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Abstract
Osteoarthritis (OA) is the most prevalent joint disease causing major disability 
and medical expenditures. Synovitis is a central feature of OA and is primarily 
driven by macrophages. Synovial macrophages not only drive inflammation but 
also its resolution, through a coordinated, simultaneous expression of pro- and 
anti-inflammatory mechanisms that are essential to counteract damage and 
recover homeostasis. Current OA therapies are largely based on anti-inflam-
matory principles and therefore block pro-inflammatory mechanisms such as 
prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such 
mechanisms are also innately required for mounting a pro-resolving response, 
and their blockage often results in chronic low-grade inflammation. Following 
minor injury, macrophages shield the damaged area and drive tissue repair. If the 
damage is more extensive, macrophages incite inflammation recruiting more 
macrophages from the bone marrow to maximize tissue repair and ultimately 
resolve inflammation. However, sustained damage and inflammation often 
overwhelms pro-resolving mechanisms of synovial macrophages leading to the 
chronic inflammation and related tissue degeneration observed in OA. Recently, 
experimental and clinical studies have shown that joint injection with autologous 
bone marrow mononuclear cells replenishes inflamed joints with macrophage and 
hematopoietic progenitors, enhancing mechanisms of inflammation resolution, 
providing remarkable and long-lasting effects. Besides creating an ideal 
environment for resolution with high concentrations of interleukin-10 and 
anabolic growth factors, macrophage progenitors also have a direct role in tissue 
repair. Macrophages constitute a large part of the early granulation tissue, and 
further transdifferentiate from myeloid into a mesenchymal phenotype. These 
cells, characterized as fibrocytes, are essential for repairing osteochondral defects. 
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Ongoing “omics” studies focused on identifying key drivers of macrophage-
mediated resolution of joint inflammation and those required for efficient 
osteochondral repair, have the potential to uncover ways for developing 
engineered macrophages or off-the-shelf pro-resolving therapies that can benefit 
patients suffering from many types of arthropaties, not only OA.
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Core Tip: Synovial macrophages are essential for joint integrity. Following injury, 
macrophages incite inflammation recruiting more macrophages from the bone marrow 
to counteract damage and promote tissue repair. Synovial macrophages are further 
essential to resolve inflammation recovering joint homeostasis. However, sustained 
damage frequently overwhelms pro-resolving functions of synovial macrophages, 
leading to chronic inflammation and degeneration. This review summarizes the dual 
role of macrophages in the maintenance of joint homeostasis and the emergent 
therapeutic use of macrophage progenitors isolated from the bone marrow to promote 
endogenous resolution of joint inflammation and recovery of homeostasis, while 
preserving physiological mechanisms negatively affected by anti-inflammatories.
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INTRODUCTION
Osteoarthritis (OA) is the leading joint disease that affects people and domestic 
animals and causes physical disability and substantial medical costs[1-3]. The 
pathogenesis of OA is not fully understood; however, chronic synovial inflammation 
is crucial in the progression of OA and is frequently the sole driver of related 
degenerative changes[4,5]. The complexity of the inflammatory response in the 
synovium, ultimately causing degeneration of synovial tissues during OA, represents 
a critical therapeutic challenge. Commonly used non-steroidal anti-inflammatory 
drugs (NSAIDS) and intra-articular corticosteroids provide marked clinical 
improvement during earlier stages of OA. However, such outcome is a consequence of 
antagonizing cellular pathways that block not only the inflammatory reaction, but also 
cellular pathways fundamentally involved in efficient tissue repair and recovery of 
homeostasis (e.g., nuclear factor kappa-B signaling)[6,7]. Therefore, they can have 
detrimental effects on cartilage metabolism that go far beyond chondrocyte 
quiescence. Corticosteroids often inhibit the endogenous production of cytokines by 
resident macrophages [e.g., interleukin (IL)-10 and prostaglandin E2 (PGE2)] that are 
required for optimal chondrocyte function and other joint cells favoring tissue repair 
and a return to synovial joint homeostasis[7-10].

