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Abstract
Dental stem cells can differentiate into different types of cells. Dental pulp stem 
cells, stem cells from human exfoliated deciduous teeth, periodontal ligament 
stem cells, stem cells from apical papilla, and dental follicle progenitor cells are 
five different types of dental stem cells that have been identified during different 
stages of tooth development. The availability of dental stem cells from discarded 
or removed teeth makes them promising candidates for tissue engineering. In 
recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct 
and restore different anatomical defects. With rapid advances in 3D tissue 
engineering, dental stem cells have been used in the regeneration of 3D 
engineered tissue. This review presents an overview of different types of dental 
stem cells used in 3D tissue regeneration, which are currently the most common 
type of stem cells used to treat human tissue conditions.

Key Words: Dental stem cells; Dental pulp stem cells; Stem cells from human exfoliated 
deciduous teeth; Periodontal ligament stem cells; Stem cells from apical papilla; Dental 
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Core Tip: Dental stem cell seeding in three-dimensional (3D) engineered scaffolds that 
mimic the human tissue microenvironment is an emerging technology for regenerative 
medicine. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, 
periodontal ligament stem cells, stem cells from apical papilla, and dental follicle 
progenitor cells have been used for tissue regeneration utilizing 3D approaches. The 
analytical results of this literature review reveal many basic and preclinical studies that 
support the hypothesis that the application of dental stem cells is a feasible approach 
for translational medicine and is an applicable method for 3D tissue regeneration.

Citation: Hsiao HY, Nien CY, Hong HH, Cheng MH, Yen TH. Application of dental stem cells 
in three-dimensional tissue regeneration. World J Stem Cells 2021; 13(11): 1610-1624
URL: https://www.wjgnet.com/1948-0210/full/v13/i11/1610.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i11.1610

INTRODUCTION
The multipotent properties of stem cells make them excellent sources of material for 
tissue repair. Five dental-derived cell types have been isolated and characterized as 
dental stem cells[1]. Dental pulp stem cells (DPSCs), stem cells from human exfoliated 
deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), stem cells from 
apical papilla (SCAP), and dental follicle progenitor cells (DFPCs) are different types 
of dental stem cells involved in different stages of tooth development (Figure 1). 
Considering their differentiation potential, dental stem cells have been introduced to 
regenerate damaged or lost tissue. Dental stem cells are not restricted to use in dental 
tissue repair but can also participate in neural, adipose, bone, and cartilage tissue 
regeneration[2,3]. Recently, three-dimensional (3D) tissue engineering has been 
applied to therapeutic medicine. Cells are seeded in 3D engineered scaffolds to mimic 
the human tissue microenvironment during cell differentiation. The cell morphology 
and gene expression of the cells cultured under 3D conditions are more consistent with 
those of cells observed in native tissue[4]. The use of customized 3D tooth implants 
with dental stem cells seeded in suitable scaffolds as replacements for lost teeth is a 
promising approach in dentistry. In addition to tooth repair, there is growing interest 
in the concept of 3D tissue regeneration with dental stem cells.

Here, we searched databases to identify the literature on dental stem cells used in 
3D tissue regeneration. The literature searches and data mining were performed by 
customized scripts with the "easyPubMed" and "PubMed.mineR" packages in R for use 
with the PubMed database[5-7]. The keywords used in the queries included "pulp 
stem cells", "exfoliated deciduous teeth stem cell", "periodontal ligament stem cell", 
"apical papilla", "dental follicle cells", "3D", "tissue", "regeneration" and "engineering". 
The search results were output with the "abstract" format in the "easyPubMed" 
package and were analyzed by the "PubMed.minR" package. A total of 88 papers were 
found with the aforementioned criteria. After review, only one-third of the papers 
articulated original research on dental stem cells in 3D tissue regeneration. In this 
review, we aim to provide a clear point of view on each type of dental stem cell used 
in combination with 3D tissue scaffolds, such as microspheres, hydrogels, or 3D 
printed scaffolds, to regenerate into teeth, neurons, bone, blood vessels and cartilage 
(Figure 1 and Table 1).

DPSCS
DPSCs located in the soft connective tissue inside the dental crown were first 
identified in 2000 (Figure 1)[8]. DPSCs exhibit MSC-like properties, including a high 
proliferation rate, multilineage potential, and immunomodulatory properties[8,9]. 
Even though DPSCs exhibit features similar to those of BMSCs, their characteristics of 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 List of dental stem cells used for three-dimensional tissue regeneration

Dental stem cells Biomaterials Addition of materials/growth 
factors/cells Type of tissue regeneration Ref.

