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Abstract
Insufficient sleep has been correlated to many physiological and psychoneuro-
logical disorders. Over the years, our understanding of the state of sleep has 
transcended from an inactive period of rest to a more active state involving 
important cellular and molecular processes. In addition, during sleep, electro-
physiological changes also occur in pathways in specific regions of the mamm-
alian central nervous system (CNS). Activity mediated synaptic plasticity in the 
CNS can lead to long-term and sometimes permanent strengthening and/or 
weakening synaptic strength affecting neuronal network behaviour. Memory 
consolidation and learning that take place during sleep cycles, can be affected by 
changes in synaptic plasticity during sleep disturbances. G-protein coupled 
receptors (GPCRs), with their versatile structural and functional attributes, can 
regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep 
deprived conditions. In this review, we aim to discuss important functional 
changes that can take place in the CNS during sleep and sleep deprivation and 
how changes in GPCRs can lead to potential problems with therapeutics with 
pharmacological interventions.

Key Words: G-protein coupled receptors; Metabotropic glutamate receptors; Gamma-
amino butyric acid-B receptor; Synaptic plasticity; Sleep deprivation; Memory 
consolidation
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Core Tip: Sleep hygiene is thought to be necessary for memory consolidation and 
learning while sleep disturbances can alter both synaptic plasticity and memory consol-
idation. Recent findings indicate that the expression of G-protein coupled receptors 
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(GPCRs) like metabotropic glutamate receptors, gamma-amino butyric acid-B 
receptors and serotonin (5-hydroxytryptamine) receptors as well as synaptic plasticity 
are altered following a short episode of sleep deprivation. GPCRs are involved in a 
variety of central nervous system functions and are targets for therapeutic agents in 
psychiatry and other neurological disorders. Therefore, a deeper understanding of these 
receptors in association with the state of sleep and its related functions and disorders is 
needed.

Citation: Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity 
in sleep deprivation. World J Psychiatr 2021; 11(11): 954-980
URL: https://www.wjgnet.com/2220-3206/full/v11/i11/954.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i11.954

INTRODUCTION
Sleep is one of the fundamental needs of most conscious living beings. Earlier sleep 
was more analogous to just the idea of resting and having our mind and body 
recharge for the activities in our consecutive state of wakefulness. We have moved far 
along from this initial notion as we now know that even in the state of rest, our body is 
constantly working right from the molecular to the more visible physiological and 
psychological levels. The implications associated with sleep deprivation manifest 
themselves both behaviourally as well as physiologically. In a way, both these implic-
ations are correlated considering external stimuli enables an animal to act in a certain 
way depending on what kind of signals the brain has processed. The processing of 
such signals is mediated by cellular components like genes and proteins. In different 
neurological disorders like depression, loss of memory, psychosis, hallucination, 
anxiety, etc., certain biomolecules are differentially affected. Synaptic plasticity which 
is thought to be a cellular correlate involved in memory consolidation and learning, is 
also affected following sleep deprivation.

In this review, therefore, we aim to understand and highlight the fundamental 
properties of sleep and sleep deprivation by keeping memory consolidation and 
synaptic plasticity as representative functions which get affected by the different states 
of sleep. In addition, any changes in G-protein coupled receptors (GPCRs) caused by 
sleep disturbance are emphasised.

THE DYNAMIC STATE OF SLEEP
Sleep and its significance
Sleep is indispensable for most animals. Extensive studies in this area have now led us 
to believe that sleep is not a static phenomenon but it is heterogenous and dynamic 
even if its physical nature appears completely passive. There are interconnections 
between the thalamus, cortex and hippocampus regions of the brain and this interplay 
of networks is known to be operated by stage specific oscillations that take place while 
we are asleep[1,2]. Aserinsky was one of the first researchers whose studies overcame 
the concept of the cerebral cortex being dormant in sleep and gravitated the scientific 
community towards the reality of the brain being in an active state even while we are 
asleep[3]. There are stages or periods in sleep which transition alternatively from an 
active period, which is manifested by rapid eye movements (REM) to an inactive or 
quiescent period, also known as the slow-wave sleep (SWS)[3]. The oscillation patterns 
in the brain fluctuate during these two stages of sleep with high frequency and low 
amplitude waves being a characteristic of the REM/Late-night paradoxical sleep and 
the SWS portraying the contrary wave pattern[2,3]. Advancement in this area has 
revealed many more biological functions like respiration, thermoregulation, etc., along 
with the neurobiological processes of learning and memory formation in association 
with the alternating stages of REM sleep and SWS[4].

Disturbances in regular sleep cycles were assessed through the monitoring of EEG 
patterns. Waves of low amplitude and high frequency, associated with wakefulness, 
also occur during REM sleep. Deprivation of sleep is usually followed by a compe-
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nsatory increase in REM sleep (REM rebound). This increase is interpreted to indicate 
an attempt in re-establishment of homeostasis in learning and memory as well as 
emotional balancing[5]. Non-REM sleep is associated with high amplitude and low 
frequency delta waves (stages 3 and 4) along with stage 2 spindle activity[2,3]. Sleep 
deprivation increases the amplitude of the waves associated with spindle activity but 
reduces spindle density[6-9]. Upon chronic sleep restriction, the power density of theta 
wave frequency increases[10,11]. Therefore, lack of sleep seems to result in changes in 
REM as well as non-REM sleep.

The functional significance of sleep guides us towards the negative implications of 
sleep deprivation. A balanced and sufficient sleep cycle acts as one of the major factors 
that determine the quality of human life. There are a wide range of environmental, 
psychological and physiological factors that lead to sleep deprivation. Environmental 
changes have influenced many aspects of our day-to-day life and sleep disturbances 
can arise due to an increase in surrounding noise as well as fluctuations in light and 
temperature[12]. These factors add on to the list of causes that negatively burden the 
state of mind. Mental health also plays a crucial role in maintaining a regular sleep 
pattern since the prevalence of stress, anxiety, depression, etc., affects regular sleep 
cycle which can translate into insomniac conditions. Psychosis disorders like schizo-
phrenia or neurodegenerative diseases like Alzheimer’s have often been associated 
with issues related to sleep deprivation like a reduced REM sleep cycle as well as a 
lowered sleep spindle activity[13,14]. Apart from mental disorders, pathophysiological 
illnesses (e.g., cancer, diabetes, respiratory disorders etc.) also often result in sleep 
disturbances due to manifestations like pain or difficulty in breathing. Interestingly, 
lack of sleep can also increase the prevalence of such physiological disorders since an 
important function of sleep is the regulation of the immune system[15]. Modern 
lifestyle changes like uneven working hours, over consumption of caffeine along with 
an increase in screen-time exposure have potentially interluded the quality and 
quantity of sleep. Homeostasis of the normal biological circadian rhythm is required 
for better cognition and task performance. For example, studies have implicated that 
night shift-workers, especially in chronic situations, experience varying levels of 
cognitive impairment and task performance[16,17]. Drug abuse and alcohol 
consumption which can lead to substance use disorder have also been recognized as a 
growing cause of sleep disruption. For instance, alcohol consumption is indicated to 
suppress REM sleep which in turn causes impairment in performing procedural tasks
[18]. Conversely, lack of sleep affects the activity balance of important neurotrans-
mitters like dopamine (DA) in the brain and this has been indicated to increase vulner-
ability to the use of drugs[19]. The above mentioned negative influences of sleep 
deprivation are just few of the many but it helps in bringing the importance of sleep 
deprivation into perspective.

Without sufficient amount of sleep, the brain cannot adequately perform the 
processes that take place during the state of sleep. Sleep deprivation affects the ability 
to concentrate, intake information and mediate that information through neuronal 
signalling, learn as well as process memories for consolidation. Furthermore, it is 
affected by the signalling and expression profiles of many biological molecules 
including the GPCRs[20,21]. These functions are related to the different stages of sleep 
and hence there are stage specific implications of sleep deprivation. For example, lack 
of REM sleep has been directed towards to an impairment in the development and 
expression of emotional and spatial memories[22,23]. Additionally, disruption of SWS 
is suggested to reduce attention span, affect motor activity and task performance[24]. 
Since learning and task performance are dependent on the memory processing of 
various responsible stimuli, the concept of memory consolidation has been highlighted 
to understand the significance of sleep and its associated cellular machinery.