One way to cease inflammation and its degenerative consequences, avoiding the 
negative side effects of anti-inflammatories is to support endogenous resolution of the 
inflammatory process. Importantly, inflammation resolution is a natural process that 
requires biological events that happen during the onset of acute inflammation. Hence, 
the blocking of acute inflammation using NSAIDS or corticosteroids can interfere with 
efficient inflammation resolution, often leading to chronic inflammation[11-13]. 
Biologicals such as mesenchymal stem cells (MSC), autologous conditioned serum and 
platelet rich plasma offer pro-resolving advantages over anti-inflammatories[14-19], 
however, improvements observed from these therapies have short-lasting effects. 
Therefore, two major goals are imperative in developing more effective treatments of 
inflammation in OA: (1) Preserve cellular and molecular mechanisms involved in the 
physiology of joint tissues; and (2) Favor long-term resolution by supporting those 

https://www.wjgnet.com/1948-0210/full/v13/i7/825.htm
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components of the inflammatory response that efficiently clear the underlying triggers 
of inflammation as detailed below.

There is cumulative evidence that macrophages are the central drivers of the inflam-
mation in the synovium of OA-affected joints[20-23], but also the central drivers of 
inflammation resolution[11,12,24-28]. This review focuses on the dual role of 
macrophages in the maintenance of joint homeostasis, alternatively inducing joint 
inflammation, and the emergent therapeutic use of macrophages from the bone 
marrow [within bone marrow mononuclear cells (BMNC)] to promote endogenous 
resolution of joint inflammation and recovery of homeostasis.

SYNOVIAL MACROPHAGES – FIRE FIGHTERS IN SYNOVIAL INFLAM-
MATION
Two cell types represent over 80% of the cellular composition of the synovial 
membrane: Synovial macrophages and synovial fibroblasts, historically known as type 
A and type B synoviocytes, respectively. Most cells in the synovium are synovial 
fibroblasts (type B, about 55%). Synovial macrophages are the second most 
predominant cell in normal synovium (type A, about 25%), and are observed in higher 
density in the sub-intima as compared to the intima[21,29,30]. Increases in numbers of 
both cell types can result from inflammation. During the early stages of OA, synovial 
macrophages are the predominant cell type in the synovial lining (about 50%); 
however, with disease progression fibroblasts tend to dominate (about 70%)[21,31]. In 
end-stage OA, synovial cells are replaced by fibrous tissue impairing the basic 
functions of the synovium[32].

Macrophages are the cornerstone of synovial inflammation. Although synovial 
fibroblasts and articular chondrocytes can intensify the inflammatory response in the 
joint, they cannot primarily incite it without macrophages[21,33,34]. As a matter of 
fact, macrophage depletion during experimental arthritis[35] or clinical cases of 
rheumatoid arthritis[36] confer clinical improvement and a marked decrease in the 
expression of OA biomarkers, underscoring the central role of macrophages in driving 
synovial inflammation[20,21,35-37]. Also, macrophage activation in the osteoarthritic 
synovium has been correlated to pain and disease activity and severity[38,39]. 
Macrophages are, however, also essential for optimal chondrocyte function, inflam-
mation resolution, and thus joint homeostasis[23,40]. In healthy joints, macrophages 
promote synovial homeostasis through phagocytosis (i.e., clearance of foreign bodies, 
debris, and apoptotic cell removal), secretion of synovial fluid growth factors, 
chemokines and cytokines, as well as other paracrine effects supporting chondrocyte 
function and required for the terminal differentiation of chondrocyte progenitors[21,
23,40]. Synovial macrophages can also line up along the edges of the synovial lining, 
forming a tight junction-mediated defense system for the communication between the 
intra- and extra-articular environments[41]. Therefore, macrophage depletion impairs 
vital elements of joint integrity.

Following any kind of tissue damage, resident macrophages first respond by 
delimitating the injury, creating a shield under which they further drive tissue repair
[42]. During such a response, macrophage activation results in an increased 
production of IL-1, IL-6, tumor necrosis factor (TNF)-α and several alarmins, triggering 
a reparative response to damage. This reaction is immediately followed by equivalent 
increases in expression of IL-10, insulin-like growth factor (IGF-1) and other anabolic 
and growth factors[43-46], leading to decreased production of these pro-inflammatory 
cytokines and providing an ideal scenario for tissue repair to progress[43]. If the extent 
of the injury overwhelms the capacity of macrophages to fully surround the lesion, 
macrophages “blow the whistle”, recruiting neutrophils readily available from the 
blood stream and setting the stage for a short-term, acute inflammatory response[42]. 
This acute inflammatory response in turn induces macrophage recruitment from the 
bone marrow in addition to proliferation of resident macrophages, amplifying the 
macrophage-mediated process of tissue repair and inflammation resolution[11,12]. If 
none of these responses prove sufficient to repair damaged tissues and ultimately 
resolve inflammation, this cellular and cytokine feedback loop of pro- and anti-inflam-
matory mediators is sustained. Nonetheless, in situations of extensive or continuing 
tissue damage, the sustained inflammatory response decreases the capacity of 
macrophages to produce anti-inflammatory, or more correctly, pro-resolving 
molecules (e.g., IL-10 and IGF-1), impairing mechanisms of inflammation resolution 
and leading to chronic inflammation[45,47]. Ultimately, the perpetually increased 
production of cytokines and activation of catabolic enzymes causes further damage or 
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aberrant remodeling of joint tissues[5,20,48].
In summary, when the homeostatic functions of synovial macrophages become 