DPSCs

DPSCs CaP porous granules, NF-
gelatin/MgP

No Odontogenic differentiation Nam et al[24], and Qu et al
[30]

SS-PLLA-b-PLYS, pNIPAAm, 
NF-PLLA

No Pulp-dentin regeneration Kuang et al[16], Itoh et al
[17], and Soares et al[18]

Coll/HA/PLCL, ABM/ABM-P-
15, PVA/PU

No Bone tissue Mohanram et al[13], 
Cooke et al[19], and 
Akkouch et al[21]

OMMT/PVA No Neuro-like cells Ghasemi Hamidabadi et al
[47]

Matrigel No Endotheliocytes and pericytes Luzuriaga et al[51]

Collagen gel SDF1, bFGF Dental pulp tissue Suzuki et al[23]

BMP7

DPSCs with growth 
factors

Ti6Al4V Poly-L-lys coating Osteoblastic differentiation Galli et al[32]

Porous silk fibroin bFGF Dental pulp tissue Yang et al[26]

PCL VEGF, BMP2 Vascularized bone tissue Park et al[39]

HP hydrogel bFGF Spinal cord Luo et al[48]

DPSCs with other 
cells

Matrigel and collagen gel Human normal oral epithelial 
cells

Epithelium invagination-like 
structure

Xiao and Tsutsui[35]

PCL/PLDLA Endothelial cells Vascularized bone tissue Jin and Kim[36]

PLLA/PLGA Human neonatal dermal 
fibroblasts

Spinal cord Guo et al[50]

DPSCs in 3D printed 
scaffolds

HA/TCP Apical papilla (SCAP) Pulp-dentin regeneration Hilkens et al[40]

PCL Platelet-rich plasma Calvaria bone Li et al[27]

Alg-Gel Bone Yu et al[38]

PLAS Neural differentiation Hsiao et al[42]

AMP/ECM Craniomaxillofacial bone Dubey et al[41]

SHED

SHED with growth 
factors

No EGF, FGF Spinal cord Feng et al[58]

No SHED-conditioned medium Sciatic nerve Sugimura-Wakayama et al
[59]

SHED in 3D formed 
scaffolds

Polylactoglycolide, SHED aggregated hemisphere Bone tissue Laino et al[56], and 
Vakhrushev et al[57]

PDLSCs

PDLSCs Hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) Periodontal tissue Kim et al[66]

GelMA/PEG PDLSC proliferation Ma et al[80]

PDLSCs with growth 
factors

PLGA CTGF, BMP-7, BMP-2 Periodontal tissue Cho et al[73]

Platelet-rich fibrin Aspirin Periodontal tissue Du et al[76]

PDLSCs with other 
cells

Collagen/Chitosan Somatic MSCs and DPSCs Odontogenic differentiation Ravindran et al[79]

No HUVECs Periodontal tissue Kramer[77]

PLGA–PEG–PLGA thermal 
hydrogel

PDLSCs overexpressing PDGF-
BB

Alveolar bone tissue Pan et al[78]
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SCAP

SCAP with growth 
factors

PLLA nanofibrous microspheres 
(NF-MS)

BMP-2 Pulp-dentin regeneration Wang et al[86]

No BMP-2, SDF-1α Odontoblast differentiation Xiao et al[87]

Alg-Dent hydrogel Dentin ECM Pulp-dentin regeneration Athirasala et al[95]

DFPCs

DFPCs Coll-nano-HA/OPS Bone tissue Salgado et al[102]