Sleep and memory consolidation
Memory is the ability of living beings to retain information that they have acquired 
through their various day to day experiences and activities. The brain consolidates 
memories in different stages starting first from acquiring the memory through 
learning experiences, encoding and then consolidating those memories to be recalled 
or retrieved upon stimulus[25]. Interestingly, even the processed memories can 
become transient overtime and a reconsolidation of those memories is required for 
which sleep is essential[26]. While we sleep, the brain is actively carrying out its 
functions and ‘offline-reprocessing’ of memories appears to be one of them[3]. The 
presence of the rapid and spontaneous oscillations in the cortical networks of the brain 
during wake and sleep periods have been known to get triggered upon sensory stimuli
[27,28] which can get incorporated in the brain in form of a memory. This gradual 
incorporation of acquired memories into the different regions of the brain is more 
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crucial for long term memory than the short-term memory, which points towards a 
quicker mechanism of action[29,30]. REM sleep and SWS are generally associated with 
the consolidation of long-term implicit (non-declarative) and explicit (declarative) 
memories, respectively[31-33], both working in a double-step process. In support of 
the alternate nature of the REM sleep and the SWS, work done on the memory consol-
idation function of these stages has revealed that SWS also has its part to play in 
reactivation and redistribution of the spatio-temporal patterns of the neurons which 
are observed during the encoding stage of memory function when we are awake[31,
34-36]. When there is distraction or disruption of the periods immediately after the 
learning or teaching stimulus, the formation of memory is interrupted and conse-
quently the task reperformance associated with that memory is affected[29,30]. Now, 
since memory is processed during the state of sleep, it appears that disruption of this 
state during sleep deprivation can also affect memory consolidation in the brain. For 
instance, there have been studies demonstrating how lack of sleep can cause weak 
recollection of visual stimuli or how motor skill learning improvements are dependent 
on a good night-time sleep[37-39].

The discussed oscillation and wave patterns during the state of sleep are at least 
partly a result of the electrical impulses that are transmitted between neurons via the 
synapses. This transmission modifies the synapses and hence synaptic plasticity is an 
important consideration while studying about the various functions of sleep including 
memory consolidation. To better understand this correlation, we will first discuss the 
regions and cells of the brain that are associated with sleep dependent functions and 
how these regions communicate via signal transmission.

The cortical hippocampal dialogue
As mentioned earlier, activities in the brain during the state of sleep are in conjunction 
with changes in the oscillation and wave-patterns in specific regions of the brain. 
These complex wave-sequences form a characteristic component of the neocortical and 
the thalamic system, which co-ordinate in order to exhibit the various functions of 
sleep, including memory consolidation. Although the mechanisms that are involved in 
the functions and regulation of memory consolidation are yet unclear, various cellular 
processes in brain regions have been studied as potential candidates. Amongst these, 
the hippocampus is one of the main centers for processing sleep dependent memories 
through neurons like granule cells and pyramidal cells[40]. The significance of the 
hippocampus and its sub-regions may be attributed to its function of independently 
giving the neuronal networks the ability to process multimodal information and 
building an integrated system that can represent the newly acquired information for 
its consequent storage in the higher centers of the brain in the form of 'memories'[41]. 
Inspired by this finding, a two-staged memory consolidation concept was put forward 
which essentially highlighted the events wherein there occurred a transmission of 
information between the hippocampus (short-term storage) and the neocortex (long-
term storage) through the exploratory theta burst stimulations of the granule cells and 
sharp waves of the pyramidal cells[42]. While the hippocampus is concerned with 
high frequency oscillations and sharp wave ripples in the CA1 and CA3 regions, the 
neocortex shows slow oscillations and spindles during SWS[43]. During SWS, the 
signal from the hippocampus to the neocortex is transmitted through the CA1 neurons 
whereas during REM sleep the information enters the hippocampus from the 
neocortex through the CA3 neurons; thus, causing the CA1 neurons to hyperpolarize 
the CA3 neurons through the entorhinal cortex[43]. This rhythmic communication of 
oscillations gives rise to coupling as well as consistent spike timing relationship 
between the neocortex and the hippocampus which further strengthens the 
information processed for learning and memory consolidation[43-45].

As discussed above, there seems to be a pattern of relay of information that is 
associated with sleep dependent functions between the hippocampus and the 
neocortex. Since the relayed signals go through synapses, any plasticity at the 
junctions can significantly alter the above mentioned patterns. Therefore, in this 
review, a discussion on the phenomenon is made.

THE ROLE OF SYNAPTIC PLASTICITY IN SLEEP AND LEARNING
The active nature of brain during the state of sleep so far has been advocated by 
multiple studies on the specific regions of the brain which primarily show distinct 
wave patterns and relay information through signal transmission. Transcending from 
the Hebbian[46] theory, the strength of these signals has been associated with the 
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continuous firing of action potentials from a pre-synaptic neuron to a post-synaptic 
neuron. It has appeared that a signal gets stronger when it is repeatedly transmitted 
from one synapse to another and this is where the phenomenon of synaptic plasticity 
comes into play. When there is continuous firing of signals between neurons, there are 
changes that take place at the synapses of these cells, which means that the cellular 
components at these junctions also undergo changes and consequently affect the 
strength of the signal being transmitted. This concept can be appreciated by looking at 
instances wherein it appears that by repeatedly performing a task, we get better and 
better at it. In a similar way, a repeated stimulus to the brain results in repeated signal 
transmission from one neuron to another and this can have the potential to strengthen 
that signal[46]. This takes place through synaptic plasticity which entails molecular as 
well as electrophysiological changes at the synapses. The electrophysiological changes 
can be characterized by long term depression (LTD) and long term potentiation (LTP), 
each relating to the persistent weakening and strengthening of the synapses, 
respectively. Initial work done in this area revealed that at the excitatory synapses, 
there occurred a use-dependent and long term strengthening of the synapse upon high 
frequency stimulation of the pre-synaptic fibres in the hippocampus, which was 
termed as LTP[47]. Analogous to the Hebbian[48] findings, experimental data at 
cellular level has indicated that synaptic plasticity in the form of LTP in the hippo-
campus is input specific and can be associative in the sense that if activity in inputs 
coincides with a depolarization of the post-synaptic neuron, the active synapse gets 
strengthened[48-50]. The post-synaptic depolarization is thought to remove a Mg2+ 

block of the N-methyl-D-aspartate (NMDA) receptor coupled ionic channel allowing a 
Ca2+ influx which activates protein kinases that sets up the expression of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on the dendritic spines 
at synapses leading to an increase in response to the released glutamate, the 
transmitter[51]. The post-synaptic depolarization is also suggested to facilitate the 
release of a retrograde messenger that causes an increase in glutamate transmitter 
release and, thus, an increase in synaptic transmission[49]. Upon stimulation of 
synapses at lower frequencies than those that induce LTP, the induction of LTD also 
involves an influx of Ca2+ ions, although the surge of Ca2+ ions is comparatively lower 
than that in case of LTP[52]. The difference in the level of Ca2+ influx results in 
activation of phosphatases that are responsive to lower concentration of Ca2+ ions. This 
subsequently leads to a dephosphorylation of AMPA receptors and a reduction in 
their activity which decreases the response to the released glutamate and causes an 
overall reduction in synaptic efficacy[53]. Therefore, the phosphorylation of AMPA 
receptor through kinases in LTP is counteracted by the phosphatases during LTD 
which leads to an interference and reversal of LTP. This interplay promotes 
modulation of synaptic plasticity which as explained in the section below, appears to 
be crucial for memory processing and learning. The comparative details of LTP/LTD 
associated molecular events are summarized in Table 1 and are also discussed further 
in subsequent sections of this review[54-66].

The process of learning and memory consolidation that takes place while we are 
asleep can also be attributed to further molecular changes that can take place following 
the synaptic strengthening. A disruption of these due to sleep deprivation can, thus, 
have a negative consequence.

LTP and LTD as cellular correlates for learning and memory formation
In spite of having a breakthrough discovery about LTP and LTD causing long-lasting 
modification in the synapses in the 1970s[47,67], the functional implications of LTD 
and LTP in learning and memory processing are still under a lot of conjecture. While 
the initial studies relied more on the active state of synapses through LTP as the focal 
model for learning, subsequent studies also implicated the role of LTD by highlighting 
the fact that a consequent increase and decrease in signal strength is what allows the 
phenomenon of synaptic plasticity to function without getting worn out[52,58,59,68]. 
For instance, Tsumoto[65]’s work highlights LTD in cerebral cortex being responsible 
in 'forgetting' certain memories in order to make place for the new ones. Looking back 
at Hebbian[46] and the follow-up findings, the role of synapses and the existence of 
synaptic plasticity as cellular correlates of learning and memory consolidation become 
apparent. As discussed in the previous sections, learning and memory consolidation 
are a result of collective cellular communications through the processing of the 
learning stimuli. The cortical-hippocampal dialogue is thought to drive these learning 
stimuli forward in the brain to encode, process and store the information acquired 
through those stimuli. Several lines of studies demonstrate the correlation of memory 
acquisition with the processing of spatial learning to LTP and LTD[65,66,69]. 
Furthermore, exploratory behaviours and learning are known to promote information 
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Table 1 Comparative features of long term potentiation and long term depression and their implications in sleep and associated 
functions

Prominent 
brain regions

Receptors 
involved Induction Maintenance Association 

with sleep Functional significance

Ionotropic: 
NMDARs, 
AMPARs 

Requires activation of 
both pre- and post-
synaptic neurons at 
the same time for 
glutamate to fully 
activate the NMDA 
receptors [51].

