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Abstract
Major depressive disorder (MDD) is highly prevalent and is a significant cause of 
mortality and morbidity worldwide. Currently, conventional pharmacological 
treatments for MDD produce temporary remission in < 50% of patients; therefore, 
there is an urgent need for a wider spectrum of novel antidepressants to target 
newly discovered underlying disease mechanisms. Accumulated evidence has 
shown that immune inflammation, particularly inflammasome activity, plays an 
important role in the pathophysiology of MDD. In this review, we summarize the 
evidence on nuclear receptors (NRs), such as glucocorticoid receptor, mineralocor-
ticoid receptor, estrogen receptor, aryl hydrocarbon receptor, and peroxisome 
proliferator-activated receptor, in modulating the inflammasome activity and 
depression-associated behaviors. This review provides evidence from an 
endocrine perspective to understand the role of activated NRs in the 
pathophysiology of MDD, and to provide insight for the discovery of antide-
pressants with novel mechanisms for this devastating disorder.

Key Words: Major depressive disorder; Immune inflammation; Inflammasome; Nuclear 
receptors
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Core Tip: We summarize the evidence on nuclear receptors (NRs), such as glucocor-
ticoid receptor, mineralocorticoid receptor, estrogen receptor, aryl hydrocarbon 
receptor, and peroxisome proliferator-activated receptor, in modulating inflammasome 
activity and depression-associated behaviors. This review provides evidence from an 
endocrine perspective to understand the role of activated NRs in the pathophysiology 
and treatment of major depressive disorder. Hopefully, the modulation of NRs with 
hormones and metabolites may become one of the key endocrinologic mechanisms for 
the development of novel therapeutics to increase the likelihood of therapeutic 
efficacy.

Citation: Wang H, Kan WJ, Feng Y, Feng L, Yang Y, Chen P, Xu JJ, Si TM, Zhang L, Wang G, 
Du J. Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of 
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INTRODUCTION
Major depressive disorder (MDD) is common, has a high recurrence rate and disability 
rate, and affects approximately 300 million people worldwide[1]. However, the 
underlying pathophysiological mechanisms of MDD have yet to be completely 
understood. Although effective treatments are available, market-approved antide-
pressants have many problems, such as a single mechanism of action, delayed effect
[2], and numerous side effects[3], and approximately one third of all patients fail to 
respond to conventional antidepressants[4]. Accordingly, there is an urgent need for 
new conceptual frameworks and perspectives to understand the occurrence and 
development of depression to develop better treatments. As another important 
hypothesis of depression, several lines of evidence have established an association 
between MDD and the neuroimmune pathway, although some psychiatrists have 
argued about the causal relationship between inflammation and depression[5-7]. In 
this review, we outline emerging data that point to nuclear receptors (NRs) as 
potentially important contributors to the pathophysiology of depression. We first 
review the current research on the inflammatory hypothesis of depression, and 
investigate the role of inflammasomes in the neuroimmune pathway of depression. 
The regulatory roles of NRs [including glucocorticoid receptor (GR), mineralocorticoid 
receptor (MR), estrogen receptor (ER), aryl hydrocarbon receptor (AHR), and 
peroxisome proliferator-activated receptor (PPAR)] in inflammasome activation and 
pathophysiology of depression are also investigated. Finally, these interactions are 
discussed as a foundation for new therapeutics that target the NRs to treat depression.

INFLAMMATION AND MDD
Inflammatory response is a survival mechanism in human self-protection, which is the 
defensive response of the body to various traumatic stimuli. Endogenous or 
exogenous pathogens and tissue damage are initially detected by pattern recognition 
receptors (PRRs), such as Toll-like receptors and nucleotide-binding oligomerization 
domain (NOD)-like receptors, mainly expressed by cells that participate in the innate 
immune response[8]. Following the activation of such receptors, signals are then 
transmitted to activate transcription factors. These factors regulate hundreds of genes 
that increase the initial inflammatory response. The brain has its own highly complex 
immune regulation system and is closely connected with the peripheral immune 
system[9]. Crosstalk between the immune system and the central nervous system 
(CNS) is very important for the establishment of appropriate immunity against 
infection and injury, the maintenance of mental health, and the influence of behavioral 
response[10].