DFPCs: Dental follicle progenitor cells; SCAP: Stem cells from apical papilla; PDLSCs: Periodontal ligament stem cells; SHED: Human exfoliated deciduous 
teeth; DPSCs: Dental pulp stem cells; SDF1: Stromal-derived factor-1α; bFGF: Basic fibroblast growth factor; BMP-7: Bone morphogenetic protein-7; 
Ti6Al4V: Titanium-6-aluminum-4-vanadium; Poly-L-lys: Poly-L-lysine; CaP: Calcium phosphate; OECs: Human normal oral epithelial cells; PLCL: 
Collagen (Coll)/hydroxyapatite (HA)/poly(l-lactide-coε-caprolactone); NF-gelatin/MgP: Gelatin/magnesium phosphate; VEGF: Vascular endothelial 
growth factor; BMP-2: Morphogenetic protein-2; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; PCL: Polycaprolactone; NF-SMS: 
Nanofibrous spongy microspheres; SS-PLLA-b-PLYS: Star-shaped poly(l-lactic acid)-block-poly(l-lysine); PLDLA: Poly-L/D-lactide; ECs: Endothelial cells; 
HA/TCP: Hydroxyapatite/tricalcium phosphate; OMMT/PVA: Chitosan-intercalated montmorillonite/poly(vinyl alcohol); PRP: Platelet-rich plasma; 
pNIPAAm: Poly-N-isopropylacrylamide gel; HP: Heparin-poloxamer hydrogel; NF-PLLA: Nanofibrous poly(l-lactic acid) scaffolds; Alg-Gel: 
Alginate/gelatin hydrogel; 3DP-PLASs: Polylactic acid scaffolds; ABM: Bone mineral; ABM-P-15: Biomimetic collagen peptide; PVA: Polyvinyl alcohol; 
PU: Polyurethane; AMPs: Amorphous magnesium phosphates; ECM: Extracellular matrix; PLLA: Polylactoglycolide scaffolds; NF-MS: Nanofibrous 
microspheres; SDF-1α: Normal cell-derived factor-1α; GelMA: Gelatin methacrylate; PEG: Poly(ethylene glycol); dimethacrylate; PLGA: Poly(lactic-co-
glycolic acids); CTGF: Connective tissue growth factor; HUVECs: Human umbilical vein endothelial cells; Coll-nano-HA/OPS: Collagen-
nanohydroxyapatite/phosphoserine.

Figure 1 Schematic illustration of dental stem cells in three-dimensional tissue regeneration. A: Five different types of dental stem cells are 
harvested during different tooth developmental stages; B: Dental stem cells are incorporated with various forms of three-dimensional (3D) biomaterials (microspheres, 
hydrogels, or 3D printed scaffolds) to generate 3D engineered tissue; C: Dental stem cells are induced to differentiate into different types of tissue, such as teeth, 
neurons, bone, blood vessels and cartilage.

causing little morbidity at the donor site, a higher proliferation rate, and multipotency 
make DPSCs better stem cell sources for tissue regeneration[10]. DPSCs cocultured 
with apical bud cells (ABCs) exhibited more active odontogenic differentiation ability 
than BMSCs cocultured with ABCs[11]. The neural differentiation of IMR-32 cells was 
significantly enhanced when treated with secretomes derived from DPSCs compared 
to BMSCs[12]. The assessment of neurogenic potential on the secretome of DPSCs and 
BMSCs indicated that DPSCs presented better potential for neural differentiation[12]. 
Most DPSC studies have focused on dental pulp and bone tissue regeneration. 
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Compared to bone marrow stem cells, DPSCs have a higher proliferation rate and 
better osteogenic capacity when seeded in a scaffold of bone mineral (ABM) coated 
with a biomimetic collagen peptide (ABM-P-15), even generating a more organized 
collagenous matrix 8 wk after in vivo implantation[13]. Moreover, different gene 
expression patterns have been found in the transcriptome profiles of DPSCs compared 
to those of bone marrow stem cells, indicating unique gene expression patterns within 
DPSCs[14].

Application in 3D tissue regeneration
In addition to conventional tissue regeneration approaches with cells loaded on two-
dimensional scaffolds, DPSCs have been cultured on 3D biomaterials for the 
development of tissue constructs. A bioink containing human DPSCs and fibrinogen 
incorporated with polycaprolactone (PCL) was designed for the production of dentin 
pulp complex structures[15]. Nanofibrous spongy microspheres made from star-
shaped poly(l-lactic acid)-block-poly(l-lysine) (SS-PLLA-b-PLYS) were seeded with 
DPSCs for dental pulp tissue regeneration[16]. Poly-N-isopropyl acrylamide 
(pNIPAAm) gel containing DPSCs was made in a rod shape to fill in the root canal for 
pulp tissue regeneration[17]. Simvastatin and nanofibrous poly(l-lactic acid) (NF-
PLLA) scaffolds[18] and a mixture of polyvinyl alcohol (PVA) and polyurethane (PU)
[19] were combined with DPSCs to investigate the potential of tissue regeneration. 
Self-assembling peptides, with structures similar to the extracellular matrix (ECM), are 
among the smart materials used for 3D culture[20]. A 3D scaffold composed of 
collagen (Coll), hydroxyapatite (HA), and poly(L-lactide-co"-caprolactone) (PLCL) 
increased the adhesion and viability of DPSCs and enhanced bone regeneration 
compared to a PLCL-only scaffold[21]. DPSCs grown in a peptide-based scaffold 
presented RGD- and vascular endothelial growth factor (VEGF)-mimetic peptide 
epitopes and exhibited better survival and angiogenic and odontogenic differentiation
[22].