Secondary activation 
of receptors like 
AMPARs by glutamate 
needed for 
maintenance of LTP
[51].

Active nature of 
LTP likely 
associated with 
active state of 
sleep. 

Enhances synaptic 
response as well as 
neuronal excitability.

Ionotropic induction 
requires activation of 
NMDARs by 
glutamate released 
from pre-synaptic 
neurons for higher  
Ca2+ influx in the post-
synaptic neuron [51].

Requires activation of 
intermediate protein 
kinases like CaMKIV, 
protein kinase M-ζ, 
PKA etc. by high Ca2+ 

concentration to 
release membrane 
obscured AMPARs
[56]. 

More commonly 
linked with REM 
sleep associated 
cellular and 
molecular 
modulation of 
synaptic plasticity
[57].

Involved in memory 
consolidation and 
learning: Strengthened 
synapses promote long-
term memory storage[58]; 
Promotes associative and 
spatial learning[59]; 
Involved in motor learning 
and task reperformance
[60,61].

LTP: 
Strengthening of 
synaptic 
transmission due 
to a transient high 
frequency 
stimulation of the 
synapses

Cerebellum, 
hippocampus, 
cerebral cortex

Metabotropic: 
Group I 
mGluRs

Metabotropic 
induction works via an 
increase in 
intracellular Ca2+ 

release through 
mGluR activated 
phospholipase C and 
synthesis of secondary 
messengers IP3 and 
DAG[54,55].

Ionotropic: 
NMDARs 

Activation of pre-
synaptic neuron 
sufficient to trigger a 
moderate response of 
NMDA receptors and 
does not require both 
synapses to be 
activated at the same 
time[51].

Deactivation of 
AMPARs involved in 
maintenance of LTD
[131].

Suppressive 
nature of LTD 
more likely to be 
associated with 
quiescent state of 
sleep. 

Interferes with LTP 
thereby providing a 
counteractive balance to 
prevent hyperexcitability 
of neurons[52].

Ionotropic induction 
requires moderate 
activation of NMDA 
receptors by glutamate 
for Ca2+ influx in post-
synaptic neuron which 
is lower than that for 
LTP induction[52].

Requires activation of 
intermediate protein 
phosphatases like 
protein phosphatase 1, 
2 and calcineurin by 
low Ca2+ concentration 
to inhibit the release of 
membrane obscured 
AMPARs[53].

More commonly 
linked with SWS 
associated cellular 
and molecular 
modulation of 
synaptic plasticity
[64].

Involved in memory 
consolidation and 
learning: Weakened state 
of synapses implicated in 
forgetting old memories in 
order to make space for 
new ones [65]; Involved in 
novelty acquisition and 
spatial learning[66].

Metabotropic 
induction through 
mGlu1Rs and 
mGlu5Rs causes 
endocytosis of the 
expressed AMPARs 
and/or a decrease in 
phospholipase C via 
reduced adenylyl 
cyclase activity[62].

LTD: Weakening 
of the synaptic 
strength due to a 
relatively low 
frequency 
stimulation of the 
synapses

Cerebellum, 
hippocampus, 
cerebral cortex

Metabotropic: 
GPCRs like 
mGlu1Rs, 
mGlu5Rs, 
GABA-B

Enhancement of 
GABA-B mediated 
inhibitory effects may 
result in LTD[63].

GABA-B: Gamma-amino butyric acid-B; NMDA: N-methyl-D-aspartate; SWS: Slow wave sleep; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid; LTP: Long term potentiation; LTD: long term depression; mGlu: Metabotropic glutamate; 5-HT: 5-hydroxytryptamine.

acquisition[70] and experimental studies on rats that were exposed to hole board 
exploration resulted in events that reversed LTP upon exposure to a novel 
environment with inductive LTD mechanisms being activated. These rats showed 
habituation upon a second exposure to that environment indicating LTD’s possible 
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role in remembering the previously acquired information of that environment[66]. On 
the contrary, work done on adult rats has also revealed the significance of LTD and 
LTP by demonstrating that the preservation of LTP is hampered upon an increase to 
LTD susceptibility and this also interrupts the CNS functions including learning and 
information retention[71,72]. Therefore, there are debatable influences of LTD on 
learning but its role in novelty acquisition and spatial learning[66,73] deserves further 
investigation.

What exactly is harnessing this LTP and LTD in these regions of the brain and how 
these activity dependent synaptic changes relate to memory consolidation and 
learning? In this review, an attempt is made to find some answers. An early hypothesis 
put forward by Lynch and Baudry[74] on the biochemistry of memory involved an 
examination of calcium proteinase-receptor interaction. They demonstrated that in the 
forebrain sub-synaptic membranes, an influx of Ca2+ causes a long lasting increase in 
the number of glutamate receptors through its activation of the enzyme calpain which 
is a proteinase. The activated form of this enzyme degrades the membrane-anchored 
cytoskeleton protein fodrin and as a result, exposes the obstructed glutamate 
receptors. The effects of this Ca2+ proteinase-receptor interaction could functionally 
modify neuronal circuits as well as showed similar biochemical effects that are seen 
post learning[74]. This and other related studies examining molecular mechanisms 
were, therefore, examined to find correlations between synaptic strength and memory 
consolidation.

Most work done on excitatory neurons like the hippocampal pyramidal cells reveal 
that tetanic stimulation of inputs can readily induce LTP that lasts for hours, days and 
can even be permanent, making it a good cellular correlate of memory and learning
[75-77]. In vivo and in vitro induction of LTP and LTD through external theta burst 
stimulations in model organisms[47,49,78] has revealed the various cellular 
components that present themselves as functional entities in the process of memory 
formation and learning. It is already well established that receptors like metabotropic 
glutamate receptors (mGluR), ionotropic NMDA and AMPA receptors are mediators 
for LTP and LTD through the increase or decrease in the Ca2+ concentration, 
respectively[51,79,80]. Both ionotropic (e.g., NMDA, AMPA receptors) and metab-
otropic (e.g., mGluR) receptors are known to be involved in synaptic plasticity but 
project different mechanisms of action which are employed for mediating excitatory 
and/or inhibitory signals[81]. The ionotropic receptors are heteromeric compounds 
that consist of a ligand binding site and pore forming channel that combines the 
function of the receptor and ion channel into a single unit for the mediation of post-
synaptic potentials. On the other hand, metabotropic receptors do not comprise of an 
ion channel but mediate their effects on other ion channels via intermediate effector 
molecules and secondary messengers. Ionotropic receptors like NMDA and AMPA 
receptors get activated upon binding of the neurotransmitter glutamate on the ligand-
binding site and this leads to an opening of the ion channel subunit of the receptor 
which is permeable to Na+ and K+ ions to induce an inward current causing depolar-
ization through the excitatory post-synaptic potential (EPSP) that lasts for a few 
milliseconds[51]. NMDA channel is permeable to the above cations and also to Ca2+ 

which affects the downstream signalling cascade that regulates synaptic plasticity[82]. 
Glutamate can also bind to the mGluRs which leads to an activation of signal 
transduction molecules like the receptor associated G-protein that gets detached from 
the receptor and directly activates the nearby ion channels like NMDA receptors or 
promotes the action of various effector molecules that indirectly activate other ion 
channels. mGluRs can also regulate the intracellular Ca2+ levels through membrane 
proteins and secondary messengers. The influx of ions through these receptors 
therefore results in post-synaptic potentials that have a slower induction and longer 
response time ranging from a few milliseconds to even much longer times[83]. LTP is 
known to be predominantly mediated by the ionotropic receptor NMDA when high 
frequency stimulations result in a build-up of EPSPs due to the activation of AMPA 
receptors causing the removal of a Mg2+ block of the NMDA channel[51,58]. However, 
metabotropic receptor mediated LTP has also been observed with mGlu1 and mGlu5 
receptors wherein mGluR activation can lead to LTP induction through NMDA 
receptors as well as via the modulation of intracellular Ca2+ levels[84,85]. As mentioned 
before, LTD arises upon a lower frequency stimulation of the excitatory synapses than 
needed to induce LTP and also involves NMDA receptors but with a resulting 
deactivation of the AMPA receptors. LTD mediated by metabotropic receptors like 
mGluRs usually involves secondary messengers that modulate intracellular Ca2+ levels
[62]. Other metabotropic GPCRs like gamma-amino butyric acid-B receptors (GABA-B 
Rs) can also induce LTD due to their inherent nature to transmit inhibitory signals[63]. 
The details of these molecular and cellular features of synaptic plasticity will be 
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discussed more in the coming sections. Since activity dependent synaptic plasticity 
and memory consolidation occur sequentially, cellular receptors and other associated 
molecules that mediate LTP and LTD consequently find themselves to be associated 
with learning and memory processing[61,86].