The role of inammation in the causation and exacerbation of MDD is supported by 
the findings from clinical studies that patients with chronic inflammation (e.g., asthma
[11,12] and meningitis[13,14]), tumors, and autoimmune diseases (e.g., multiple 
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sclerosis[15,16], Guillain-Barre syndrome[17], and systemic lupus erythematosus[18,
19]) are more likely to suffer from depression, the secretion of inflammation-activated 
cytokines [interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNFα), and C-reactive 
protein] in the peripheral blood and cerebrospinal fluid of patients with depression is 
increased[20,21], microglial activation and neuro-inammation were found in the 
brain of patients with depression examined post mortem[22], and both nonsteroidal 
anti-inflammatory drugs and cytokine inhibitors have an active therapeutic effect on 
depression[23-25]. Preclinical studies have demonstrated that repeated stress events 
cause neurobiological changes including synaptic plasticity deficits[26] and 
neurotransmitter system dysregulation[27,28], leading to depressive-like behavior. 
Apart from these neurobiological responses, exposure to stress also has physiological 
and immunological consequences such as increased expression of inflammatory 
cytokines (such as IL-1β, TNFα, and IL-6) in the blood and brain[29]. Although 
cumulative evidence supports that immune inflammation plays a very important role 
in the pathogenesis of depression, the exact mechanism remains unclear.

INFLAMMASOMES IN THE NEUROIMMUNE PATHWAY OF MDD
The term ‘inflammasome’ was first proposed by the Tschopp research group in 2002
[30]. Inflammasomes are multiprotein complexes (-700 KD) composed of intracellular 
PRRs, and are an important part of the innate immune system. They can recognize 
pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide and 
bacteria) or host-derived danger signaling molecular patterns [DAMPs, including 
adenosine triphosphate (ATP), heat shock proteins (Hsp), glucose, uric acid, high 
mobility group box 1, and molecules associated with oxidative stress], and can recruit 
and activate pro-caspase-1. Activated caspase-1 cleaves the precursors of IL-1β and IL-
18 to produce corresponding mature cytokines[31]. Activated inflammasomes can also 
induce apoptosis. Over the past 18 years, extensive research in this area has illustrated 
the key components of inflammasome activation and its role in disease processes. To 
date, five receptor proteins have been found to assemble inflammasomes, consisting of 
the NOD, leucine rich repeat (LRR)-containing protein (NLR) family members NLRP1, 
NLRP3, and NLRC4, as well as the proteins absent in melanoma 2 and pyrin[32]. The 
existing evidence suggests that NLRP1 and NLRP3 inflammasomes, especially NLRP3, 
play an important role in the neuroimmune pathway of MDD[33].

NLRP1 inflammasome
NLRP1 is the first identified inflammasome sensor protein[31]. Humans only have one 
NLRP1 protein, containing PYD, NOD, and LRRs domains, a function-to-find domain, 
and a carboxy-terminal caspase-associated recruitment domain[31]. The NLRP1 
inflammasome, mainly expressed in neurons, is predominantly implicated in 
pathologies of neuronal injury and cognitive impairment, which are core features of 
MDD[34,35]. Although no clinical studies have reported the NLRP1 inflammasome 
changes in the pathogenesis of MDD patients, animal studies suggest that the NLRP1 
inflammasome may play an important regulatory role in depressive-like behavior. Li 
et al[36] found that inhibiting the product of NLRP1 inflammasome could eliminate 
the depression-like behaviors caused by a chronic constriction injury. Recent studies 
showed that chronic unpredictable mild stress (CUMS) increased the expression of 
NLRP1 inflammasome complexes and pro-inflammatory cytokines. Hippocampal 
Nlrp1a knockdown prevented the NLRP1 inflammasome-driven inflammatory 
response and improved CUMS-induced depressive-like behaviors[37]. The above 
results suggest that NLRP1 inflammasome may be a potential antidepressant target, 
and further mechanisms need to be clarified.