overwhelmed, they upregulate inflammation to ultimately recruit more macrophages 
and respond to the increased demands for repair[21,41,42,49]. Efficient resolution of 
inflammation is required to interrupt the catabolic processes in OA and to re-establish 
a homeostatic synovial environment[48,50] (Figure 1). Understanding the facts 
outlining the phenotypical response of synovial macrophages in both the initiation and 
resolution of joint inflammation is paramount for developing pro-resolving joint 
therapies[11,20,21,40,50].

Macrophage phenotypes in the synovium − beyond M1 and M2 polarization
Following challenge under defined in vitro conditions, macrophages activate into a 
spectrum of phenotypes, where the extremes are characterized by cells exhibiting 
classical pro-inflammatory (M1) or pro-resolving/healing (M2) responses[51]. In vivo, 
macrophages respond to variable environmental stimuli, exhibiting a dynamic range 
of phenotypes that varies by tissue and health status[12,27,51-53]. In synovial joints, 
classically activated (M1-like) macrophages from the osteoarthritic synovium impede 
ex vivo chondrogenesis of synovial progenitor cells, while alternatively activated (M2-
like) macrophages are required for efficient chondrogenesis[40,54] and inflammation 
resolution, improving clinical and histological signs of joint disease[49,55]. 
Collectively, these findings suggest that promoting the M2-like response in diseased 
joints may provide a therapeutic tool to favor inflammation resolution and tissue 
repair. Taken together, these observations suggest that harnessing the response of 
macrophages to enhance the ability of the joint to resolve inflammation can help in the 
treatment of OA and other joint diseases.

Until recently, specific data about macrophage phenotypes in OA were limited to in 
vitro studies, end stage OA or experimental animal models[21,40,54,56,57]. Compa-
rative analysis of phenotypical responses between macrophages from healthy and 
osteoarthritic joints included inferences from other types of arthritic conditions[58]. 
OA related reports were limited to low amounts of macrophages in synovial fluid, 
which shed from the synovial membrane after hyperactivation or mechanical 
separation, and thus are unlikely to reflect the response within the synovium[59,60].

To better understand the roles of macrophages in vivo, we recently assessed the 
patterns of macrophage phenotype activation in the synovium from healthy equine 
joints (n = 29) and compared to that of joints with naturally occurring OA (n = 26)[47]. 
We evaluated the synovial expression of widely used M1-, M2-like and pan 
macrophages markers [cluster of differentiation (CD)14 (pan-marker), CD86 (M1-like), 
CD206, and IL-10 (M2-like)] and correlated these findings with synovial histology. 
Joints with moderate OA were selected to represent a disease stage where the cellular 
response in the synovium is high, largely attributable to synovial macrophages and 
also more likely to respond favorably to treatment[61]. We then correlated the findings 
to cytokine/chemokine profiles in the synovial fluid. Macrophage phenotypes in the 
synovium were not as clearly defined as they are in vitro. All macrophage markers 
were expressed with minimal differences between OA and normal joints. However, in 
OA joints these markers increased proportionate to synovial inflammation, especially 
CD86. These findings were associated with hyperplasia of the synovial lining, which 
reflects increased macrophage recruitment and activation in response to injury[47,62].

Among 12 cytokines assayed in that study[47], concentrations of stromal cell-
derived factor (SDF)-1 and IL-10 were lower in synovial fluid from osteoarthritic joints, 
while macrophage chemoattractant protein (MCP)-1 was higher. Upon inflammatory 
stimuli, synovial fibroblasts release high concentrations of MCP-1. Elevated MCP-1 in 
synovial fluid from osteoarthritic joints, combined with hyperplasia of the synovial 
intima characterizes a fibroblast-mediated recruitment of macrophages to the 
synovium in response to injury[63]. On the other hand, SDF-1 is an essential 
chemokine in the recruitment of macrophages during inflammation resolution[47,64-
66]. Macrophages are the main source of IL-10[7,67], an essential cytokine for cartilage 
homeostasis and tissue repair[8,9,68,69]. In the face of increased macrophage 
recruitment, the observation of decreased concentrations of SDF-1 and IL-10 suggests 
that mechanisms of macrophage-mediated inflammation resolution may be 
compromised or overwhelmed during OA.

