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Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control 
triggers the appearance of chronic complications such as diabetic retinopathy. 
Diabetic retinopathy is considered a multifactorial disease of complex etiology in 
which oxidative stress and low chronic inflammation play essential roles. Chronic 
exposure to hyperglycemia triggers a loss of redox balance that is critical for the 
appearance of neuronal and vascular damage during the development and 
progression of the disease. Current therapies for the treatment of diabetic 
retinopathy are used in advanced stages of the disease and are unable to reverse 
the retinal damage induced by hyperglycemia. The lack of effective therapies 
without side effects means there is an urgent need to identify an early action 
capable of preventing the development of the disease and its pathophysiological 
consequences in order to avoid loss of vision associated with diabetic retinopathy. 
Therefore, in this review we propose different therapeutic targets related to the 
modulation of the redox and inflammatory status that, potentially, can prevent 
the development and progression of the disease.

Key Words: Diabetic retinopathy; Oxidative stress; Inflammation; Cellular target; Diabetic 
macular edema
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Core Tip: The identification of potential therapeutic targets related to oxidative stress 
and low chronic inflammation induced in diabetic retinopathy (DR) may be crucial in 
developing therapeutic approaches for preventing the development of DR. Hence, we 
focus on the antioxidant role of nuclear factor erythroid 2-related factor 2, low and 
chronic inflammatory conditions developed in DR, modulation of lipid peroxidation, 
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activation of glucagon-like peptide-1 receptor, the classical biochemical pathways 
altered under hyperglycemia, and epigenetic alterations.
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INTRODUCTION
Diabetes mellitus is a metabolic disorder associated with hyperglycemia. The global 
prevalence of diabetes in adults 20-79 years of age, including both type 1 and type 2 
diabetes, diagnosed, and undiagnosed, was estimated at 463 million in 2019. Based on 
the estimation, by 2045 a projected 700 million adults will have diabetes[1]. Although 
diabetes is a pathology with multiple systemic consequences, the loss of metabolic 
control in particular is not effectively controlled in many patients and that triggers the 
development of long-term damage of various organs, including the retina. In fact, 
diabetic retinopathy (DR) is the greatest cause of preventable blindness in the working 
age population and the most frequent ocular pathology caused by diabetes[2]. Its 
prevalence increases as the number of diabetic patients increases, depends on the 
duration of the disease, and on inadequate glycemic control. It has also been associated 
with the presence of hypertension, and was estimated to affect 2.6 million people in 
2015 and projected to affect 3.2 million adults by 2020[2,3].

Cellular aerobic metabolism induces the physiological production of reactive 
oxygen species (ROS), which are molecular actors in the regulation of normal cell 
signaling. The production of ROS is countered by antioxidant enzymatic and nonen-
zymatic machinery enabling a homeostatic redox balance. However, the balance may 
be easily altered by a pathological condition. Glucose metabolism linked to reduction 
in antioxidant defenses triggers an oxidant environment in body tissues exposed to 
chronic hyperglycemia[4]. Although the blood-retinal barrier (BRB) makes the tissue a 
privileged place, as the retina is protected from the escape of circulating toxins, its 
cellular components are extremely sensitive to alterations in oxygen level[5]. In fact, 
the imbalance in redox homeostasis induced by diabetes triggers neuronal retinal cell 
death and pericyte cell death followed by an increase in the vascular permeability, and 
cumulative molecular damage leading to development and progression of DR to 
advanced stages[2,6-8]. Because of this, oxidative stress is considered a major cause of 
DR development.

The complex and extensive harmful effects of ROS contribute to the neurovascular 
complications observed in the retina. In this review, we focus on the main cellular 
targets affected by oxidative stress. The affects lead to cellular dysfunction and are 
potential therapeutic targets to avoid the development and progression of DR. Among 
hyperglycemia abnormalities closely associated with oxidative stress we highlight the 
key role of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and 
its importance in the modulation of oxidative stress, the increased accumulation of 
advanced glycation end products (AGEs), polyol and hexosamine pathways and 
protein kinase C activation, lipid peroxidation, activation of glucagon-like peptide-1 
receptor (GLP1R), and alteration of the epigenetic status[2,9].