NLRP3 inflammasome
Unlike NLRP1, NLRP3, mostly expressed in microglia cells, is activated by the most 
diverse array of danger signals[33,34]. NLRP3 has been reported to participate in the 
pathophysiology of depression in animal models and MDD patients. Supporting the 
hidden role of the NLRP3 inflammasome in MDD patients are data demonstrating that 
NLRP3 activation is increased in peripheral blood mononuclear cells[38,39]. Preclinical 
evidence linking the NLRP3 inflammasome to depressive-like behaviors has been 
found in numerous animal models, including an acute model of systemic lipopolysac-
charide administration[40], chronic stress models[33], and ovariectomy and estrogen-
deficient mice. These models can lead to depressive-like behavior and up-regulation of 
NLRP3 expression in rodents. Down-regulation of the expression of NLRP3 by some 
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biological methods can reverse depression-like behavior[41]. NLRP3 inflammasome-
driven pathways in depression have been widely reviewed[42]. In brief, psychological 
stress and danger substances can activate the NLRP3 inflammasome, which may lead 
to the release of pro-inflammatory cytokines and induction of depression. Next, we 
will focus on the role of NRs in the activation of inflammatory bodies in the following 
chapters.

ROLE OF NRS IN REGULATION OF INFLAMMASOMES AND DEPRESSION
The NR superfamily is a family of ligand-regulated transcription factors that are 
widely expressed throughout the body[43]. NRs are activated by steroid hormones, 
such as androgen, estrogen, and progesterone, and other lipid-soluble signals, inclu-
ding oxysterols, retinoic acid, and thyroid hormone, and regulate the expression of a 
wide range of genes linked to metabolism and inflammation. There are 49 known 
members in humans[43]. All NR superfamily members have a common architecture, 
containing a variable N-terminal domain, a central DNA binding domain (DBD), a 
hinge region, a carboxy-terminal ligand-binding domain (LBD), and a variable C-
terminal domain[44]. Of these, the DBD and LBD are the two most highly conservative 
binding domains. The DBD contains two zinc-fingers, which act as a hook, that pro-
vide base-specific binding to sequences in the vicinity of target genes. The LBD of NRs 
consists of a three-layered, antiparallel, helical sandwich and is connected to the DBD 
by a flexible hinge domain. According to the key characteristics of dimerization, DNA 
binding motifs, and ligand binding, NRs can be broadly divided into four classes 
[steroid receptors, retinoid X receptor (RXR) heterodimers, homodimeric orphan 
receptors, and monomeric orphan receptors][45]. There are some obvious structural 
and functional differences between different classes, and the role of different NRs in 
the neuroimmune mechanism of MDD are described.

NRs in MDD
GR
GR is a member of the steroid receptors, and is activated by the endogenous steroid 
hormone cortisol[46]. Unliganded GR is predominantly localized within the cytoplasm
[47]. Glucocorticoid (GC) binding causes conformational changes of the GR and 
activates multiple functional domains, including the hinge and LBD regions. After 
rapidly and efficiently being transported to the nucleus, the GR binds to the specific 
GC response elements of the genome to form a nuclear complex containing the GR and 
co-regulatory factors, which jointly activate or inhibit the transcription of GC res-
ponsive genes[48].

The participation of GR down-regulation in the pathophysiology of MDD has been 
demonstrated in clinical and preclinical studies. Drug-free MDD patients have 
reduced GR mRNA expression together with increased expression of the FK506 
binding protein 5[49,50], which reduces GR function and promotes inflammation by 
coordinating with Hsp90. Kang et al[51] found an association between the methylation 
of GRs and depression later in life. A meta-analysis demonstrated that the NR3C1 (GR) 
rs41423247 homozygous mutation may be a risk factor for MDD [odds ratio (OR): 0.77, 
95% cumulative incidence (CI): 0.64-0.94, P = 0.01][52]. Studies on transgenic mice and 
a mouse stress model found that the down-regulation of GR expression is significantly 
related to depressive-like behavior[53]. Exogenous GC exacerbates depressive-like 
behavior, and down-regulates GR expression. In addition, accumulating evidence has 
illustrated that GR antagonists, such as mifepristone, ameliorate psychotic symptoms 
and cognitive deficits in MDD and bipolar disorder[54,55]. However, this seems to 
contradict the hypothesis of enhanced immune inflammatory response in MDD, as GC 
is one of the most effective anti-inflammatory hormones in the body.