In conclusion, macrophage phenotypes observed in vivo are more diverse and 
complex than the clear classifications described through in vitro studies[27,39,56,57]. In 
vivo, synovial macrophages are neither M1 nor M2, but a hybrid phenotype that 
overall exerts a homeostatic response to injury by driving inflammation to counteract 
tissue aggressors and trigger tissue repair[27,41,42,46,55,70-74]. Cytokines and cell 
surface markers frequently used for assessing phenotype identity (M1- or M2-like) in 
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Figure 1 Schematic representation of macrophage status and responses during joint health and disease. Macrophages promote synovial health 
through phagocytosis, efferocytosis, secretion of synovial fluid cytokines and growth factors, and paracrine effects on chondrocyte metabolism. Following damage, 
synovial macrophages form a shield to the injured site to further drive tissue repair. If the extent of the injury or continuing trauma overwhelms the shielding and 
repairing capacity of macrophages, macrophages increase expression of cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor -α in a phlogistic 
inflammatory response, recruiting first neutrophils, followed by myeloid macrophages. These macrophages have a strong pro-resolving capacity associated with high 
production of IL-10 and insulin-like growth factor 1, which then leads to inflammation resolution and tissue repair. If interfering factors impair the resolution of the 
inflammatory process, chronic low-grade inflammation persists, leading to aberrant remodeling of synovial tissues and joint degeneration. Joint injection with bone 
marrow mononuclear cells in chronically inflamed joints augments the macrophage-mediated mechanisms of joint homeostasis, resolving joint inflammation. GF: 
Growth factors; TIMPs: Tissue inhibitors of metalloproteinases; MMPs: Matrix metalloproteinases; IL-10: Interleukin 10; IGF-1: Insulin-like growth factor 1; SDF-1: 
Stromal-derived factor 1; BMNC: Bone marrow mononuclear cells.

vitro are actually building blocks of a multifaceted immune response and must be 
prudently analyzed together and in consideration to the dynamic stages of the inflam-
matory reaction, including its resolution[11,73,75]. Why endogenous recruitment from 
myeloid macrophages to the joint often fails in recovering synovial homeostasis is not 
yet known; however, epigenetic mechanisms derived from chronic synovial inflam-
mation seem to affect the performance of local macrophages[76-78]. Developing 
approaches to recover the homeostatic mechanisms from healthy macrophages may 
yield improved therapeutic options to prevent or resolve joint inflammation in OA 
joints and re-establish joint health.

BONE MARROW MONONUCLEAR CELLS AS A THERAPEUTIC SOURCE 
OF HEALTHY MACROPHAGES
BMNC have been investigated in the fields of tissue repair and treatment of chronic 
inflammation in several non-arthritic conditions over the last 20 years. BMNC therapy 
in the management of chronic airway inflammation in murine models and equine 
clinical cases resulted in clinical improvements comparable to treatment with corticost-
eroids and associated with marked increases in IL-10 production[7,24]. The 
management of patients with cerebral palsy using intra-thecal injections of BMNC 
substantially improved gross motor function and muscle spasticity and tone[79-81]. 
BMNC have also improved functional recovery from acute liver failure and related 
survival in mouse models[82-84]. Finally, and impressively, BMNC made possible the 
successful transplantation of pancreatic islet in both murine and primate models[85]. 
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There have also been some studies reported with skeletal tissues. BMNC treatment 
shortened the inflammatory phase of healing and improved tissue quality in tendons 
and ligaments[86-89], as well as in osteochondral defects[90-93]. Taken together, the 
beneficial effects described suggest that autologous BMNC therapy may be an 
attractive option for chronically inflamed tissues and those with limited regenerative 
capacity.