Significance of synaptic plasticity in sleep and sleep deprivation
The active state of sleep has been associated with many functions, including synaptic 
plasticity (LTP and LTD), cognitive learning and memory processing[87]. In fact, it is 
also reasonable to suggest that learning paradigms that promote sleep and synaptic 
plasticity also enhances brain development[57,88].

The above notions have risen from earlier hypotheses that sleep affects the patterns 
of neuronal circuits in the brain[42,89]. REM sleep is associated with long-term 
memory consolidation and learning events promote synaptic plasticity. Moreover, 
REM is required for brain development and an increase in intensive learning activity 
significantly enhances the duration and number of REM sleep cycles and promotes 
synaptic plasticity[90,91]. Correlating sleep cycles and synaptic plasticity, LTP has 
been credited with many learning functions of the brain, especially in the 
hippocampus. It appears that sleep deprivation results in an inhibition or decrease in 
the level of LTP and an impairment in the associated learning[92,93]. This trend has 
also been observed in rats during sleep fragmentation where in there was a decrease in 
LTP through NMDA receptors in the CA1 neurons of the hippocampus[94]. 
Interestingly, the reduction in LTP is also associated with a downregulation of 
cortactin, which is a dendritic cytoskeleton protein, pointing towards the role of LTP in 
the structural modification of neurons and a disruption upon sleep deprivation[95]. 
While the impact of sleep deprivation on LTP seems clear, the fate of LTD has not been 
adequately identified. However, LTD is known to protect neurons by regulating 
neuronal hyperexcitability and preventing a saturation of network activity[59]. 
Additionally, LTD’s role in memory consolidation has been seen through events like 
novelty acquisition and spatial learning or even in making space for new memories 
through the concept of ‘forgetting’[65,66,73]. Since these aspects of memory processing 
are sleep dependent, it is logical to suggest that sleep deprivation can affect LTD. In 
agreement with this line of thinking, an increase in hippocampal LTD following sleep 
deprivation was observed in rats[96].

In conclusion, sleep seems to promote synaptic plasticity, especially LTP, and 
memory consolidation, while sleep disturbances appear to adversely affect both. LTD 
seems to be enhanced following sleep deprivation and, thus, may be associated with 
interference with memory consolidation.

SIGNIFICANT REGULATORY MOLECULES IN SLEEP AND SLEEP DEPR-
IVED CONDITIONS
Molecular events in association with sleep and synaptic plasticity
After a brief introduction of a few cellular components involved in the functioning of 
synaptic plasticity in section II, some detailed events in relation to the state of sleep are 
described here. Going back to the fundamentals of electrophysiology, an electrical 
signal is transmitted when a neurotransmitter gets released from the pre-synaptic cell 
and activates its specific receptor on the post-synaptic cell. This further invites a series 
of downstream reactions that ultimately give rise to the required effect. Neurotrans-
mitters and receptors are cellularly synthesized molecules and if the signal pattern 
changes during stages of sleep and wakefulness, changes in the expression of genes 
and proteins, that are precursors for these molecules, can also occur. In sleep and sleep 
deprivation, glutamate, acetylcholine, DA, serotonin, etc., are important transmitters to 
pay attention to. Acetylcholine, for instance, is known to be correlated with the 
amplitude of theta burst oscillations that take place in the hippocampus. Events that 
lower the levels of acetylcholine can reduce the amplitude of such oscillations[97]. 
Since sleep sensitive processes of learning, like memory consolidation demonstrate 
oscillatory changes, neurotransmitters like acetylcholine are significant to such brain 
functions. Additionally, imbalances in the levels of neurotransmitters like DA and 
serotonin are associated with many neurogenic issues like depression, anxiety and 
psychosis; all of which are symptoms often seen in patients that have been sleep 
deprived[98-100].

Focusing more on the receptors involved in mediating synaptic plasticity in 
excitatory glutamatergic pathways, the glutamate receptors present themselves as 
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frontline players and amongst these, the ionotropic NMDA and AMPA receptors are 
known to depolarize/excite the post-synaptic neuron through an influx and efflux of 
Na+ and K+ ions, respectively[83]. The main inhibitory neurotransmitter of the CNS is 
GABA and it acts upon the two types of GABA receptors: Ionotropic GABA-A/GABA-
C receptors and metabotropic GABA-B Rs. GABA’s contribution to modulating LTP 
and LTD in excitatory pathways, owing to the strategic location of its receptors to 
regulate input and output signals in the pyramidal neurons, is well documented[101-
103]. LTP and LTD are carried out by the long term excitatory and inhibitory actions of 
these receptors including GPCRs, which will be looked into in the next section. Ca2+ 

has been a crucial factor and its increase has shown to depend on the activation of 
NMDA receptors by glutamate, Ca2+ release from intracellular stores and its influx 
through the voltage gated calcium channels[104]. The binding of the released calcium 
to calmodulin and then further to two other proteins: Ca2+/calmodulin dependent 
protein kinase type 2 (CAMK II) and calcineurin, results into LTP and LTD, 
respectively[104].

In continuation with the molecular changes associated with synaptic plasticity, 
protein synthesis and post-synaptic biochemical changes have been implicated in 
different phases of LTP[105]. For instance, brain derived neurotrophic factor, protein 
kinase Mζ, calcium/CAMK II, and activity-related cytoskeletal protein, have so far 
been indicated in the induction or maintenance of late phase LTP[106-109]. Whether 
these or other factors participate during sleep-induced consolidation of memory is 
unknown and needs future investigation. Another not so conventional molecule that is 
speculated to promote synaptic plasticity is nitric oxide (NO). What is intriguing about 
this molecule is that the enzyme which synthesizes it is activated by an increase in 
Ca2+ concentrations which again is dependent on receptors like NMDA which 
promotes synaptic plasticity[57,110]. More insight on such accessory molecules needs 
to be put forward through detailed experimental work and NO has so many other 
important physiological functions like decreasing vascular resistance and increasing 
cerebral blood flow and oxygenation rate[111] or playing a key role in mediation of an 
immune response against infectious diseases[112]. Thus, its definitive role in sleep 
deprivation through synaptic plasticity can be a major contribution to this field of 
research.

In summary, these are just few of many cellular components which have been 
discussed here to help understand and appreciate the intricate network of cellular 
molecules in driving synaptic plasticity which also play an important part in carrying 
out sleep associated functions. The functions carried out by these regulatory molecules 
have been known to get altered during the state of sleep and sleep deprivation. This 
means that the genes that transcribe the proteins for these receptor molecules also 
undergo changes. Differential gene expression has been observed during both the 
states of sleep and wakefulness. In fact, modulation in the gene expressions during 
these two states have shown that around 10% of the total cerebral cortex transcripts are 
differentially expressed[113]. For instance, the mRNAs for the receptors of the 
inhibitory neurotransmitter GABA, shows a higher expression during the state of sleep 
as compared to the state of wakefulness[113,114].

GPCRs
GPCRs by definition are receptors that mediate their effects after binding to G proteins 
which are heterotrimeric molecules made up of alpha, beta and gamma subunits that 
function by phosphorylating the nucleotide guanosine triphosphate to guanosine 
diphosphate. Structurally, GPCRs are transmembrane proteins with multiple 
transmembrane domains and the homology of these domains categorize them into 4 
classes (A, B, C and F). About 90% of the non-sensory GPCRs are expressed in the 
brain and appear to play regulatory roles in various neurological processes. The 
expression profile of these receptors is extremely high in the hippocampus (around 300 
GPCRs) and about 20 of these GPCRs display their potential role in synaptic plasticity
[115]. The signalling pathways that are induced by the GPCRs regulate both pre and 
post-synaptic components which ultimately can affect synaptic plasticity as well as the 
release of pre-synaptic vesicular molecules[116]. They are also known to be involved 
in events of structural plasticity as well as cognitive development[117]. GPCRs can 
also alter NMDA receptors by a direct action at the CA1 synapses, thus indirectly 
affecting NMDA receptor-mediated synaptic plasticity[118], suggesting the possibility 
for receptor co-expression. Furthermore, GPCRs also seem to elicit their effects 
intracellularly while modulating synaptic plasticity[119]. The range of neuronal 
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functions that are attributed to GPCRs needs a more coherent and concrete invest-
igation to be well defined in relation to sleep deprivation, synaptic plasticity and 
memory consolidation. For the purposes of this review, two major types of GPCRs 
known as the mGluRs and GABA-B Rs are discussed in more detail. Other GPCRs, 
especially those that are important for drugs used in psychiatry, are also discussed.