It is also understandable that the effect of GR on the immune system and synapse is 
highly dependent on the time and dose. Mounting data indicate that innate immune 
cytokines cause insufficient GC signals by decreasing GR expression, blocking translo-
cation of the GR from the cytoplasm to the nucleus, and disrupting GR-DNA binding 
through nuclear protein-protein interactions, which may be a reasonable explanation 
for this problem. Escoter-Torres et al[56] have reviewed the mechanisms of inflam-
matory gene regulation by the GR. Here, we will mainly explore the relationship 
between GR and inflammasomes in the pathophysiological mechanism of MDD.
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Hypothalamic-pituitary-adrenal (HPA) axis dysfunction was assumed to be due to 
aberrant adrenal GC secretion and disorderly hormone feedback loops in MDD 
patients[57]. GC-induced activation of the NLRP3 inflammasome may mediate the 
potentiated neuroinflammation[58]. However, whether the effects of inflammasome 
activation and the HPA axis are regulated through GR-related pathways is still un-
clear. Nevertheless, some evidence suggests that the GR is closely related to inflam-
masomes, which play an important regulatory role in some immune inflammatory 
diseases, such as MDD and acute-on-chronic hepatitis B liver failure[59]. In chronic 
obstructive pulmonary disease-induced depression, GR dysfunction mediates 
activation of the NLRP3 inflammasome. Preclinical evidence has shown that activation 
of the GR-NF-κB-NLRP3 pathway in microglia mediated chronic stress-induced 
neuroinflammation and depressive-like behavior[60]. Chronic corticosterone (CORT) 
treatment can increase Txnip and upregulate Txnip-NLRP3 binding, which activated 
the NLRP3 inflammasome, and induced the activation of caspase-1 and the release of 
IL-1β[61]. In addition, chronic GC exposure may increase neuroinflammation through 
NLRP1 inflammasome activation and induce neurodegeneration[62]. In conclusion, 
subsequent studies should be devoted to exploring how GR regulates the activation of 
inflammatory bodies and thus regulates the neuroimmune response.

MR
Negative feedback regulation of the HPA axis requires the participation of the dual-
receptor system of MR and GR[63]. Similar to GR, MR is another member of steroid 
receptor and ligand-inducible transcription factors. In the brain, MR has approx-
imately 10-fold higher affinity for CORT than the GR[64]. Due to the differences in 
affinity, CORT at the basal level largely occupies the MR, whereas higher hormone 
levels progressively occupy the GR after stress and circadian/ultradian peaks[65]. 
Early research results showed that brain MRs did not play an important role in the 
regulation of the stress response; however, subsequent studies demonstrated that MRs 
were essential for nongenomic regulation of glutamate transmission in the 
hippocampus by CORT. Based on this, considering that MRs are expressed abundantly 
in the limbic circuitry, a number of studies have focused on their regulatory role in 
depression and cognitive dysfunction[66].

The expression of MRs was decreased in the hippocampus, inferior frontal gyrus, 
and cingulate gyrus in depressed patients[67,68]. In addition, neuroendocrine studies 
also indicated abnormal MR function in MDD[63]. Otte C et al[69] found that the 
administration of an MR agonist (fludrocortisone) in drug-free patients with de-
pression effectively reduced cortisol secretion and improved their verbal memory and 
executive function. In MDD patients treated with escitalopram, fludrocortisone 
accelerated the treatment response by 6 d. Furthermore, MR gene variants[70,71] and 
haplotypes[72,73] have been associated with depression symptoms and stress-induced 
reward-related learning deficits, and MR haplotypes may be potential biomarkers for a 
subgroup of patients with atypical depression[73]. In addition, MR malfunction and 
abnormal DNA methylation level have been demonstrated in treatment-resistant 
depression, depression during pregnancy, and in adolescence[74,75]. In preclinical 
studies, the role of the MR in the regulation of HPA-axis activity, executive function, 
and memory performance has been well demonstrated. In contrast to the effect of GR 
antagonists on long-term potentiation (LTP), MR antagonists inhibited the LTP 
process, suggesting that the MR and GR have opposite effects on the adjustment of 
synaptic plasticity after stress exposure[76]. The results from transgenic mice with 
forebrain knockout or overexpression of MR confirmed the role of MR in learning and 
memory[77]. After loss of the MR gene in the forebrain, mice displayed an aberrant 
basal and stress-induced CORT secretion and deficits in learning and memory[78]. In 
contrast, overexpression of MR in the forebrain improved spatial memory and 
behavior performance[79].