Due to its autologous nature, BMNC therapy eliminates the risk of graft-versus-host 
disease. Because BMNC are readily isolated from bone marrow and do not require 
culture expansion, BMNC does not present the adverse reactions associated to cell 
culture neither are subject to the regulatory restrictions that apply to MSC, and are 
FDA approved for use in people[94]. BMNC isolation from bone marrow aspirates 
using gradient centrifugation is rapid and can be completed with minimal manipu-
lation. Cells are readily available for immediate administration using few equipment
[90,95,96]. The resulting BMNC cell isolate is composed primarily of mononuclear cells 
(> 90%). Although most of these cells are macrophage- and monocyte-committed 
progenitors (< 50%), there are also hematopoietic stem cells (about 25%), lymphoid 
cells (about 10%), fibroblastic reticular cells (about 10%), and a very small portion of 
MSC (0.00001%)[24,97,98]. It is the macrophage progenitors in BMNC that are 
primarily responsible for resolving inflammation. Other hematopoietic and MSC 
contribute, but to a lesser extent[24,84]. Moreover, the MSC therapeutic effects are 
largely associated with activating a homeostatic response in macrophages, and thus 
BMNC represents a more direct, targeted approach[10,99]. Given the central role of 
synovial macrophages in joint health and inflammation, it only makes sense to 
capitalize on the macrophage-mediated effects of BMNC to re-establish mechanisms of 
joint homeostasis to develop a targeted OA therapy. Even though the clinical use of 
purified macrophages has been suggested as a great opportunity to improve patient 
outcomes[100], BMNC retains a large component of hematopoietic and progenitor 
cells (about 25%) that serves as a reservoir for the self-renewal of large amounts of 
macrophages “consumed” during inflammation and its resolution[98].

Bone marrow mononuclear cells therapy for joint disease: Scientific and clinical 
evidence
During the last decade, several reports have demonstrated successful use of BMNC in 
the treatment of chronic synovitis and joint disease[25,46,55,101-104]. Early studies 
suggesting BMNC could be an effective therapy for joint disease evaluated its effect on 
“tennis elbow” (elbow lateral epicondylitis), and found a significant improvement 
using a standardized patient-rated evaluation. Unfortunately, the experimental design 
did not include an assessment of control groups or a comparative therapy[101]. More 
recently, Goncars et al[102], evaluated the clinical efficacy of a single joint injection 
with BMNC to improve pain and other symptoms of moderate knee OA [Kellgren-
Lawrence (KL) stage II–III] in a cohort of 28 patients that were followed for 12 mo
[104]. The clinical assessments were based on the Knee osteoarthritis outcome score 
(KOOS) and the Knee society score (KSS) at baseline, 3 mo, 6 mo, and 12 mo after 
injection, and compared to a patient group (n = 28) treated with 3 consecutive weekly 
injections of sodium hyaluronate[104]. Significant improvement (P < 0.05) was 
observed in the BMNC-treated group for all scores at all time points, with special 
superiority in the KOOS pain subscale for BMNC over the hyaluronic acid-treated 
group at 6 and 12 mo.

In a second study, the same authors focused on correlating the changes in knee OA 
symptoms (KL grade II and III) with magnetic resonance imaging (MRI) changes 
following treatment with a single BMNC injection in a slightly larger cohort (n = 34)
[102]. Clinical outcomes were again analyzed using the KOOS and KSS systems at 
baseline, 3 mo, 6 mo, and 12 mo after injection. Results from MRI were measured 
using the Whole Organ Magnetic Resonance Imaging Score at baseline and 6-7 mo 
post injection. Remarkably, 97% of joints treated with BMNC exhibited clinical 
improvement that was still perceived 12 mo post-treatment in at least 65% of the 
patients, which still exhibited a difference of more than 10 KOOS points from baseline. 
Improvements were significant (P < 0.05) for both clinical and imaging scoring 
systems. Of note, MRI findings revealed that most patients had improvements in 
synovitis (63%) and bone marrow edema (57 %), but most remarkably, improvements 
in cartilage were also observed in 38% of patients (Figure 2). No imaging data were 
available for hyaluronan-treated patients from the previous study. The authors 
concluded from the second study that a single dose of BMNC (45.56 × 106 ± 34.94 × 106 