With increased knowledge of the function of growth factors, an increasing number 
of studies have introduced growth factors into different types of tissue regeneration. In 
2011, human DPSCs were placed on the surface of 3D collagen cylinders and cultured 
with the addition of stromal-derived factor-1α, basic fibroblast growth factor (bFGF), 
and bone morphogenetic protein-7 (BMP-7) for dental pulp regeneration[23]. Seeding 
DPSCs on 3D calcium phosphate (CaP) porous granules promoted odontogenic differ-
entiation by increasing the gene expression of dentin sialophosphoprotein (DSPP) and 
dentin matrix protein 1 (DMP1)[24]. Porous silk fibroin scaffolds fabricated with bFGF, 
which has been reported to facilitate pulp regeneration[25], were used to fill the root 
canal space for tooth repair[26]. Platelet-rich plasma (PRP) containing various growth 
factors along with DPSCs was added to 3D printed PCL mesh for bone regeneration in 
a rat calvaria defect model[27].

In addition to growth factors, metal ions have also been confirmed to contribute to 
cell differentiation[28]. Magnesium (Mg) is involved in the process of biomineral-
ization during bone and tooth development[29]. Qu et al[30] incorporated Mg into 
nanofibrous gelatin biomaterials to develop 3D gelatin/Mg phosphate (NF-
gelatin/MgP) scaffolds seeded with DPSCs, and odontogenic proliferation and differ-
entiation were enhanced. The materials used for dental implants, such as titanium-6-
aluminum-4-vanadium (Ti6Al4V), are also used as 3D scaffolds for tissue 
regeneration. Their properties of low corrosion and smooth metal surfaces prevent 
stem cells from colonizing this biomaterial[31]. Coatings of poly-L-lysine (poly-L-lys), 
which carries positive charges, induced focal adhesion kinase activation and increased 
the osteoblastic differentiation of hDPSCs[32]. A coculture system not only provides 
intercellular factors but also enables communication between two types of cells, which 
is critical for the development and arrangement of the ECM[33,34]. DPSCs cocultured 
with human normal oral epithelial cells harvested from gingival tissue were 
inoculated into 3D Matrigel to form an epithelium invagination-like structure, a key 
feature of early tooth development[35]. Poly-L/D-lactide (PCL/PLDLA) porous 
microspheres were loaded with DPSCs and human endothelial cells to promote 
osteogenesis and angiogenesis for vascularized bone tissue regeneration[36].

3D printing techniques can print cells, growth factors, or biomaterials in the desired 
location to achieve more complicated multicell tissue structures[37]. In contrast to 
cultures in 2D alginate/gelatin hydrogel (Alg-Gel) scaffolds, 3D Alg-Gel scaffolds can 
be printed in a seven-layer coin shape and loaded with DPSCs. These DPSC-loaded 3D 
printed scaffolds achieved higher cell proliferation, odontoblastic differentiation, and 
bone mineralization, suggesting that a 3D environment is more suitable for cell prolif-
eration and differentiation[38]. In addition, Park et al[39] designed the printing of 
DSPCs with VEGF in the central zone and bone morphogenetic protein-2 (BMP-2) in 
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the peripheral area of the 3D-printed construct to fabricate vascularized bone 
structures. A cone-shaped scaffold was printed with hydroxyapatite/tricalcium 
phosphate (HA/TCP) powder that was polymerized by an ultraviolet (UV) photoini-
tiator. DPSCs and SCAP were mixed with collagen gel and loaded into the 3D printed 
HA/TCP scaffold for dental pulp regeneration[40]. 3D PCL mesh supplemented with 
PRP containing various growth factors along with DPSCs was custom printed to fit rat 
calvarial defects for bone regeneration[27]. PRP containing various growth factors, 
along with DPSCs, was added to 3D printed PCL mesh for bone regeneration in a rat 
calvaria defect model[27]. A novel DPSC-loaded bioink containing a mixture of 
amorphous Mg phosphates and ECM increased the bone density during craniomaxil-
lofacial bone regeneration[41]. With the 3D printing technique, the shape, pore size, 
and gap size can be precisely controlled to study their microenvironmental effects on 
cell proliferation and differentiation. Polylactic acid scaffolds (PLASs) were printed in 
different gap sizes, and it was discovered that smaller gaps in 3D PLASs presented 
with different cellular orientations[42].