Research on the role of MR in the pathogenesis of depression is still in its infancy, 
and its possible mechanism has not been fully explained. Chen et al[80] reviewed the 
possible mechanism of MR in regulating depression, learning, and memory from 
different perspectives, such as HPA-axis activity, 5-HT transmitter system, adult-
neurogenesis, and inflammation. Considering that MR can participate in the regulation 
of other and immune-related diseases by activating NLRP3 inflammasome[81,82], 
whether the role of MR in the pathogenesis of depression is  involved in inflam-
masomes and modulation of inflammasomes will be important research directions in 
the future.
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ER
Given that the prevalence of depression in women is 2-3 times higher than that in men 
and changes in mood are simultaneously associated with estrogen levels[83], a 
potential role for estrogen in the pathophysiology of depression has generated 
substantial interest. It is well documented that estrogen can regulate neurotrans-
mission, enhance the levels of serotonin and noradrenaline, and plays a vital role in 
emotion processing, cognition regulation, and motivation triggers[84,85]. The data 
from clinical and preclinical research show that estrogen is involved in modulation of 
depression and anxiety. For example, cumulative clinical studies found that men-
opausal declines in estrogen levels were associated with an increase in mood 
disturbances in women[86,87]. Moreover, premenopausal women with depression had 
lower levels of 17β-estradiol (E2) than non-depressed women[88]. In rodents, ovari-
ectomy, resulting in estrogen deficiency, induced an increase in depression and 
anxiety-like behavior[89] which was improved by E2 replacement[90].

Estrogen plays its biological role mainly through activating ERs. The ERs including 
ERα (ESR1) and ERβ (ESR2) are members of a superfamily of hormone-regulated 
transcription factors, and regulate the gene transcription of estrogen by binding to 
specific DNA sequences[91]. Genetic variation in ERs may therefore modify estrogen 
signaling, such as altering binding efficiency and disrupting normal gene regulation, 
thus increasing susceptibility to developing depression in women. Ryan J et al[87] 
carried out a detailed review and pointed out that there was a significant correlation 
between ESR1 gene polymorphism and severe depression in women. Preclinical 
research has demonstrated that ERα and ERβ agonists can reverse stress-induced 
depressive behavior and cognitive deficits[92]. However, the specific mechanism of ER 
in stress-induced depression remains unclear. Some studies have found that NLRP3 
inflammasome activation mediates estrogen deficiency-induced depressive-like 
behavior and neuroinflammation in the hippocampus of mice[93]. In other inflam-
mation-related diseases, such as endometriosis and breast cancer, the ER regulates the 
activation of NLRP3, which leads to inflammation[94,95].

AHR
AHR is a ligand-activated transcription factor which was first identified as a 
contaminant of the chemical herbicide Agent Orange[96]. However, AHR has been 
proved to be a crucial modulator of host-environment interactions in recent years, espe
-cially for immune and inflammatory responses. As an NR, AHR is bound by co-
chaperones Hsp90 and XAP that maintain its localization in the cytoplasm. After 
ligand binding, AHR is released from its co-chaperones and is transferred to the 
nucleus, where it forms a heterodimer with AHR nuclear translocator (ARNT) and 
binds to DNA to regulate target gene expression[97]. AHR can bind to many diverse 
ligands, including exogenous synthetic aromatic hydrocarbons [e.g., benzo (a) pyrene], 
exogenous natural chemicals [e.g., tryptophan (Trp) and norisoboldine], and end-
ogenous ligands (e.g., tryptamine and kynurenine)[98]. Specifically, compounds from 
the Trp metabolic pathway, especially the kynurenine pathway (-95% of Trp 
metabolism), provide many ligands for the AHR and play an important role in the 
regulation of immune and inflammatory responses. A large body of studies have 
shown that the AHR is associated with many diseases driven by immune/inflam-
matory processes, including MDD, asthma, multiple sclerosis, rheumatoid arthritis, 
and allergic reactions[97].