BMNC containing 1.04 × 106 ± 1.61 × 106 CD34+ hematopoietic stem cells) reduced 
clinical signs of moderate knee OA, and in some cases, decreased degenerative 
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Figure 2 Clinical (Knee injury and osteoarthritis outcome score and Knee society score, n = 34) and imaging (magnetic resonance 
imaging, n = 30) outcomes from patients with knee Osteoarthritis treated with bone marrow mononuclear cells over 12 mo post-treatment
[102]. A and B: Significant improvements (P < 0.05) were observed for Knee injury and osteoarthritis outcome score’ (A) and Knee Society Score (B) scores during 
the 12-mo follow-up period and most were sustained over time; C: Changes in bone marrow edema, cartilage and synovitis detected by magnetic resonance imaging 
6 mo after treatment with bone marrow mononuclear cells. Citation: Goncars V, Kalnberzs K, Jakobsons E, Enģele I, Briede I, Blums K, Erglis K, Erglis M, Patetko L, 
Muiznieks I, Erglis A. Treatment of Knee Osteoarthritis with Bone Marrow–Derived Mononuclear Cell Injection: 12-Month Follow-up. Cartilage 2019; 10 (1): 26-35. 
Copyright © The Author(s) 2018. Published by SAGE Publications. KOOS: Knee injury and osteoarthritis outcome Score; KSS: Knee society score; QoL: Quality of 
life; ADL: Activities of daily living; BME: Bone marrow edema.

changes of the joint tissues. Of note, a positive correlation between cell quantity (total 
BMNC or CD34+ cells) and the improvement in OA symptoms was not observed[102].

Our group recently completed a couple of studies aimed at understanding how 
normal and inflamed synovial joints respond to injection with BMNC[55], and how 
BMNC respond to an inflamed environment to produce a positive effect[46]. Special 
attention was paid to the macrophage component in BMNC. First, using a well-
established equine model, we induced synovitis in both radiocarpal joints of 6 horses 
using lipopolysaccharide. Following 8 h, at the peak of the acute inflammatory 
response, one inflamed radiocarpal and one normal tarsocrural joint received BMNC 
injection (20 x 106 viable BMNC, about 79% viability). Saline was injected in the 
contralateral joints. Synovial fluid was collected at 1 d, 4 d, and 6 d post treatment for 
cytology, flow cytometry for expression of macrophage markers, and cytokine quanti-
fication. Six days post BMNC therapy, following euthanasia, joints were assessed for 
gross pathology, and the synovium was harvested for histology and immunohisto-
chemistry targeting markers of macrophage activation. At 4 d following treatment 
with BMNC, inflamed joints exhibited 24% more macrophages with 10% higher counts 
of IL10+ cells than saline-treated controls. Overall, BMNC-treated joints showed gross 
and analytical improvements in synovial fluid and synovial membrane, with 
increasing pro-resolving macrophages and IL-10 concentrations in synovial fluid 
compared to saline-treated controls. Inflamed joints treated with BMNC were histolo-
gically equivalent to healthy joints, whereas saline-treated controls remained abnormal
[55] (Figure 3).
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Figure 3 Gross and analytical findings from normal and inflamed equine joints treated with bone marrow mononuclear cells[55]. A: 
Improvements in synovial fluid associated with decreased cellularity and red cell contamination at 96 h compared to Phosphate buffered saline (PBS)-treated 
controls; B: Improvements in the synovium were reflected by decreased intra-and peri- and articular synovial hemorrhage and edema, in bone marrow mononuclear 
cells (BMNC)-(black arrowheads) compared to; C: PBS-treated joints (white arrowheads); D: There was a marked increase in synovial fluid interleukin 10 
concentrations at 24 h in inflamed joints, which was much higher in BMNC-treated joints as compared with PBS-treated joints; E and F: BMNC-treated joints exhibited 
lower scores for all histological aspects of inflammation, although these were only significant (P < 0.05) for vascularity and the composite score(F); Citation: Menarim 
BC, Gillis KH, Oliver A, Mason C, Ngo Y, Were SR, Barrett SH, Luo X, Byron CR, Dahlgren. Autologous bone marrow mononuclear cells modulate joint homeostasis 
in an equine in vivo model of synovitis. FASEB J 33, 14337–14353. Copyright © The Author(s) 2019. Published by Wiley Online Library in cooperation with the 
Federation of American Societies for Experimental Biology. LPS: Lipopolysaccharide; PBS: Phosphate buffered saline; BMNC: Bone marrow mononuclear cells.

