CONCLUSION
LncRNAs are extensively involved in various types of epigenetic modifications, 
including DNA methylation, histone modifications, and noncoding RNA interactions, 
during MSC differentiation and the occurrence and progression of degenerative bone 
diseases. Concerning the large body of available literature and comprehensive reviews 
on the RNA-RNA interactions of lncRNAs (i.e., ceRNA mechanisms)[88,89], this topic 
of epigenetics is not discussed in this review, but it is worth mentioning that in some 
cases, ceRNA mechanisms act as mediators between lncRNAs and epigenetic 
modifiers. Another potential involvement of lncRNAs in epigenetics is the interaction 
with the key enzyme of methyl metabolism. It is known that DNMT and HMT utilize 
S-adenosylmethionine (SAM) as a major methyl-group donor in mammals, which is 
consumed and regenerated in one-carbon metabolism[90,91]. Several studies have 
shown that lncRNAs play a role in SAM-dependent methylation through regulating 
enzymes related to the metabolism[92,93]. However, similar studies on differentiation 
and bone diseases are lacking. Further studies are needed to assess the potential 
importance of lncRNAs on the methyl metabolism.

Although it seems that DNA methylation and histone modification are two different 
types of epigenetic modification, these two systems can be dependent on and influence 
one another during organism development[94]. However, the underlying molecular 
mechanisms are complicated and remain vague. Intriguingly, lncRNAs are capable of 
regulating gene expression either in a cis- or trans- manner by guiding or serving as 
scaffolds for transcription factors or epigenetic modifiers to specific gene loci[95]. This 
raises the possibility that lncRNAs could be coordinator of these processes. In this 
review, we summarized the roles of lncRNAs played in MSC differentiation and 
common degenerative bone diseases through reciprocal interactions between lncRNAs 
and epigenetic modifiers. A complete list of the epigenetic regulatory mechanisms of 
lncRNAs discussed in this review is available in Tables 1-3.

Taken in combination with previous studies[96-98], the present evidence indicates 
that lncRNAs could be diagnostic and prognostic biomarkers in degenerative bone 
diseases. Moreover, as lncRNAs can be manipulated pharmacologically to modulate 
epigenetic modifications[99], this also opens new avenues for future therapeutic 
interventions. However, multiple challenges need to be overcome before clinical 
applications can be achieved. Given that lncRNAs have complex secondary structures, 
one of the challenges that lies ahead is the off-target possibilities, as a single lncRNA is 
capable of binding to multiple epigenetic modifiers and targeting several genes. 
Therefore, more reliable bioinformatic tools in terms of in silico algorithms for compre-
hensive lncRNA interaction prediction and sequencing technologies are required. 
Despite these impediments, lncRNA-based epigenetic interventions have shown 
potential in the regulation of MSC differentiation and therapeutic strategies for bone 
diseases.
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Table 3 Interactions between long noncoding RNAs and epigenetic modifiers in degenerative bone diseases

LncRNAs Samples Expression Epigenetic regulatory 
mechanisms Target genes Effects Ref.

CTBP1-
AS2

OA chondrocytes Up Increasing the methylation level of 
target gene

miR-130a Decease proliferation rate 
of OA chondrocytes

Zhang et 
al[74]

XIST OA chondrocytes Up Facilitating the recruitment of 
DNMT1, DNMT3A, and DNMT3B

TIMP-3 Raise collagen 
degradation in OA 
chondrocytes

Chen et 
al[76]

SNHG15 OA cartilage tissues Down SNHG15 was inhibited by 
methylation of its promoter

miR-7/KLF4 Affect ECM homeostasis Chen et 
al[33]

SNHG9 OA chondrocytes Down Altering the methylation level of 
target gene

miR-34a Affect apoptotic rate of 
chondrocytes

Zhang et 
al[80]

H19 UMR-106 and bone tissues 
from osteoporosis rat 
model

Down H19 was inhibited by DNMT1-
induced hypermethylation of its 
promoter

ERK-MAPK 
signaling-related 
genes

Impair osteogenic 
differentiation

Li et al
[85]

MEG3 SMSCs Up Facilitating EZH2-mediated 
H3K27me3

TRIB2 Inhibit chondrogenic 
differentiation

You et al
[87]

LncRNAs: Long noncoding RNAs; OA: Osteoarthritis; SMSCs: Synovium-derived mesenchymal stromal cells.
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