THE IMPORTANCE OF LOOKING FOR NEW THERAPEUTIC TARGETS IN 
DIABETIC RETINOPATHY: ACTUAL THERAPIES
As DR is most often asymptomatic, the pathology can be significantly advanced when 
the patients suffer a loss of vision. Therefore, an early diagnosis is necessary to detect 
the first signs before the disease progresses to more serious stages[10]. In the early 
stages of DR, with the objective being to prevent its development or stop its 
progression, the only therapeutic strategy is a strict control of risk factors, mainly 
blood glucose and blood pressure[11]. Overall, treatment is applicable in very 
advanced stages of the pathology and when DR affects the macula, triggering diabetic 

https://www.wjgnet.com/1948-9358/full/v12/i9/1442.htm
https://dx.doi.org/10.4239/wjd.v12.i9.1442


Rodríguez ML et al. Cellular targets in DR

WJD https://www.wjgnet.com 1444 September 15, 2021 Volume 12 Issue 9

macular edema (DME), which is the most common cause of blindness induced by 
chronic hyperglycemia. The main interventions for DR and DME include ocular and 
systemic pharmacotherapy, with conventional laser therapy as the secondary 
treatment option, although it remains the first-line option when the cost and burden of 
drug treatment are considered, and vitreoretinal surgery[12,13]. The decision to use 
one or other of the treatments depends on the specific clinical situation of the patient.

Pharmacotherapy
The evidence that inflammation plays a critical role when DR affects the macula, 
triggering DME, has opened new avenues and targets for developing new treatments. 
There are many anti-inflammatory therapies, such as intravitreal glucocorticoids, 
topical nonsteroidal anti-inflammatory drugs (NSAIDs), inflammatory molecule 
inhibitors, renin-angiotensin system blockers, and natural anti-inflammatory therapies 
that can reduce the use of anti-neovascularizing agents in the treatment of DR, but 
more studies are needed[6]. Despite these therapies, the most important class of drugs 
are those that decrease the effects of vascular endothelial growth factor (VEGF), and 
corticosteroids[14].

Anti-VEGF treatment
Intravitreal injections of anti-VEGF drugs are the treatment par excellence for DR and 
its angiogenic complications. The monoclonal antibody ranibizumab (Lucentis®), the 
long-acting antibody bevacizumab (Avastin®), the aptamer pegaptanib (Macugen®), 
and the recombinant fusion protein aflibercept (Eylea®) are the anti-VEGF agents most 
frequently used to treat DME. The drugs, do not affect the pathogenesis of DR and 
must be administered for years as frequent intravitreal injections, estimated to be 
around 12-15 injections in the first 3 years of treatment[15-17]. They are also associated 
with adverse effects such as susceptibility to the development of endophthalmitis, 
vitreous floaters, and transient increase in intraocular pressure[18].

Administration of corticosteroids
Acknowledging the role of inflammatory processes in the pathogenesis of DR, anti-
inflammatory drugs are an attractive option for the treatment of the disease[19]. 
Hence, the anti-inflammatory and anti-angiogenic effects associated with corticost-
eroids have led to their inclusion in the treatment of DR and DME. Several mediators 
of inflammation are upregulated in DR. The mediators, including tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β) and VEGF have a key role in pathogenesis and 
can be modulated by corticosteroids[20]. The effects of corticosteroids include the 
reduction of vascular permeability and the breakdown of the BRB, prevention of 
leukocyte adhesion to vascular walls, suppression of VEGF gene transcription and 
translation, and the rapid decrease of DME[21].

The main mode of administration is intravitreal injection, which avoids the 
limitations of BRB. However, treatment-associated adverse effects of steroids include 
cataracts, high intraocular pressure, and glaucoma. Less frequent side effects, such as 
vitreous hemorrhage, retinal detachment, and endophthalmitis are related to the 
injection[22,23]. Moreover, short-term effects and transient efficacy are limiting factors 
in the application of this treatment, and new injections it is often required at various 
time intervals based on the steroid half-life. Currently, DME is treated with several 
different steroids, including fluocinolone, triamcinolone, and dexamethasone[24]. Side 
effects associated with chronic use and the need for repeat injections have brought 
about the development of new methods of intraocular administration, such as 
sustained release from an intravitreal implant. Slow-release formulations are used to 
avoid reinjection, which allows the use small quantities of corticosteroids, which 
results in fewer side effects[25]. Both nonbiodegradable and biodegradable devices are 
available. In biodegradable devices, the polymers degrade slowly over time, thus 
avoiding the need for surgery to remove the implant, in contrast to the nonbiode-
gradable ones[26].