mGluRs
The mGluRs belong to the class C of GPCRs. They are categorized into three groups 
based on their signal transduction pathways. Group I (mGlu1R and mGlu5R), Group II 
(mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7, mGluR8)[120]. The 
subdivisions are based on the difference in their physiological activity and structure. 
The group I receptors display a post-synaptic location and are known to act via the Gq 
protein through the activation of phospholipase C protein and the synthesis of the 
secondary messengers such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol 
(DAG). The general pathway involving these secondary messengers results in the 
release of intracellular Ca2+ stores which is a prerequisite for the induction of synaptic 
plasticity[54,55]. These receptors are also involved in the modulation of neuronal 
excitability in the hippocampus pyramidal cells wherein they activate cationic 
conductance through the reduction in resting K+ current and inhibition of Ca2+ ion 
channels[121,122]. On the other hand, mGluRs were also seen to induce IP3-mediated 
release of Ca2+ from intracellular stores through stimulation of CA3 pyramidal 
neurons. Unlike the Group I mGluRs, Group II and III mediate their functions via the 
Gi/Go protein. They are negatively coupled to adenylyl cyclase and inhibit the 
production of cyclic adenosine monophosphate Cyclic adenosine monophosphate 
(cAMP)[123] which results into activation of K+ channels and inhibition of Ca2+ 

channels. These two groups have a very distinct pre-synaptic localization pattern with 
Group II being predominant in extra synaptic sites whereas Group III in the synaptic 
sites. Additionally, the Group III receptors also appeared to be segregated in 
correlation to their target post-synaptic neurons[124].

GABA-B Rs
The metabotropic GABA-B Rs are widely known for their inhibitory action in the CNS 
and like mGluRs, also belong to the class C GPCRs. Structurally, these are obligate 
heterodimers made up of GABA-B1 and GABA-B2 receptor subunits which are 
genetically co-expressed and are homologous to the structure of mGluRs[125,126]. 
Gene expression studies for this receptor have shown that heterodimerization is 
essential for the GABA-B Rs to elicit their function since the individual expression of 
the GABA-B1 subunit in the target mammalian cells results in immature and low 
functionality receptors as compared to the heterodimer[127]. These receptors show a 
wide cellular and sub cellular localization pattern through their expression on pre-
synaptic, post-synaptic as well as extra synaptic regions in the brain[128]. Based on 
work performed on rat hippocampus, the two subunits of GABA-B Rs: GABA-B1a/b 
and GABA-B2, appear to be more on the post-synaptic regions as compared to the pre-
synaptic ones. Furthermore, they also displayed an abundant distribution of GABA-
B1a/b on glutamatergic synapses on the spines and on dendritic shafts of pyramidal 
cells[128]. GABA-B2 on the other hand, has a dominant extra-synaptic localization. 
These localizations are indicative of their functions and considering the range of 
cellular and subcellular occurrences of these receptors, they show a promising 
involvement in a great number of neurogenic processes. For example, their presence at 
the glutamatergic terminals points towards their involvement in glutamatergic 
neurotransmission[128].

Functionally, GABA-B Rs induce their slow and long lasting action via the Gαi/o 
proteins through the inhibition of adenylate cyclase and like the mGluRs, they too 
affect the Ca2+ and K+ conductance[129]. GABA-B Rs are known to control the calcium 
dependent neurological processes through the inhibition of voltage sensitive Ca2+ 

channels[85,130]. On the pre-synaptic sites, GABA-B Rs appear to be negatively 
coupled to Ca2+ channels and block the Cav2.2 (N- type) and Cav2.1 (P and Q type) 
voltage gates channels via the action of G- proteins. They also have the ability to affect 
K+ channel directly without the involvement of a G protein. This controls the release of 
neurotransmitters from the pre-synaptic neurons and thus GABA-B Rs have the 
potential to regulate the onset of a stimulatory signal[85,130]. At the post-synaptic 
sites, these receptors mediate their effects via the G proteins through a slow hyperpol-
arization by inward rectification of K+ channels such as the GIRK channels as well as 
Ca2+ channels[131]. GABA-B Rs are, therefore, diverse both in their structural as well as 
functional mediation of inhibitory signals and show immense potential to regulate 
synaptic plasticity in association with sleep deprivation.
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Serotonin, DA and norepinephrine receptors
The serotonin, DA and epinephrine group of GPCRs are very important in psychiatry 
considering their ligands are responsible for a wide range of CNS functions like 
cognitive learning and sleep-wake behaviours and are implicated in many 
neurological disorders. Serotonin receptors, also known as the 5-hydroxytyrptamine 
(5-HTA) receptors are classified into 7 families (5-HT1 to 5-HT7), all of which are 
GPCRs except the 5-HT3 receptor[132]. These are further divided into their respective 
14 sub-types [e.g., 5-hydroxytyrptamine subtype 1A (5-HT1A) to 5-HT1F] based on 
their function and location[132]. They exhibit their function mainly through the Gαi, G
αq/11, and Gαs proteins followed by modulation of Ca2+ concentrations via the 
regulation of adenylyl cyclase and cAMP or activation of phospholipase C producing 
IP3 and DAG[133]. In the CNS, 5-HT1 and 5-HT5 are associated with inhibitory signal 
transduction and the others are excitatory in nature; with pre- and post-synaptic 
localizations. For instance, the 5-HT1A receptors, which are widely implicated in 
depression, anxiety and learning, are found in both pre-synaptic (auto-receptors) and 
post-synaptic (heteroreceptors) locations[134]. Additionally, structural significance in 
this class of receptor through dimerization with each other and other GPCRs has also 
been indicated as a functional prerequisite for the cellular trafficking and functioning 
of 5-HT receptors[135].

DA receptors are GPCRs divided into 5 subtypes (D1-D5) and exhibit their action 
through the Gs/olf and Gi/o proteins by activating or inactivating adenylyl cyclase, 
respectively[136]. These receptors have a wide pre and post-synaptic distribution 
pattern in the CNS which contributes to the functional significance of DA[137]. For 
instance, the D1 and D2 receptors are abundantly localized in the striatum and 
substantia nigra region of the brain and are involved in the nigrostriatal pathway 
which is responsible for the control of bodily movements[138]. These are also majorly 
distributed in the ventral tegmental area (VTA) of the brain which is connected to the 
ventral striatum and this connection promotes reward-associated behaviour via the 
meso-limbic pathway[139]. Furthermore, along with a localization pattern observed in 
both pre- and post-synaptic regions, co-expression is also a general trend seen with 
DA receptors[140]. Lastly, the GPCRs that are the target for the catecholamine 
norepinephrine/noradrenaline (NA) are classified into alpha-1, alpha-2, beta-1, beta-2 
and beta-3 receptors and they are localized on both pre- and post- synaptic sites. 
Alpha-1 follows the Gq protein mediated elevation of calcium levels by activation of 
phospholipase C producing IP3 and DAG and the other three subtypes work via the 
modulation of adenylyl cyclase pathway[141]. Interestingly, co-localization patterns 
have also been observed between DA and NA receptors in the rat prefrontal cortex
[142]. Whether such co-localizations and/or dimerization have implications for 
pharmacological actions of therapeutic agents need further investigation.

SIGNIFICANCE OF GPCRS IN SYNAPTIC PLASTICITY AND SLEEP DEPR-
IVED CONDITION
Role of GABA-B and mGluRs
As introduced above, GPCRs appear to be involved in processes that regulate the 
transduction of action potential especially in the cells of the hippocampus region of the 
brain. Both LTD and LTP have demonstrated a pattern of being modulated by such 
regulatory molecules. It is already well established that Type I mGluRs induce LTD 
through the synaptic endocytosis of AMPA receptors in the hippocampus[143]. Similar 
lines of studies have pointed towards mGluRs in the CA1 pyramidal cells being 
involved in the induction of LTD through post-synaptic elevation of Ca2+ levels[144]. 
Interestingly, studies on the cerebellar Purkinje fibres have also demonstrated that 
activation of GABA-B Rs enhances LTD through an association with mGluRs[63]. Even 
though the mechanism of action of these receptors may be related, many of their 
molecular machineries have their own distinctive features while promoting cellular 
LTD. For instance, in the Purkinje fibres, LTD mediated via GABA-B relied on the beta 
gamma subunits of the G-protein whereas mGluR mediated LTD depended on the 
alpha subunit[63]. So far, it appears that these GPCRs are associated with the 
induction of LTD and reviewing other related studies, we know that NMDARs are the 
main mediators of LTP. Contrary to these findings, recent experimental work has put 
forward a type of LTP that is induced in the absence of NMDARs and requires the 
activation of Type I mGluRs[145]. As for the role of GABA-B Rs in LTP, its auto 
receptors depress their own activity through negative feedback and promotes 
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NMDAR mediated LTP, thus maintaining a balance between LTP and LTD[146]. 
Considering how the hippocampus and the cortex communicate and manifest their 
functions of learning and memory consolidation in the state of sleep through synaptic 
plasticity, it is reasonable to imply that these GPCRs modulating LTD and LTP are 
significant for this purpose. It also seems that co-expression of GPCRs and their 
heteromeric subunits is a repeated trend seen in studies that show the association of 
GPCRs with LTD[63,125,126]. The functionality of GPCR dimerization has also been 
put forward in earlier demonstrative studies which showed that the GABA-B1 subunit 
needs the GABA-B2 subunit to reach the cell surface and that GABA-B1 is responsible 
for agonist interaction whereas the B2 subunit works towards the G-protein activation
[147,148]. Furthermore, gene knock-out or elimination studies for these subunits have 
also indicated the dependence on dimerization for the functioning of this receptor and 
that in some regions of the brain, GABA-B subunit gene elimination does not affect the 
functionality of the receptor which implies that it is replaceable by other G-protein 
activating molecules[149] and thus may have the potential to associate with other 
GPCRs to mediate their actions. Progressing from these initial findings, recent work 
done on rats that were sleep deprived using gentle prodding and tapping has 
demonstrated that induced LTD of population EPSP in the hippocampus requires 
activation of mGluRs and GABA-B Rs along with an increase in Ca2+ released from 
intracellular stores[150]. In sleep deprived conditions, western blot analysis and co-
immunoprecipitation studies revealed that there were elevated expression levels of 
mGlu1αR and GABA-B1 receptor subunit as well as enhanced co-expression and 
heterodimerization between mGlu1αR and GABA-B R1 subunit and mGlu1αR and 
GABA-B R2 subunit[150].