To understand how BMNC induced such therapeutic effects, we studied the in vitro 
response of BMNC to culture in normal (SF) and inflamed autologous synovial fluid 
(ISF) using cells and synovial fluid from the same horses from the just described in vivo 
study[55]. Equine BMNC cultured in SF or ISF (n = 8 horses) developed into 
macrophage-rich cultures exhibiting phenotypes similar to macrophages native to 
synovial fluid from healthy joints. BMNC confluence (cell proliferation) was ultimately 
higher in ISF (about 100%) than SF (about 25%). BMNC cultured in SF or ISF were 
neither M1- nor M2-like but exhibited a range of hybrid phenotypes with a pro-
resolving response, characterized over time by decreasing secretion of IL-1β, gradually 
increasing secretion of IL-10 and IGF-1, and increasing counts of IL-10+ macrophages. 
These changes were sustained over ten days and were more evident in ISF, suggesting 
that macrophage-mediated mechanisms of homeostasis were conserved over time and 
were likely favored by the gradual increase in cell proliferation. A combined 
assessment of data from our in vivo and in vitro studies suggests that joint injection 
with BMNC can increase the number of synovial macrophages and magnify the 
macrophage- and IL-10-associated mechanisms of joint homeostasis impaired during 
the progression of OA[45,46]. Moreover, BMNC therapy preserved, both in vivo and in 
vitro, the production of cytokines required for tissue repair (PGE2, IL-10 and IGF-1), the 
same ones generally impaired by corticosteroids[46,55].

To more fully assess the effects of BMNC therapy in the treatment of naturally 
occurring equine OA, we conducted a small clinical study evaluating the response of 
joints (metacarpophalangeal and carpi) with moderate OA to BMNC therapy in 19 
adult horses[25]. In the absence of a KL-equivalent scoring system for equine OA, 
scores were defined by consensus between 6 experienced clinicians. At baseline, horses 
were subjected to a clinical and musculoskeletal exam, including objective gait analysis 
at the trot on days 0, 7, and 21 post-treatment with either saline, BMNC (20 x 106 viable 
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cells) or a commonly used dose of triamcinolone (4 mg/joint). After treatment, all 
horses were rested in stalls for 1 wk, followed by 7 d of stall rest with hand walking, 
and then a resumption of normal activities in the third week. Lameness decrease was 
significant (P < 0.05) and consistent only in the BMNC-treated group (between 7 d and 
21 d) and associated with increasing counts of macrophages in the synovial fluid. 
Combined, findings from all of the above-mentioned studies support that BMNC 
therapy can boost the homeostatic mechanisms of synovial macrophages critical for 
inflammation resolution.

BMNC as a therapy for osteochondral repair
The use of bone marrow components in the treatment of musculoskeletal conditions 
dates back from over a century ago and is the foundation for bone marrow grafting as 
today’s most used techniques for the treatment of non-union fractures[105-107] and 
osteochondral healing[90,91,108,109]. Newer methods based on the original grafting 
studies aim at providing means for cells from the subchondral bone marrow to reach 
the osteochondral defect through microfracture or subchondral bone drilling[109-113]. 
For therapeutic purposes, removal of most red blood cells and bone spicules from 
bone-marrow aspirates through centrifugation was a further refinement of the 
technique because these components were identified as causing severe joint inflam-
mation[114] and heterotopic bone formation[87]. The product resulting from centrifu-
gation of bone marrow aspirate, rich in myeloid leukocytes and other hematopoietic 
and mesenchymal progenitor cells, is called bone marrow aspirate concentrate 
(BMAC). The leukocytes included in BMAC, granulocytes and monocytes, not only 
play crucial roles in inflammation, but also contribute to cellular mechanisms driving 
tissue repair[11,115-117]. However, the association of neutrophils with chronic inflam-
mation and delayed repair lead clinicians and scientists to avoid their inclusion in 
biological joint therapies[115]. After removing bone spicules, red blood cells and 
granulocytes, the mononuclear fraction from the bone marrow (BMNC) is what is left 
and retains the osteochondral repair properties of bone marrow[90,94]. This is true 
even when the subchondral bone is not drilled or picked to allow subchondral bone 
marrow to reach the defect, suggesting that the cells responsible for osteochondral 
repair are within that BMNC fraction of the bone marrow aspirate[92,118].

The extent of which myeloid macrophage progenitors directly participate in 
osteochondral repair remains to be defined, but findings from other tissues suggest it 
goes beyond phagocytic and paracrine activities. Following damage and the 
subsequent neutrophil-driven acute inflammation that triggers wound healing, the 
injury site is further populated by mononuclear cells[117,119,120]. These cells display 
specific monocyte/macrophage markers and are responsible for removing neutrophils 
by efferocytosis and for the early production of collagen and enzymes required for 
remodeling the developing granulation tissue, which is largely composed by 
macrophages[49,121,122]. Following this initial phase, these same cells expressing 
macrophage markers trans differentiate into cells displaying a different set of markers 
typically seen in fibroblasts. Cells displaying this ability to trans differentiate are called 
fibrocytes, are abundant in the bone marrow, and have a central, intrinsic role in tissue 
development and repair[121-123]. Ongoing research may unveil the transcriptional 
switches driving these cells to trans differentiate from myeloid to mesenchymal 
phenotypes, uncovering targets to work on the optimization of cell-based therapies for 
cartilage regeneration.