In addition to their osteogenic and odontoblastic potential, the chondrogenic 
potential of DPSCs has been investigated. Zhang et al[43] successfully induced DPSCs 
to undergo a chondrogenic differentiation process, and their synthesis of sulfated 
glycosaminoglycans was confirmed. DPSCs formed into 3D pellets were subjected to 
chondrogenic potential investigation, resulting in the enrichment of collagen I 
deposition. The content of glycosaminoglycan or collagen type II was not enhanced 
even with the addition of chondroinductive growth factors, suggesting that the 
chondrogenic lineage of DPSCs favors differentiation into fibrous cartilage rather than 
hyaline cartilage[44]. DPSCs, derived from cranial neurons, can differentiate into 
neuron-like cells for axon regeneration and are potential cell sources for neuron 
regeneration[45,46]. DPSCs were seeded within chitosan-intercalated montmoril-
lonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh, and they differentiated 
into neuron-like cells[47]. A thermosensitive heparin-poloxamer hydrogel with DPSCs 
and bFGF enhanced motor and sensory functional recovery after spinal cord injury 
repair[48]. Chitosan scaffolds have been demonstrated to enhance neuronal cell 
survival and differentiation. Zheng et al[49] incorporated bFGF into chitosan scaffolds 
and found that it promoted DPSC differentiation into neuronal cells but did not affect 
cell survival. Human adipose microvascular endothelial cells were coseeded in a 
PLLA/poly(lactic-co-glycolic acids) (PLGA) scaffold with DPSCs to fabricate a prevas-
cularized scaffold, which promoted revascularization, axon regeneration, myelin 
deposition, and sensory recovery in a rat complete spinal cord transection model[50]. 
Moreover, DPSCs seeded in Matrigel were able to differentiate into endotheliocytes 
and pericytes in serum-free culture media and secrete VEGF[51].

SHED
SHED cells, first isolated in 2003, present with positive expression of embryonic stem 
cell markers, such as OCT4 and NANOG, stage-specific embryonic antigens (SSEA-3 
and SSEA-4), and mesenchymal stem cell markers (STRO-1 and CD146)[52-54]. 
Compared to DPSCs, SHEDs showed higher levels of osteocalcin expression and 
alkaline phosphatase activity[55]. SHEDs were confirmed to be more immature than 
DPSCs, allowing them to be “osteoblast-like’’ and ‘‘odontoblast-like’’, expressing 
osteocalcin and RUNX-2 markers[53]. Moreover, when SHEDs were cultured in 
medium with dexamethasone, they differentiated into adipocytes. After in vitro 
culturing for 2 wk in osteogenic medium, extracellular mineralized matrix started to 
be secreted by the SHEDs. This multilineage potential makes SHEDs alternative 
sources of dental stem cells[56].

Applications in 3D tissue regeneration
SHEDs cultured in vitro for 7 d were found to aggregate together, and they started to 
form a 3D ossification hemisphere after 36 d[56]. This mineral matrix was identified by 
alizarin red staining within the self-formed 3D woven bone tissue. SHEDs can be 
applied in a 3D polylactoglycolide scaffold fabricated by a surface-selective laser 
sintering device. The expression of osteocalcin was elevated in SHED-loaded polyla-
ctoglycolide scaffolds, suggesting that SHEDs are promising cell sources for scaffold 
populations in tissue bone engineering[57]. In addition to bone regeneration, SHEDs 
may be a source of neurons. When they were incubated in neurodifferentiation 
medium supplemented with epidermal growth factor (EGF) and fibroblast growth 
factor (FGF), SHEDs showed increased expression of neuron markers, such as βIII-
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tubulin, microtubule-associated protein 2, tyrosine hydroxylase, and Nestin[58]. These 
results confirmed the neurogenic potential of SHEDs. In spinal cord injury, a supply of 
SHEDs rescues hindlimb locomotor function[52]. Furthermore, SHED-conditioned 
medium was demonstrated to regenerate peripheral nerves in sciatic nerve defects in a 
rat model. The rat static nerve defects at the mid-thigh level were covered with silicon 
conduits containing SHED-conditioned medium and resulted in an increase in 
Schwann cells, axon density and the number of regenerated myelinated fibers[59]. 
Injection of SHEDs into the brain at the site of perinatal hypoxia-ischemia (HI) injury 
improved the survival rate of HI-injured mice through inhibition of the expression of 
proinflammatory cytokines[60]. Although SHEDs have multidifferentiation potency 
and fewer limitations in terms of ethical concerns in their clinical application, only a 
few studies have investigated the application of SHEDs in 3D-printed scaffolds for 
tissue regeneration. It is possible that the collection, treatment methods, and storage of 
harvested SHEDs have not been standardized or popularized.