Role of 5-HT and other GPCRs
As introduced earlier, GPCRs for serotonin are diverse both in their localization and 
functions. Their effects are mediated by calcium levels, which again is crucial for 
synaptic plasticity. Furthermore, 5-HT1A receptors are known to decrease NMDA 
receptor activity whereas 5-HT2A tends to increase it[151,152], thereby playing an 
opposing role in regulating NMDA mediated LTP. These are also co-expressed in 
hippocampal pyramidal cells and may direct studies towards their reciprocal action in 
regulating synaptic plasticity. Similar cross-talks have also been suggested between 5-
HT and GABA-B receptors[153], which as already discussed, are involved in modu-
lating LTD, especially in sleep deprived conditions. In relation to sleep associated 
studies, 5-HT1 and 5-HT2 receptors appear to be involved in the regulation of REM 
sleep and sleep-wake behaviours[154]. To further strengthen the significance of these 
receptors, experimental work has indicated that sleep deprivation resulted in a 
temporary increase in the expression profile of the serotonin receptor, 5-HT1A through 
an enhanced suppressive effect of this receptor on the EPSPs recorded from CA1 
pyramidal neurons[155]. Studies also indicated a heterodimerization of 5-HT2A-
mGluR2 which is implicated in psychosis[156]. However, in rat hippocampus, while 
there was a change in the expression profile of 5-HT1A receptor, there was no 
significant heterodimerization with mGluRs following sleep deprivation[155]. 
Therefore, depending on the 5-HT receptor sub-type, it appears that sleep deprivation 
induces differential changes in their expression, co-localization and heterodimer-
ization.

DA and NA receptors demonstrate somewhat analogous modulations of synaptic 
plasticity. In rat prefrontal cortex, DA receptors appear to modulate both LTD and LTP 
through glutamatergic synapses[157]. In the hippocampus, opposing effect of D1/D5 
and D2/D3/D4 receptors on NMDA receptor modulation, regulates LTD and LTP
[158]. Furthermore, D1/D5 have also been implicated in novelty acquisition through 
hippocampal LTD and LTP[159]. The induction of synaptic plasticity via NA receptors 
is more prevalent through the beta group receptors and they do so by modulating both 
NMDA and AMPA receptors in the pyramidal cells and perirhinal cortex[158,160]. 
Consequently, the modulation of synaptic plasticity via DA and NA receptors can be 
extended towards sleep associated functions. Studies in rats have indicated that sleep 
deprivation leads to a differential expression of DA receptors[161] and chronic sleep 
restriction results in changes in the density of NA receptors[162]. Considering the 
range of these GPCRs and their functions, their cross-talk properties and effects during 
the state of sleep through synaptic plasticity require further detailed investigation.

Allosteric modulation of GPCRs
Another intriguing and related aspect of GPCRs that signifies its structural implic-
ations in synaptic plasticity is the allosteric modulation of these receptors. Binding at 
sites other than the active site of the GPCR, it has been suggested that allosteric 
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modulators can selectively stimulate the homomeric and heteromeric forms of the 
receptor. For instance, in the CNS, heterodimerization is seen between mGlu2R and 
mGlu4R with allosteric modulation being targeted to the homomeric forms relative to 
the heteromeric receptors[163,164]. Furthermore, LTP and LTD and spatial learning at 
the excitatory synapses in the hippocampus have appeared to be enhanced by the 
positive allosteric modulation of mGlu5Rs[165]. Considering even GABA-B receptors 
demonstrate their sleep dependent synaptic changes by forming such heteromeric 
complexes and associations with mGluRs[150], the importance of such structural 
modifications and associations needs more attention with respect to sleep dependent 
functions.

DISCUSSIONS
Sleep is important for normal physiological and neurological functions and sleep 
deprivation affects majority of these functions. The negative effects of sleep 
deprivation can be better managed when we are able to specifically target the cellular 
and molecular machinery that drives these functions and, in this review, GPCRs are 
examined as a pivotal molecular machinery that impacts sleep associated functions 
through synaptic plasticity. For example, memory consolidation and learning as a 
model involving hippocampal-neocortical dialogue was looked at. The dialogue, in 
turn brings forth distinct electrophysiological patterns that are active during the SWS 
and REM sleep stages. Activity mediated synaptic plasticity has been widely 
correlated to sleep associated functions of cognitive learning, memory processing and 
over all brain development. GPCRs like GABA-B Rs and mGluRs are types of 
receptors that have shown a potential to be involved in these processes through their 
actions on LTD and LTP. What is even more intriguing is the fluctuation in their distri-
bution, heterodimerization and co-localization following sleep deprivation, suggesting 
that these receptors can exist in one condition during normal sleep and change with 
sleep deprivation. GPCRs are one of the major cellular targets for drug interaction and 
therefore changes in the receptor expression profile can affect drug action.

For instance, the antipsychotic drug clozapine is one of the common and effective 
drugs used in treating disorders like schizophrenia. The cellular targets for this drug 
are GPCRs like 5-HT2A and DA D2 receptors with a higher affinity for the former 
receptor than the latter. It acts as an antagonist of DA D2 receptors in the mesolimbic 
pathway and although initially classified as an antagonist, clozapine is also known to 
be an inverse agonist of the 5-HT2A receptor present in the prefrontal cortex of the 
brain[166-168]. Other antipsychotic drugs like olanzapine, risperidone, aripiprazole, 
etc., have also been indicated to elicit their effects through these receptors[166]. 
Interestingly, 5-HT2A and mGluR2 receptors are suggested to form heterodimers 
which raise the possibility of testing if clozapine and other such antipsychotic drugs 
modulate similar complex formation[156]. Moreover, drugs like clozapine are known 
to have sleep-inducing effects[169] and since disorders like schizophrenia and other 
psychiatric diseases are associated with sleep disturbances[170], potential interplay 
between the molecular events of sleep deprivation and actions of antipsychotic drugs 
needs to be investigated. Other examples of drugs that act on GPCRs include 
ropinirole for Parkinson’s disease which acts as an agonist on DA D2 receptors[171] 
and baclofen, a GABA-B receptor agonist suggested for treatment of depression and 
anxiety[172]. Whether their actions change with sleep deprivation and vice versa also 
needs to be tested. With regards to synaptic plasticity, antipsychotics and antide-
pressants are suggested to affect LTP upon both acute and chronic use and 
interestingly, these effects are different for each of these situations which may suggest 
differences in network behaviour with acute vs chronic exposure to the drugs (see 
Table 2[173-211]). Moreover, their effect on LTD has not been sufficiently explored and 
hence similar studies on the differential effects of chronic vs acute use of such drugs on 
network behaviour are required with regards to LTD. Table 2 provides a brief 
summary on antipsychotic, antidepressant and anxiolytic drugs with their 
mechanisms of action and association with synaptic plasticity, learning and sleep.