Key quality control steps for harvesting and processing BMNC
Isolation of BMNC from bone marrow aspirates is traditionally done by gradient 
centrifugation. However, the volume of bone marrow aspirate reported for processing 
of BMNC varies from 5 to 60 mL and are extrapolated from data optimized for the 
isolation of MSC[124,125]. Lack of BMNC-specific data may adversely impact the 
cellular composition of the final BMNC product. To identify an optimal volume of 
bone marrow aspirate for BMNC isolation, Correa-Letelier et al[126], compared the 
concentration of BMNC in fractioned bone marrow aspirates in 16 horses. Bone 
marrow aspirates were obtained in 5 consecutive 5 mL fractions, and the mononuclear 
cell content of each fraction was quantified using differential cell counts. The total 
number (median ± QD) of mononuclear cells in the first three fractions (first 15 mL) 
contained 93.2% of the BMNC in the total 25 mL aspirated, with an average cell 
viability of 97.5 ± 1.2% (Figure 4). To the authors’ knowledge, similar comparative data 
for bone marrow aspiration in people is not available. The authors emphasize that, in 
horses, it is necessary to obtain at least the first 15 mL of bone marrow aspirate from 
the sternum when the sample is intended for BMNC isolation. Importantly, exceeding 
the total volume of 25 mL increases the peripheral blood content in the bone marrow 
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Figure 4 Mononuclear cell content in five consecutive bone marrow aspirates (5 mL each). The first three fractions represent 93.2% of the total 25 
mL (the five fractions together) emphasizing the need to obtain at least the first 15 mL of bone marrow aspirate. BMNC: Bone marrow mononuclear cells.

aspirate, which has a poor concentration of the pro-resolving cells that are typically 
found in the bone marrow niche[125,126]. The result is a relative dilution of the 
desired BMNC with peripheral cells. One useful parameter in assessing if the bone 
marrow aspirate volume is excessive and diluted by peripheral blood is the platelet 
count, given that the concentration of platelets in the bone marrow is very low[96]. A 
detailed protocol for harvesting equine bone marrow aspirates and processing BMNC 
with minimal resources have been described elsewhere[96]. While only 20-40 x 106 

BMNC are used for joint injection, a bone marrow aspirate of 25 mL yields 150-200 x 
106 BMNC and the exceeding cells can be cryopreserved for future treatments without 
compromising BMNC function[127].

CONCLUSION
Therapeutic strategies to promote the endogenous resolution of synovial inflammation 
in joint disease has the potential to avoid the negative side-effects of anti-inflammatory 
joint therapies. Despite substantial research efforts, there are remarkable gaps in 
knowledge concerning mechanisms for natural recovery from inflammation following 
injury and the re-establishment of joint homeostasis. Both inflammation and its 
resolution, are processes largely mediated by macrophages. Therefore, understanding 
macrophage behavior and function through the dynamic process of inflammation and 
its resolution is paramount for advancing this field and optimizing emergent cell-
based therapies. Moreover, molecules and events involved in the inflammatory 
process of OA are frequently and inadvertently seen as causative of inflammation and 
thus labeled as having detrimental effects. However, the same mediators involved in 
initiating inflammation are also, either by themselves or by inducing the synthesis of 
other mediators and signaling mechanisms, necessary to effectively drive endogenous 
resolution of the inflammatory process. We do not yet understand why endogenous 
recruitment of myeloid macrophages to the joint during inflammation is often 
inadequate to recover homeostasis. However, BMNC therapy is a proven and easily 
accessible alternative treatment for OA that enhances the innate homeostatic 
mechanisms of synovial macrophages, providing long-lasting and pro-resolving 
effects. Ongoing “omics” studies may reveal key drivers of macrophage-mediated 
resolution of joint inflammation. Identifying new targets to explore pro-resolving 
mechanisms of therapeutic potential is a logical approach for developing engineered 
macrophages and perhaps off-the-shelf pro-resolving therapies to benefit patients 
suffering from many different types of arthropathies, not only OA.
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