PDLSCS
Periodontitis is a very common oral disease resulting in periodontal tissue destruction 
and, more seriously, tooth loss[61]. Many periodontal regeneration treatments have 
been performed to restore the damaged periodontium. PDLSCs were isolated from 
mature periodontal ligaments and found to express the stem cell markers CD105, 
CD90, and CD73[62-64]. Seo et al[63] successfully isolated PDLSCs from human third 
molars, and the expression of the stem cell markers STRO-1 and CD146/MUC18 was 
found in PDLSCs. In addition to the expression of stem cell markers, the osteogenic 
and adipogenic potential of PDLSCs was also identified[65], which makes PDLSCs 
alternative cell sources for tissue regeneration. The regeneration steps of periodontal 
tissue were demonstrated by PDLSCs incorporated with hydroxyapatite/β-tricalcium 
phosphate (HA/β-TCP) as carriers[66]. First, the proliferation of PDLSCs was 
increased, and collagen matrices were formed. Subsequently, the collagen fibers 
started to assemble, and cemental-like tissue was observed. Mineralization was 
present in the cemental-like tissue, and along with the presence of Sharpey’s fibers, 
mature collagen fibers were present. Later, the maturation of cemental-like tissue was 
identified by the expression of cemental tissue genes, such as α-smooth muscle actin 
antibody, collagen type XII (ColXII), osteoblast specific factor-2/periostin, and 
aspirin/PLAP-1[67].

Application in 3D tissue regeneration
A 3D collagen scaffold was fabricated with precise control of the pore size, pore wall 
alignment, and percolation diameter to investigate the effect of the scaffold structure 
on periodontal tissue regeneration. The results suggested that a larger percolation 
diameter increased PDLSC cell elongation and directionality, whereas the pore size 
influenced cell invasion and cell distribution[68]. In addition to the manipulation of 
the scaffold structure, the addition of growth factors also promoted the capacity of 
tissue regeneration. During cemental tissue formation, connective tissue growth factor 
(CTGF) was found to promote the differentiation of periodontal ligament fibroblasts 
during the process of osteogenesis[69]. BMP-7, expressed in the cementum, alveolar 
bone, and periodontal ligament, induces cementogenic differentiation by acting as a 
progenitor for cementoblasts[70,71]. The expression of BMP-2, localized only in 
alveolar bone, was also involved in cementogenic differentiation by increasing the 
expression of cementum attachment protein (CAP)[72]. Since CTGF, BMP-7, and BMP-
2 are beneficial for periodontal ligament formation, Cho et al[73] compared the effect of 
these three growth factors by incorporating them into 3D printed PLGA microspheres, 
and the results indicated that BMP-7 triggered thicker cementum-like layers, better 
integration with the dentin surface and higher expression of cementum protein 1[73]. 
In addition to supplying growth factors to promote tissue regeneration, inhibition of 
inflammatory reactions can also improve tissue formation. For instance, Liu et al[74] 
demonstrated that reductions in tumor necrosis factor-alpha and interferon-gamma 
levels by the introduction of BMMSCs enhanced bone regeneration. Cao et al[75] 
demonstrated that aspirin promoted BMMSC-based calvarial bone regeneration. Thus, 
platelet-rich fibrin-containing PDLSCs were treated with aspirin, a non-steroidal anti-
inflammatory drug, which increased periodontal bone formation[76].