Laser therapy
Over the past 30 years, the most successful means of delaying the progression of DR 
has been focal, grid, or panretinal photocoagulation (PRP) laser treatment[27]. In the 
treatment of proliferative DR, the use of PRP reduces oxygen requirements and 
decreases retinal neovascularization. PRP eliminates the hypoxic retina and/or 
increases the diffusion of O2 found in the choroid to supplement the affected retinal 
circulation. Furthermore, laser therapy decreases the formation of vasoproliferative 
agents and inhibits neovascularization. The procedure uses scattered laser spots of 
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200-500 µm in the peripheral retina, avoiding the central macula. In the case of DME, 
the laser spots are applied in the regions of the macular area with microaneurysms in 
order to decrease exudation[28].

The use of laser therapy plays an important role in controlling diabetes mellitus-
related retinal disease and is generally used in situations in which the use of pharma-
cotherapy is contraindicated, there is poor monitoring of patient visits, if the response 
to anti-VEGF treatment is ineffective, or if the patient is pregnant[13]. Although PRP 
treatment can effectively control neovascularization and prevent blindness, it is unable 
to restore vision and has its own damaging effects on vision[29]. The destructive 
capacity of laser therapy permanently damages the cells, thus producing side effects 
that affect the deterioration of vision, such as loss of contrast sensitivity, decreased 
night vision, color vision, visual field, and the appearance of DME[30]. In certain 
situations, the prior use of laser photocoagulation and intravitreal anti-VEGF agents 
induce fibrotic changes in preexisting retinal neovascularization, causing tractional 
retinal detachment with the need for early surgery to avoid permanent blindness[31].

Surgical intervention
Surgical intervention is used in cases that show no response to pharmacological 
treatment, laser, or combined therapy, as well as in the most severe cases of DME. 
Therefore, vitrectomy is indicated in situations such as vitreous hemorrhages that do 
not disappear, tractional detachment of the retina in proliferative DR, and anomalies 
in the vitreoretinal interface that prevent the resolution of DME[32]. To facilitate the 
intervention, an intravitreal injection of an anti-VEGF agent like bevacizumab, 
ranibizumab, or aflibercept, is included as a preoperative complement in patients with 
no contraindications, as they cause a rapid involution of active neovascularization[33].

Surgical vitrectomy entailing the removal of most of the vitreous body and hyaloid 
membrane has shown a series of benefits, such as decreased growth of fibrovascular 
membranes caused by the absence of proliferation in scaffolds, increased intraocular 
cytokine turnover, and removal of mechanical barriers that hinder the exit of 
metabolites and fluids and obstruct intravitreal drug delivery through intraretinal 
penetration[34]. However, because of individual variability in the surgical anatomy 
that each case presents, diabetic vitrectomy continues to be one of the most difficult 
conditions to treat. In addition, it has postoperative consequences such as rhegmato-
genous retinal detachment, development of cataracts, proliferation of diabetic 
fibrovascular membranes, vitreous hemorrhage, appearance of epiretinal membranes, 
elevated intraocular pressure, and neurovascular glaucoma[35-37].

All these treatments are expensive, uncomfortable for the patient, have limited 
effectiveness because of the administration protocols, and are associated with a 
significant number of side effects[38]. Despite benefits in slowing the progression of 
DR and improving vision, damage to the retinal blood vessels the function of neuronal 
cells is irreversible[2]. Even after the advances made in the treatment of retinopathy, 
many patients still progress to advanced stages of disease. It is necessary, therefore, to 
investigate new therapeutic approaches capable of both delaying and preventing the 
appearance of the first stages of DR.