The relation between a drug’s mechanism of action and sleep can be directly 
observed in drugs that are used for treating sleeping disorders like insomnia. Charac-
terized by a lack of both quality and quantity of sleep, insomniac conditions are 
treated with many drugs that target GPCRs. For example, melatonin is a hormone that 
has been known to play a key role in the sleep-wake cycle and promoting sleep. 
Agonist drugs like ramelteon act on the melatonin GPCRs type 1 and 2 (MT1 and 
MT2) which results in reduced sleep latency in chronic insomniac patients[212]. 
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Table 2 Changes in synaptic plasticity, learning and sleep associated with antipsychotic, antidepressant and anxiolytic drug therapy

Class of drugs Drug examples Target 
GPCRs

Mechanism of 
action

Therapeutic 
application

Possible association 
with synaptic 
plasticity and 
learning

Implications in 
sleep and 
associated 
functions

Chlorpromazine DA 
D1/D2/D3, 
5-HT2A, 
Histamine 
H1, α1-
Adrenergic, 
Muscarinic 
receptors.

1 Acts as an 
antagonist by 
blocking post-
synaptic DA D2 
receptors.

1 In the 
treatment of 
psychotic 
disorders like 
schizophrenia, 
bipolar 
disorder, acute 
mania, 
dementia, etc.

1 Synaptic plasticity: 
Acute treatment with 
haloperidol can impair 
induction of LTP but 
not its maintenance in 
rabbit hippocampus. 
Chronic treatment with 
haloperidol suggested 
to enhance LTP in 
corticostriatal brain 
slices of rats[174,175].

1 Associated with 
sedation and often 
promote sleep 
inducing effects.

Haloperidol 2 Can also block 
serotoninergic, 
histaminergic, 
cholinergic and 
noradrenergic 
receptors[173].

2 Reduce 
psychosis 
symptoms like 
hallucinations 
and delusion.

3 Learning Functions: 
Haloperidol and 
Chlorpromazine can 
impair spatial learning 
in rats[176,177].

(1) Haloperidol, 
loxapine and 
mesoridazine 
increase REM sleep 
latency. 
Withdrawal of 
drug causes 
significant 
disruption of sleep 
with reduced REM 
and total sleep;

Loxapine (2) No significant 
effect on SWS[178-
180];

1st generation 
/ typical 
antipsychotic 
drugs 

Mesoridazine (3) 
Chlorpromazine 
enhances SWS 
along with a dose 
dependent effect 
on REM sleep - 
lower doses 
increasing and 
higher doses 
reducing or having 
no effect on REM 
sleep[181].

Clozapine DA D2, 5-
HT2A, 2C 
receptors

1 Antagonistic 
effects by blocking 
5-HT2A/2C 
receptors and 
agonistic effects by 
promoting 5-HT1A 
receptor mediated 
actions. 

1 In the 
treatment of 
psychotic 
disorders like 
schizophrenia, 
bipolar 
disorder, acute 
mania, 
dementia etc.

1 Synaptic Plasticity: 
Without tetanization, 
acute clozapine 
administration induces 
LTP in rabbit 
hippocampus[184]. 
Chronic treatment with 
clozapine impairs LTP 
in rat prelimbic cortex
[185]; Acute 
administration of 
risperidone impairs 
LTP in rabbit 
hippocampus. LTP 
induction post 
tetanization takes 
places in rat 
hippocampus upon 
chronic treatment with 
olanzapine[186,187].

1 Associated with 
an increase in the 
total amount of 
sleep but show an 
uneven trend in 
their stage specific 
effects.

Risperidone

2nd 

generation 
/atypical 
antipsychotic 
drugs

Olanzapine

2 Transiently block 
DA D2 receptors
[182].

2 Reduce 
psychosis 
symptoms like 
hallucinations 
and delusion, 
disordered 
thinking, social 
withdrawal etc.

2 Learning Functions: 
Clozapine and 
olanzapine impair 
memory retrieval in 
mice[188] while 
risperidone improves 
learning and memory 
processing in humans
[189].

(1) Clozapine 
increases REM 
sleep density and 
improves NREM 
sleep. However, its 
effect on SWS is 
inconsistent[180];

3rd 

Generation 
1 Partial agonist of 
DA D2 and 5-HT1A 

(2) Olanzapine 
improves SWS as 

Antipsychotics

Aripiprazole DA D2 
receptors
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receptors and an 
antagonist of 5-
HT2A receptors.

well as REM sleep 
latency. 
Risperidone 
increases SWS but 
reduces REM sleep
[180,190,191].

antipsychotic 
drugs 

2 DA D2 antagonist 
in the mesolimbic 
pathway[183].

1 Blocks the 
serotonin reuptake 
and increases 
serotonin action via 
5-HT1A receptors.

In the treatment 
of depression, 
obsessive 
control 
disorders, 
eating 
disorders, 
substance use 
disorders etc.

1 Synaptic Plasticity: 
(1) Acute treatment 
with fluoxetine before 
stressful stimuli 
indicated to suppress 
stress induced LTD in 
CA1 region of rat 
hippocampus[194];

1 Associated with 
uneven side effects 
on sleep like 
somnolence, 
sedation and 
insomnia.

Fluoxetine 5-HT-1A 
receptors 

2 Suggested to cause 
reversible 
internalization of 5-
HT1A auto -
receptors[192].

(2) Chronic fluoxetine 
treatment enhances 
neurogenesis 
dependent LTP in mice 
hippocampal granule 
cells and also 
upregulates Brain-
Derived Neurotrophic 
Factor-LTP associated 
genes. Acute treatment 
showed no such 
upregulation[195,196];

(1) Fluoxetine 
reduces overall 
sleep continuity 
with a reduction in 
REM sleep but 
increases REM 
latency. It either 
increases or has no 
effect on SWS[197];

1 Blocks 5-HT2 
receptors in order to 
increase 5-HT1 
mediated 
transmission.

(3) Acute treatment of 
vortioxetine enhances 
LTP in the CA1 region 
of rat hippocampus by 
increasing pyramidal 
cell output[199];of 
memory processing
[207,208]; 

(2) Mirtazapine 
increases sleep 
continuity and 
SWS but does not 
affect REM sleep
[197];

Mirtazapine 5-HT1 and 2 
receptors, α
2-adrenergic 
receptors

2 Antagonist of α2-
adrenergic receptors 
to increase 
adrenergic 
neurotransmission
[193].

(4) Acute treatment of 
buspirone as an agonist 
of 5-HT1A results in 
the reversal of LTP in a 
time -dependent 
manner in rat 
hippocampal slices
[202];

(3) Vortioxetine 
causes a reduction 
in REM sleep but 
increases its 
latency. It’s effects 
on SWS are unclear
[197];

Vortioxetine 5-HT1A, 1B, 
1D, 5-HT7 
receptors.

Antagonist of 5-
HT1D and H-HT7 
receptors and a 
partial agonist of 5-
HT1A and 1B 
receptors[198].

In the treatment 
of Major 
Depressive 
Disorder.

(5) Acute treatment of 
baclofen induces 
GABA-B receptor 
mediated LTD 
enhancement of a 
glutamate-evoked 
current in the 
cerebellar cortical 
neurons. It also 
enhances mGluR1-
coupled intracellular 
Ca2+ release[63].

(4) Vilazodone 
causes sleep 
disturbances with a 
decrease in REM 
sleep and an 
increase in 
wakefulness and 
SWS[209];

Vilazodone 5-HT1A 
receptors

Blocks the serotonin 
reuptake inhibitor 
and also acts as a 
partial agonist of 5-
HT1A receptor and 
stimulates it[200].

2 Learning Functions: 
(1) Fluoxetine reverses 
memory impairment in 
rats and enhances 
memory processing in 
mice[203,204]. Chronic 
use of mirtazapine and 
vortioxetine improve 
cognitive functions in 
humans[205,206,208,
209];

(5) Buspirone 
increases REM 
sleep density and 
latency[210];

For treating of 
Generalized 
Anxiety 
Disorder and 
side effects of 

(6) Baclofen 
prolongs total sleep 
time with an 
increase in 
duration for REM 

Antidepressants 
and anxiolytics

Buspirone 5-HT1A, DA 
D2 auto 
receptors

Partial agonist of 5-
HT1A receptor and 
antagonist of DA D2 
auto receptors with 
low affinity[201].

(2) Buspirone and 
baclofen are implicated 
in the impairment of 
memory processing
[207,208].
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Parkinson’s and 
Alzheimer’s 
disease. 

sleep and SWS
[211].

Baclofen GABA-B 
receptors

GABA-B agonist to 
increase inhibitory 
signals[172].

Suggested use 
in treating 
depression and 
anxiety as well 
as a muscle 
relaxant.

LTP: Long term potentiation; LTD: long term depression; SWS: Slow wave sleep; 5-HT: 5-hydroxytryptamine; GABA-B: Gamma-amino butyric acid-B.