Instead of providing a direct supply of factors that are required for tissue 
regeneration, human umbilical vein endothelial cells (HUVECs) were cocultured with 
PDLSCs to form 3D cell sheet constructs, which were wrapped around human tooth 



Hsiao HY et al. Dental stem cells in three-dimensional regeneration

WJSC https://www.wjgnet.com 1617 November 26, 2021 Volume 13 Issue 11

roots for implantation into the subcutaneous layer of mice. The HUVEC and PDLSC 
coculture group exhibited the thickest PDL ligament-like arrangement compared to 
the PDLSC-only group, suggesting that HUVECs contributed to regulating the 
thickness of the periodontal compartment[77]. Another strategy for improving the 
supply of vasculature to bone regeneration is the introduction of genetically modified 
PDLSCs. A lentiviral construct containing platelet-derived growth factor BB (PDGF-
BB), an angiogenic gene, was introduced into PDLSCs to overexpress PDGF-BB. A 
PLGA-PEG-PLGA thermal hydrogel seeded with PDLSCs overexpressing PDGF-BB 
promoted bone formation in alveolar bone defects[78]. To investigate the possibility of 
incorporating somatic MSCs in tissue regeneration, a mixture of PDLSCs, somatic 
MSCs, and DPSCs was cocultured within 3D collagen/chitosan scaffolds for odonto-
genic differentiation[79]. The results indicated that many growth factors, transcription 
factors and signaling molecules involved in odontogenic differentiation were 
significantly promoted in the group mixed with somatic MSCs. In addition to the 
application of periodontal tissue regeneration, 3D PDLSC-loaded constructs were 
applied to study the effect of the growth microenvironment on PDLSC differentiation. 
PDLSCs were seeded in a customized 3D cell-laden hydrogel array with a gradient of 
gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate 
compositions to study the response of PDLSCs to ECM[80]. The higher the ratio of 
PEG was, the better the performance of the PDLSCs in cell proliferation and cell 
spreading, indicating that the composition of the ECM influenced the behavior of the 
PDLSCs.

SCAP
SCAP is only present at the tip of the developing tooth root before the tooth erupts. 
Although SCAP shares some similar characteristics with DPSCs, there are still some 
differences between these two types of stem cells[8]. In contrast to DPSCs, which are 
the sources of replacement odontoblasts, SCAP is the primary source of odontoblasts 
involved in the formation of root dentin[81]. Comparing their in vitro osteo/ 
odontogenic differentiation potential with DPSCs, SCAP presents stem cell markers 
(STRO-1, CD146, and CD34) similar to those of DPSCs but with a significantly higher 
proliferation rate and mineralization potential during dental formation[82]. Other 
MSC markers, CD73, CD90, and CD105, were also identified in SCAP[40]. Liu et al[83] 
found that CD24 was exclusively expressed in SCAP, not in DPSCs. SCAP are compar-
atively easy to isolate from the tips of developing roots. They are digested with a 
cocktail of collagenase to isolate single-cell suspensions, which are grown under 
routine cell culture conditions[84].

Application in 3D tissue regeneration
In addition to using residual dental pulp in dentin regeneration, SCAP with osteogenic 
potential obtained from dental roots have been applied for dentin regeneration[85]. 
Injectable PLLA nanofibrous microspheres (NF-MS) with the ability to controllably 
release BMP-2 were encapsulated in SCAP for dentin regeneration[86]. More mineral-
ization and osteodentin formation were observed in NF-MS with controlled BMP-2 
release microspheres, suggesting their potential for dental tissue repair. In addition to 
BMP-2 release, SCAP cotreated with stromal cell-derived factor-1α, which is able to 
promote odontoblast differentiation of dental pulp cells, were shown to undergo 
odontogenic differentiation-related gene and protein expression[87]. PDGF-BB is 
known to promote angiogenesis during tissue regeneration[88,89]. The addition of 
PDGF-BB promoted the proliferation of SCAP and improved new bone formation and 
mineralization in a rat calvaria defect model[90].

The growth factor TGBβ3 was shown to be involved in tissue regeneration[91]. 
Somoza et al[92] observed that TGBβ3 secretion by SCAP was elevated when they were 
grown in a 3D microenvironment regardless of the materials used for the scaffold. 
Thus, SCAP were applied and incorporated into a 3D scaffold for tissue regeneration. 
Considering the secretion properties of SCAP, Na et al[93] developed a 3D scaffold-
free stem-cell sheet-derived pellet (CSDP) by culturing a large amount of SCAP on a 
culture dish to form a cell sheet that enriched the secreted ECM. CSDP exhibited the 
odontogenic/osteogenic potential to form dental pulp-like and dentine-like tissue after 
implantation into the subcutaneous layer in immunodeficient mice. Dental ECM was 
reported to enhance cell proliferation and mineralization[94]. A novel SCAP-loaded 
bioink was developed by applying dental ECM to printable alginate to form dentin-
derived bioink, in which soluble dentin molecules significantly enhanced odontogenic 
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differentiation[95].