Increased kynurenine (KYN) production from Trp metabolism, mediated by indole-
amine 2,3-dioxygenase (IDO), is a biomarker of immune dysregulation in depression
[99]. Clinical and preclinical data have consistently shown an elevated KYN level with 
depressive behavior after immune disturbance. The activation of AHR signaling may 
play an important role in immune regulation. Preclinical evidence has shown that 
blocking the AHR can reverse KYN-induced monocyte trafficking, neuroimmune 
disorder, and depression-like behavior in mice[99]. Recent clinical studies have also 
confirmed that the AHR is related to the individual difference in plasma KYN concen-
tration in MDD patients[100]. The AHR regulates the expression of Trp-2,3-
dioxygenase 2 (TDO2) and IDO1/2, and downstream enzymes kynurenase and 
kynurene 3-monooxygenase (KMO). The results of in vitro cell culture showed that 
AHR knockdown resulted in a decrease of KYN concentration in the cell culture 
medium, which may be due to the increase in quinolinic acid, a downstream 
metabolite of KYN[97]. Quinolinic acid is a neurotoxic NMDA receptor agonist and 
contributes to MDD symptoms[100]. Although cumulative data have confirmed the 
regulatory role of AHR in depression-like behavior induced by an abnormal KYN 
metabolic pathway, the specific mechanism has not been clearly elucidated. A 
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significant result showed that AHR can regulate the activity of NLRP3 inflammasome 
by inhibiting the transcription of NLRP3[101]. The proposed model is as follows: 
Following engagement by AHR cognate ligands, it forms a heterodimer with ARNT in 
the nucleus, binds to the xenobiotic response element (XRE) regions located at the NF-
κB site in the promoter of NLRP3 and then inhibits NF-κB transcription activity, finally 
decreasing NLRP3 transcription and subsequent inflammasome activation[101]. In 
view of the role of NLRP3 in the neuroimmune mechanism of depression, this may be 
the potential mechanism of AHR in regulating depressive episodes. In addition, the 
AHR acts as a potential crosstalk mediator between the adaptive immune system in 
the gut and gut microbiota-derived metabolites. Whether AHR has a certain role in the 
brain-gut axis dysfunction of MDD should be investigated in subsequent research.

PPARs
PPARs are ligand-activated transcription factors and members of the NR receptor 
superfamily. Three isotypes of PPARs have been identified, namely, PPARα, PPARβ
/δ, and PPARγ[102]. Despite the three PPAR isoforms having a high degree of 
structural homology, they have distinct tissue distribution, ligand-binding properties, 
and functional roles. Endogenous and natural ligands of PPARs mainly include fatty 
acids and fatty-acid derivatives. PPARs translocate into the nucleus upon ligand 
binding, where they form heterodimers with the RXR and then bind to peroxisome 
proliferator response elements to regulate transcriptional target genes. The 
physiological characteristics of PPARα, β/δ, and γ and their role in other diseases have 
been extensively reviewed[103,104], and will not be elaborated here. Next, we will 
discuss the role of PPARs in depression.