RETINOCELLULAR ALTERATIONS IN DIABETIC RETINOPATHY DEVE-
LOPMENT
Oxidative stress has been defined as an imbalance between the production and the 
removal of free radicals, which leads to their accumulation. The most common free 
radicals are ROS, such as the superoxide anion (O2•−), hydrogen peroxide (H2O2), the 
peroxyl radical (ROO•), and the hydroxyl radical (•OH). These oxygen-derived 
molecules are very reactive and generally toxic to cells[39,40]. Under physiological 
conditions, free radicals are normally and continuously produced. Low to moderate 
levels of free radicals support normal cellular metabolism, proliferation, differen-
tiation, immune system regulation, and vascular remodeling[2,41]. Intracellular ROS 
levels are controlled by enzymes including catalase (CAT), superoxide dismutase 
(SOD), and glutathione peroxidase (GPx) and nonenzymatic species like glutathione 
(GSH), thioredoxin, NADPH, α-tocopherol, ascorbic acid and β-carotene, which 
constitute an antioxidant defenses system. Oxidative stress leads to the accumulation 
of ROS because of excessive production or inefficient removal. ROS can modify the 
structure of proteins, lipids, carbohydrates, and nucleic acids, thus affecting their 
function[2].
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Oxidative stress plays a critical role in the pathogenesis of DR. The retina has high 
metabolic activity, high oxygen partial pressure from the blood in the choroid, and it is 
highly exposed to bright light. All these factors, together with the oxidative enviro-
nment induced by hyperglycemia in diabetes, cause an increased level of ROS in the 
retina[42-44]. ROS overproduction in the retina triggers cell death, retinal ischemia, 
retinal neovascularization, and DME[45]. Furthermore, various mutations of 
detoxifying enzymes that have a significant role in DR development, such as CAT or 
SOD, have been reported[46]. This suggest that hyperglycemia-induced oxidative 
stress is one of the main causes of DR[45,47,48]. Therefore, some treatments of DR are 
based in the inhibition of ROS generation, neutralization of free radicals, or the 
reinforcement of the antioxidant defense system[39].

Oxidative stress and Nrf2
Nrf2 is a transcription factor that activates the expression of various detoxifying and 
antioxidant defense genes in response to oxidative stress[49,50]. The functional activity 
of Nrf2 depends on whether it is located in the nucleus or in the cytoplasm. Under 
physiological conditions and in the absence of oxidative stress, Kelch-like enoyl-CoA 
hydratase-associated protein 1 (Keap1) sequesters Nrf2 in the cytoplasm and mediates 
its rapid ubiquitination and degradation, suppressing its transcriptional activity[51,
52]. When there is an accumulation of ROS, Keap1 changes its conformational 
structure and releases Nrf2, which then translocates from the cytoplasm to the nucleus. 
Once there, Nrf2 binds to the antioxidant response element of a promoter region to 
initiate transcription of several genes encoding heme oxygenase 1 (HO-1), NAD(P)H 
dehydrogenase (quinone) 1, thioredoxin reductase, peroxiredoxins, SOD, CAT, GPx, 
GSH reductase (GR), GSH S-transferase (GST), and glutamate-cysteine ligase (GCL). 
These enzymes contribute to elimination of ROS and play a critical defensive role in 
cell homeostasis[2,50,53]. Nrf2 is an important cellular pathway that protects against 
oxidative stress in the retina[54,55]. In diabetes, Nrf2 increases in the retina but so does 
keap-1, which prevents Nrf2 from reaching the nucleus. Thus, Nrf2 nuclear level is 
decreased and the antioxidant defense system is compromised[55-57]. As a result, the 
activity of Nrf2-associated antioxidant enzymes like SOD, GR, GPx, and CAT in 
diabetes patients or glutamate-cysteine ligase in rat diabetes models[55,58,59]. Thus, 
the increased risk of developing DR in diabetes patients results from reduced 
antioxidant capability and the oxidative environment generated by hyperglycemia[2]. 
These studies also suggest that Keap1 knockdown would release Nrf2, which would 
move to the nucleus and activate the antioxidant defense system[54,55]. In addition to 
the regulation of the antioxidant response, Nrf2 regulates the inflammatory response 
in diabetes[60]. The response is mediated by nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). When Nrf2 activity is 
reduced, there is an increase of proinflammatory cytokines because of the induction of 
NF-κB, which is associated with capillary cell apoptosis in diabetes via the overex-
pression of proapoptotic Bax or TNF-α[61-63]. In an experimental model of strepto-
zotocin-induced diabetes, rutin, a flavonoid derivative of quercetin, protected against 
neuron damage in diabetes via the Nrf2/HO-1 and NF-κB signaling pathway, together 
with its anti-inflammatory action via COX-2 inhibition[2,64]. The data suggest that 
Nrf2 activation could be an important protective mechanism for diabetic complic-
ations, making it an especially attractive pharmacological target in the progression of 
DR[54]. Many studies suggest that natural compounds, including polyphenols, can 
reduce oxidative stress and inflammation through activating Nrf2 and the consequent 
antioxidant response[57].