DFPCS
The dental follicle is the connective tissue surrounding the enamel organ and dental 
papilla that forms a vascular fibrous sac. In 2005, Morsczeck et al[96] isolated DFPCs 
from the dental follicle of human third molar teeth, which were found to express the 
stem cell markers Notch and Nestin. Their potential for osteogenic, adipogenic, 
chondrogenic, and neural differentiation was further confirmed[97]. Subsequently, 
DFPCs were applied for tissue regeneration, such as the regeneration of the salivary 
glands, dental roots, and bone tissue[98-100].

Application in 3D tissue regeneration
Among the applications of dental stem cells in tissue regeneration, only a few studies 
have introduced DFPCs to 3D tissue regeneration. DFPCs cultured in a 3D rotatory 
culture system displayed many follicle markers, such as CD44, CD90, CD146, CD31, 
CD34, and CD45Ag[101]. Furthermore, their differentiation potential was increased 
when DFPCs were cultured in a 3D dynamic culture system. For the generation of 3D 
tissue constructs, DFPCs were seeded in 3D porous scaffolds of collagen-
nanohydroxyapatite/phosphoserine (collagen-nano-HA/OPS) biocomposite cryogels 
and implanted into the subcutaneous layer of nu mice. These 3D DFPC-loaded 
collagen-nano-HA/OPS constructs exhibited greater osteogenic differentiation with 
higher levels of osteopontin secretion[102].

CLINICAL APPLICATIONS OF DENTAL STEM CELLS
The use of dental stem cells for autologous or allogeneic transplantation has been 
introduced into clinical practice. The biological safety of dental stem cells requires 
strict regulation. Standard examinations for viruses, pathogenic microorganisms, or 
any sources with animal origins are necessary[103-105]. Due to the immune response, 
a same-species origin of the stem cell culture system is recommended for cell therapy
[106]. According to the Clinical Gov website, there are fewer than 10 cases of the use of 
dental stem cells in clinical applications, implying a gap in the application of dental 
stem cells between basic research and clinical practice. There is a scarcity of data for 
the use of decellularized biological membranes for preparing 3D dental regenerative 
constructs, which is a crucial approach for regenerative dentistry. Indeed, dental stem 
cells are not the most suitable stem cell choice for tissue regeneration due to harvest 
contamination, small cell amounts available per patient and invasive harvesting 
approaches. However, the regenerative potential of dental stem cells is still supported 
by several clinical results. A clinical study reported that most clinical trials based on 
the use of DPSCs cells were performed for bone regeneration, periodontitis, and dental 
pulp regeneration, whereas trials involving the use of periodontal PDLSCs were 
conducted to study periodontal disease treatment. No clinical trials that used DFPCs 
were found[107]. Overall, dental stem cells are not commonly used to treat human 
diseases. Identical to the original issues hindering stem cell therapy, ethical concerns 
and cell sources are the main obstacles. Moreover, the survival of grafted dental stem 
cells exhibited different results after long-term follow-up observations. Autologous 
PDLSCs were detected after 8 wk in an ovine periodontal defect model, whereas donor 
PDLSCs implanted into recipient mice were untraceable two weeks after implantation
[108]. Whether autologous or allogeneic stem cell sources affect the survival rate of 
transplanted cells remains to be further investigated.

CONCLUSION
Dental-derived stem cells with mesenchymal stem cell properties are promising cell 
sources for tissue regeneration. Comparisons among these five types of dental-derived 
stem cells showed that DPSCs, SHEDs, and PDLSCs present a higher growth potential 
than BMSCs[109]. Moreover, SCAP and DPSCs showed weaker adipogenic differen-
tiation than BMSCs[84]. Regardless of whether the different types of dental stem cells 
have osteogenic or odontogenic potential, each cell type presents unique differen-
tiation potentials in the corresponding tissue type. Although dental stem cells present 
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differentiation potential for adipogenesis, chondrogenesis, and neurogenesis, most of 
their clinical utility lies in the field of regenerative dentistry. With the trend of 3D 
tissue engineering, the application of dental stem cells to 3D tissue reconstruction has 
been emphasized. In this review, many basic research and preclinical studies were 
presented to support the idea that dental stem cells can be applied in a feasible 
approach to translational medicine and are available resources for 3D tissue 
regeneration.
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