PPARα
PPARα is distributed in many peripheral tissues which catabolize high amounts of 
fatty acids. In the CNS, PPARα is highly expressed in the basal ganglia, prefrontal 
cortex, thalamic nuclei, hippocampus, and ventral and tegmental areas[105]. In these 
regions, the distribution of PPARα in neurons is higher than that in glial cells. Recent 
research found that PPARα modulates the stress response, neurotransmission, 
neuroinflammation, and neurogenesis and plays an important regulatory role in some 
neuropsychiatric diseases, such as depression, post-traumatic stress disorder, and 
neurodegenerative diseases[106]. Preclinical studies found that knockout or overex-
pression of PPARα in rodent brain could imitate or reverse the depressive-like 
behavior induced by chronic stress. In addition, PPARα selective agonists (WY14643 
and fenofibrate) have been associated with antidepressant effects in stress-induced 
depression models[107,108]. Some antidepressants, such as venlafaxine and fluoxetine, 
need PPARα to play an antidepressant role[109]. The antidepressant effect may be 
mediated by acting on the cAMP response element-binding (CREB)-mediated biosyn-
thesis of brain-derived neurotrophic factor (BDNF)[109-111]. Some studies have also 
indicated that PPARα can modulate mesolimbic dopamine transmission and improve 
depression-related behavior[112]. Furthermore, N-palmitoylethanolamine, which 
stimulates PPARα, induced a dose-dependent antidepressant effect by engaging 
neurosteroid biosynthesis[113]. In summary, PPARα may play an important role in the 
pathogenesis of MDD and the effects of antidepressant medications, and it may be a 
new target for developing novel antidepressants.

PPARβ/δ
PPARβ/δ is the most widely expressed isoform in the brain, with particularly high 
levels in the hippocampus, entorhinal cortex, and hypothalamus[105]. Compared with 
the other two subtypes, PPARβ/δ showed a higher expression level in neurons, and 
had neuroprotective effects in some CNS disease models[114]. Recent studies have 
found that overexpression of PPARβ/δ in the hippocampus can inhibit depressive-like 
behavior induced by chronic stress in rats, which corresponds to a significant down-
regulation of PPARβ/δ expression in the hippocampus when rats experience chronic 
unpredictable stress[115]. Subsequent studies have found that when PPARβ/δ is 
knocked down, rats show depressive-like behavior[116]. Similar to the antidepressant 
effect of PPARα, the CREB-BDNF pathway may also be involved in the antidepressant 
effect of PPARβ/δ. Furthermore, chronic stress can increase the expression of TWIST1, 
which will lead to mitochondrial damage and ATP deficiency by down-regulating 
PPARβ/δ expression, and eventually leads to depression-like behavior in mice[116]. 
How overexpression of PPARβ/δ and its agonists play an antidepressant role is still 
unclear.



Wang H et al. Modulation of inflammasomes by NRs in MMD

WJP https://www.wjgnet.com 1198 December 19, 2021 Volume 11 Issue 12

PPARγ
PPARγ is highly expressed in the amygdala, dental gyrus, prefrontal cortex, ventral 
tegmental area, and basal ganglia[105]. Under normal physiological conditions, 
PPARγ can co-localize with neurons and astrocytes in human and mouse brain, but 
not with microglia. However, PPARγ can also be expressed in microglia when the 
functional status of microglia changes. PPARγ agonists have been synthesized for the 
treatment of metabolic diseases, especially dyslipidemia and type 2 diabetes mellitus, 
as well as non-metabolic diseases including neurodegenerative diseases, cancer, and 
inflammatory diseases due to their important metabolic regulation and excellent 
druggability[117,118]. Compared with the above two subtypes, the relationship 
between PPARγ and depression has been more widely recognized, and clinical trials 
on the antidepressant effects of PPARγ agonists are in full swing. Some gratifying 
results have been found and were well reviewed[117].

In conclusion, all isotypes of PPAR may participate in the pathophysiology of 
depression, and even antidepressants based on PPAR agonists have been developed. 
However, how PPARs play an antidepressant role seems unclear, although some 
studies have shown that this occurs by regulating the biosynthesis of BDNF and 
regulating the 5-HT neurotransmitter system. Activation of PPARs inhibits the 
activation of inflammasomes (in particular NLRP3) and the release of inflammatory 
cytokines, which is similar to the changes in patients with depression and in de-
pressive models[119,120]. Therefore, whether and how PPARs play an antidepressant 
role by regulating the inflammatory response will be an important future research 
direction. In fact, some studies have found a link between them. Liu et al[121] found 
that oridonin, mediated through the PPARγ receptor signaling pathway, modulated 
excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors in the prefrontal cortex, and showed fast and significant antidepressant 
efficacy. In addition, Song et al[122] found that, astragaloside IV, which exhibited 
PPARγ agonist activity, ameliorated stress and neuroinflammation-induced 
depressive-like behaviors via the PPARγ/NF-κB/NLRP3 inflammasome axis in mice. 
Apigenin exhibits antidepressant-like effects by inhibiting NLRP3 inflammasome 
activation through the upregulation of PPARγ in rats with CUMS[123]. Moreover, in 
the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's 
disease, PPARβ/δ agonist alleviates NLRP3 inflammasome-mediated neuroinflam-
mation[120].