Several publications have described the therapeutic potential of various 
polyphenols in diabetes, including those in green tea,, resveratrol, curcumin, 
quercetin, and tannins[65-73]. Pterostilbene (Pter), is a phenol that been shown to 
prevent early DR alterations via Nrf2 activation in an experimental rabbit model[47]. In 
addition to natural antioxidants, other molecules have been shown to activate Nrf2 in 
DR. One example is RS9, a derivative of the triterpenoid bardoxolone methyl, which 
was found to delay retinal degeneration by inhibiting inflammatory responses and 
increasing intrinsic antioxidant enzymes via activation of Nrf2[74]. Another triter-
penoid derivative, dihydro-CDDO-trifluoroethyl amide (dh404) has been shown to 
protect the retina against diabetes-induced damage through the activation of Nrf2[75].

Another therapeutic approach in the treatment of DR is, as suggested above, is the 
inactivation of Keap1. Triterpenoids, salvianolic acids, and sulforaphane[76-79] have 
been shown to inactivate Keap1 by covalently modifying its reactive cysteine residues. 
As a consequence, Nrf2 is activated by its translocation into the nucleus and its 
downstream target genes are then activated, which prevents or reverts ROS-mediated 
toxicity[50].
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Inflammatory response
Inflammation is a defensive process mediated by the host immune system in response 
to injury or stress. In DR, acute inflammation normally produces beneficial effects like 
tissue defense and repair. Chronic inflammation produces structural and molecular 
alterations in the retina that usually cause tissue damage and cell death[2]. The inflam-
matory response in the retina is caused by various factors like hyperglycemia, growth 
factors, AGEs, high levels of circulating or vitreous cytokines and chemokines, and 
ROS[80]. These factors induce intracellular signaling pathways, including the 
transcription factor NF-κB, which translocates into the nucleus to initiate the 
transcription of proinflammatory cytokines i.e. TNF-α, IL-1β, and IL-6; proinflam-
matory proteins such as COX-2 or the inducible isoform of nitric oxide synthetase 
(iNOS), and chemokines such as monocyte chemoattractant protein-1. The proinflam-
matory molecules play an important role in the recruitment and activation of 
monocytes and leukocytes[81,82]. Adhesion of leukocytes to the capillaries of the 
retina (leukostasis), together with the release of ROS and proinflammatory cytokines, 
leads to vascular permeability, BRB breakdown, and capillary pericyte loss. Thus, it is 
clear that chronic inflammation is critical for the development of DR, principally in the 
early stages[2,27,81,83].

Several studies have shown that there is an increase of proinflammatory molecules 
in the retina or vitreous humor of diabetic animals and patients. Those reported are 
VEGF, TNF-α, iNOS, COX-2, prostacyclin, insulin-like growth factor 1, NF-κB, 
placental growth factor, intercellular adhesion molecule-1, IL-1β, IL-2, IL-6 and IL-8[81,
84-86]. The findings highlight the key role of inflammation in the development of DR. 
The detailed mechanisms involved in the inflammatory response in DR are not clear, 
but inhibition of some of the inflammatory mediators mentioned in the previous 
paragraphs has been shown to block DR development in animal models of diabetes[82,
87-92]. NSAIDs, anti-VEGF, and anti-TNF-α agents diminish the progression of DR in 
humans because of their anti-inflammatory properties[93]. Systemic administration of 
specific COX-2 inhibitors could be a possible therapy, although COX-2 inhibitors 
increase the incidence of heart attack and stroke[94]. Nevertheless, in preclinical 
studies, topical administration was shown to reduce the signs of DR[95-97]. More 
studies on the beneficial effects of these molecules are needed.