Intriguingly, the MTI and MT2 receptors have been known to form dimers among 
themselves as well as heterodimers with other GPCRs like the serotonin 5-HT2C 
receptor[213,214]. Thus, differences in ligand selectivity for these homomeric and 
heteromeric forms of the target receptors can have important consequences if the 
expression profile of such GPCRs change upon sleep deprivation. Other drug targets 
for insomnia include neuropeptides like orexins which promote wakefulness and are 
synthesized by neurons in the hypothalamus region of the brain. Drugs like 
suvorexant act as antagonists of the orexin GPCRs type 1 and 2 (OX1R and OX2R) 
thereby blocking their wakefulness promoting effects[215]. These GPCRs known to be 
associated with other GPCRs like the cannabinoid receptor type 1 (CB1) and GABA-B 
receptors. They form heterodimers with the CB1 receptors[216] which have been 
implicated in affecting memory formation and maintenance of mood. Moreover, 
orexin and GABA-B receptor activity are indicated to have a balancing interplay 
wherein inhibitory GABA-B modulates the wakefulness promoting properties in the 
orexin producing neurons[217]. If expression profiles of GABA-B receptors change 
with sleep deprivation, can there be consequences for actions of orexins? In summary, 
changes in receptor profiles associated with sleep deprivation can have consequences 
for drug action and need a thorough investigation to understand the mechanisms 
involved so that CNS disorders can be treated with more rationally based therapeutics.

Unlike receptor redistribution and co-localization, heterodimerization can have 
serious implications for drug-receptor interactions and consequently, its action. On the 
other hand, if co-localization of different receptors leads to common transduction 
pathways, it can significantly affect the actions of such drugs. These consequences can 
vary depending on whether pre- or post-synaptic receptors are changed with sleep 
deprivation. Since this process is dynamic and the receptors may be in different states, 
an understanding of the mechanisms involved in clearly needed. Moreover, since 
GPCRs among 5-HT, norepinephrine, DA, etc., may be affected, drug therapy 
involving antidepressants and antipsychotics should take the occurrence of receptor 
plasticity with sleep deprivation into account as drug-receptor interactions may be 
changed (Figure 1).

FUTURE SCOPE
The diverse nature of GPCRs, both in their structure and functions has made them 
front line players in understanding many cellular processes. With the advent of sleep 
being credited with a wide range of psychological and physiological functions, and 
with changes happening in GPCRs following sleep deprivation, it is important to 
understand how the receptors and the functions they regulate, like synaptic plasticity 
and memory consolidation, are affected. GPCRs are one of the largest groups in the 
mammalian CNS. In psychiatry, most currently used antidepressants and antip-
sychotics act on one or more GPCR groups. Since the receptors change with alterations 
in sleep, unless the mechanisms involved in the change are understood, therapeutics 
will continue to suffer.

Potential research of cellular and molecular mechanisms
Firstly, even though LTP and LTD have both been emphasized in manifesting the 
neurological changes during the state of sleep and wakefulness, more work is needed 
with regards to LTD. In an attempt to bridge that gap, a better understanding of the 
inhibitory GPCRs like GABA-B receptors is highly crucial. Additionally, GABA-B and 
mGluRs seem to have an associative mode of action and based on the studies that are 
reviewed so far; it appears that co-localization and heterodimerization of these two 
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Figure 1 G-protein coupled receptors: Potential key-players in psychiatric therapeutics through modulation of synaptic plasticity in sleep 
deprivation. A correlation between sleep deprivation, G-protein coupled receptors (GPCRs) and synaptic plasticity. Memory consolidation and learning are 
strengthened during sleep and synaptic plasticity, through long term potentiation (LTP) and long term depression (LTD), can regulate the processing of these 
functions. Upon sleep deprivation, GPCRs like gamma-amino butyric acid-B, metabotropic glutamate and 5-hydroxytryptamine receptors experience changes in their 
expression profiles in terms of distribution, dimerization and co-localization with their own or different subtypes of receptors. Changes in these and the associated 
transduction pathways can in turn affect LTP and/or LTD, causing alterations in neuronal network activity. Since GPCRs are one of the most dynamic cell membrane 
proteins, they are the targets of many drugs used in various psychoneurological disorders. Therefore, a change in the expression profile of these receptors through 
sleep deprivation can reasonably alter the way in which these drugs exhibit their therapeutic action. Conversely, therapeutic strategies themselves can affect sleep 
causing a change in the GPCR expression profile and the downstream cascade. GPCR: G-protein coupled receptors; GABA-B: Gamma-amino butyric acid-B; LTD: 
Long term depression; LTP: Long term potentiation; mGlu: metabotropic glutamate; 5-HT: 5-hydroxytryptamine; cAMP: Cyclic Adenosine Monophosphate; DAG: 
Diacylglycerol; IP3: Inositol-1,4,5-triphosphate.

specific receptor types occurs with sleep deprivation[150]. Hence, the driving mole-
cular factors which includes, specific genes and protein interactions, need a more 
coherent identification. For instance, the signalling linked with GPCRs are tightly 
controlled by a family of regulator of G protein signalling proteins in the brain[218]. 
Furthermore, since metabotropic receptors (e.g., mGluRs) affect the function of 
ionotropic receptors like NMDA and AMPA, similar studies can be extended for the 
metabotropic GABA-B receptor and its ionotropic counterparts like GABA-A and 
GABA-C in relation to sleep deprivation induced changes. Considering that GPCRs 
are involved in several CNS functions, there is a wide scope for studying the mecha-
nisms involved in their plasticity. Another interesting area of research is the regulation 
of synaptic plasticity by GPCRs elicited intracellularly[119] and this could also be 
explored further in order to connect the transportation of GPCR subunits from 
intracellular compartments to the cell membrane and the processes that take place in 
these compartments which can give rise to heterodimers and co-localization.

Future scope for psychoneurological disorders and therapeutics
Apart from memory consolidation and learning, GPCRs are also implicated in other 
psychoneurological occurrences. Around 60% of drugs target membrane proteins and 
30% of them are GPCRs[219]. They are especially important as targets for 
antipsychotic and antidepressant drugs, considering some of their ligands like 
serotonin, DA and norepinephrine are associated with pathways that are important in 
psychiatry. Additionally, mGluRs and GABA-B Rs have an almost ubiquitous 
involvement in major cellular pathways which need to be better understood since they 
are affected in neurological disorders like Alzheimer’s disease, Parkinson’s disease, 
stress related disorders, etc.[220,221]. Changes in sleep patterns are often observed in 
many neurological disorders and considering these major GPCRs are altered during 
the state of sleep, an understanding of this correlation can affect the way we approach 
therapeutics in this area. For example, even though there was a temporary elevation 
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observed in the expression of the serotonin 5-HT1A receptor upon sleep deprivation
[155], it is universally correlated to disorders like depression, anxiety and psychosis 
and changes in its expression profile upon sleep deprivation does warrant for further 
studies on this GPCR and its other subtypes. Additionally, related GPCRs like the DA 
receptor D1 are also known to interact directly with LTP inducing NMDA receptors
[118] which are important in many neurological disorders. Furthermore, since the D1 
and D2 DA receptors are involved in the nigrostriatal and mesolimbic pathways, 
changes in their expression profiles affect movements and behavioural patterns that 
are also implicated in Parkinson’s disease and schizophrenia[222,223]. Therefore, DA 
GPCRs are highly potential drug targets and sleep associated changes in their 
expression profile needs more attention. Drugs used in psychiatry for such disorders, 
e.g., aripiprazole, are known to target 5-HTA and DA receptors[224] and if the 
expression profile of these receptors is changing upon sleep deprivation, could it also 
affect the action of such drugs? Disorders like schizophrenia and depression often 
encompass sleep deprivation and drugs used for these conditions which target such 
GPCRs, may get negatively affected if receptor plasticity (co-localization and/or 
heterodimerization with other receptor subunits, etc.) occurs with associated sleep 
disorders. For example, the antidepressant drug mirtazapine exhibits its action 
through GPCRs by blocking 5-HT2 and adrenergic α2 receptors, leading to an increase 
in the activation of 5-HT1A receptor mediated activity as well as NA release, 
respectively[193]. This drug is known to have sleep-promoting properties and has 
been associated with problems like day-time somnolence[225] potentially disrupting 
the normal sleep cycle. Interestingly, there are off-label therapies that employ antide-
pressants like mirtazapine in treating sleeping disorders due to its sedative effect[226]. 
Since antidepressants and antipsychotic drugs appear to directly or indirectly change 
activity at GPCRs, drug therapy for these disorders can affect sleep while sleep 
disturbances can also necessitate changes in that therapy. Therefore, sleep disturbance-
induced plasticity and cross-talk between GPCRs can have consequences for drug 
therapy, the mechanisms for which need to be thoroughly examined. Lastly, allosteric 
modulation, which is another upcoming molecular interaction that is important for 
drug designing, can be applied to the homo and heterodimerization of GPCRs for 
various conditions. Hence, studies on structural, functional, receptor co-localization 
and remodelling, etc., will yield new insights into mechanisms involved and help 
improve therapeutics for a variety of CNS disorders, including in psychiatry.

CONCLUSION
Conclusion and future scope are included in the main text under heading "Intro-
duction" above.
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