CONCLUSION
Given the relatively low overall response rates and the wide range of ‘adverse’ events 
associated with current antidepressants, there is an urgent need for novel therapeutics 
to treat specific underlying disease mechanisms that are not addressed by the antide-
pressants targeting the serotonergic and/or noradrenergic system. Hopefully, the 
modulation of NRs with hormones and metabolites may become one of the key 
endocrinologic mechanisms for the development of novel therapeutics to increase the 
likelihood of therapeutic efficacy. Here, we reviewed the regulatory role of NRs 
(including the GC, MR, ER, AHR, and PPAR) in inflammasome activation and the 
pathophysiology of depression (Figure 1). Indeed, a major breakthrough in the 
pathophysiology of depression was the discovery that DAMPs and PAMPs activate 
inflammasomes, which enhance caspase-1 activity, and subsequently inhibit excitatory 
AMPA receptor synaptic plasticity in the brain circuitry to change mood-associated 
behaviors[124,125]. Cumulative studies have shown that activation of the NRs may 
directly change the activity of inflammasomes to modulate the levels of mature forms 
of caspase-1 and IL-1β. Caspase-1-mediated programmed cell death and surface 
stability of the AMPA receptor in the hippocampus, are essential for depression-like 
behavior[125]. Current data suggest that direct modulation of NRs may offer new 
opportunities to mitigate depressive disorders. However, several directions are 
warranted for future studies: (1) To identify more NR activators for the treatment of 
MDD; (2) To address the detailed mechanism of how NRs modulate inflammasomes; 
and (3) To perform clinical trials to prove the role of NR modulators in the treatment 
of MDD. These NR modulators can be safely used in combination with currently 
available antidepressants to simultaneously target multiple disease mechanisms and 
increase the likelihood of therapeutic success.



Wang H et al. Modulation of inflammasomes by NRs in MMD

WJP https://www.wjgnet.com 1199 December 19, 2021 Volume 11 Issue 12

Figure 1 Inflammasome activation in the pathophysiology of major depressive disorder - roles of the nuclear receptors. NLRP3 
inflammasome activation, which includes canonical and noncanonical activation pathways, is induced by a number of pathogen-associated molecular patterns and 
danger signaling molecules patterns. The canonical activation pathway involves stimulation-mediated activation signals such as ion fluxes, lysosomal rupture, 
mitochondrial dysfunction, and so on. Mitochondrial dysfunction leads to the production of mitochondrial reactive oxygen species, damaged mitochondrial DNA, and 
calcium release from the mitochondria, and all these changes facilitate the assembly of inflammasomes. Activation of the inflammasome causes caspase-1 activation, 
leading to the maturation and release of interleukin (IL)-1/IL-18 and pyroptosis. In addition, caspase-1 modulates the membrane stability of alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, which leads to the down-regulation of AMPA receptors at the synapses. Nuclear receptors inhibit the assembly of 
NLRP3 inflammasome, which will finally protect the excitatory AMPA receptor synaptic activity and contribute to the antidepressant mechanism of the nuclear 
receptor activators. ROS: Reactive oxygen species; PAMPS: Pathogen-associated molecular patterns; DAMPS: Danger associated molecular patterns; GSDMD: 
Gasdermin D; AMPAR: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; IL: Interleukin; NRs: Nuclear receptors; GR: Glucocorticoid receptor; ER: 
Estrogen receptor; AHR: Aryl hydrocarbon receptor; PPAR: Peroxisome proliferator-activated receptor; ATP: Adenosine triphosphate.
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