Tetracyclines, such as minocycline and doxycycline, have immunomodulatory 
properties that include inhibiting the production of NO, COX, prostaglandins, IL-1β, 
TNF-α, and caspases[98-100]. In a single-center phase I/II clinical trial in five patients 
with DME, treatment with minocycline resulted in improved visual function, reduced 
central DME, and vascular leakage[101]. In another clinical trial, patients with severe 
nonproliferative or non-high-risk proliferative DR were treated with doxycycline, 
which resulted in an improvement of perimetric parameters compared with patients 
who received a placebo[102]. IL-6 is one of the most important proinflammatory 
cytokines present in the vitreous of DR patients. Various clinical studies have invest-
igated the effect on DR of two IL-6 inhibitors, an antibody against IL-6 (EBI-031, clinic-
altrials.gov ID: NCT02842541) and an antibody against the IL-6 receptor (tocilizumab, 
clinicaltrials.gov ID: NCT02511067) in patients with DME. Although they have not yet 
concluded, the studies have shown that IL-6 inhibitors can be effective in the 
management of non-infectious uveitis. Therefore, the roles of IL-6 inhibition could be 
more widely investigated in the management of retinal vascular diseases and non-
uveitic DME[103]. The effect of anti-TNF-α therapy has also been studied in a few 
clinical cases but there are no conclusive data about the effects of these inhibitors in 
DR or DME[104]. The same is true of canakinumab, a selective IL-1β antibody[105].

Alteration of biochemical pathways
It has long been accepted that hyperglycemia induces the alteration of the biochemical 
pathways, such as an increased flux of advanced glycation end products/receptors 
(AGE/RAGE), the polyol pathway, protein kinase C (PKC) activation, the hexosamine 
pathway, and unbalancing redox status. The induction of ROS stimulates a low 
chronic inflammatory state that contributes to the development and progression of 
neurovascular dysfunction in DR[2]. The regulation of these molecular pathways 
therefore offers potential targets against DR.

Glucose and products generated by carbohydrate metabolism are able to transform 
proteins, lipids, or nucleic acids by glycation, triggering the formation of AGEs, a 
synthesis that is accelerated in the presence of ROS and redox-active transition metals
[106,107]. In addition, the production of AGEs stimulates increased formation of 
oxidative species, resulting in positive feedback that contributes to the progression of 
the complications of diabetes[108]. AGEs have severe effects on retinal tissue, such as 
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aberrant extracellular crosslinking of extracellular matrix proteins and increased 
vascular stiffness, which disturbs normal vascular function. AGEs also bind to various 
receptors in the plasma membrane (RAGE) and activate intracellular signaling 
cascades that trigger the release of proinflammatory cytokines and proangiogenic 
factors, with evident damage of neurovascular retinal structures[109]. As AGEs 
formation is closely related to oxidative stress, modulation of the antioxidant machi-
nery is an attractive approach for preventing the development and progression of DR. 
The administration of curcumin to diabetic rats was shown to improve redox 
imbalance in the retina[110] and protect against effects of glycation[111]. Epigalloc-
atechin 3-gallate, quercetin, kaempferol, and resveratrol are other examples of natural 
antioxidants able to diminish the production of AGEs[112-115]. In addition, drugs 
such as aminoguanidine have been shown to be effective inhibitors of AGE formation 
and to inhibit the development of DR[116,117]. However, adverse side- effects 
preclude their use in humans[108]. Aragonès et al[108] in their latest excellent paper, 
review the benefits of enhancing the detoxifying activity of the glyoxalase system, a 
main mechanism for detoxifying the intermediates and precursors of AGEs formation, 
to avoid glycation-derived damage in DR.

Under normoglycemic conditions, glucose is metabolized by the glycolytic pathway. 
However, in chronic hyperglycemia, excess glucose is reduced to sorbitol by the 
enzymatic action of aldose reductase. Sorbitol is then converted to fructose by sorbitol 
dehydrogenase. The two enzymes constitute an alternative route of glucose 
metabolism known as the polyol pathway, which is an important source of oxidative 
stress and AGE production[2]. In addition, sorbitol increases cellular osmolarity, 
triggering osmotic damage and cell death in retinal capillaries[118,119]. Although 
clinical trials have been inconclusive in the use of polyol pathway inhibitors to treat 
DR, its use as a potential therapeutic target in DR should not be ruled out[120,121]. In 
fact, the benefits of polyphenols for DR treatment is extended to inhibition of the 
polyol pathway. For example, Pter, a natural stilbene analog of resveratrol, in addition 
to promoting antioxidant defenses via Nrf2, inhibited aldose reductase and AGEs 
formation in a galactosemic rat model[47,122]. Another alternative route to glycolysis 
in hyperglycemia is the hexosamine pathway. Glutamine fructose-6-phosphate 
amidotransferase (GFAT) converts fructose-6-phosphate to N-acetylglucosamine-6-
phosphate, which is a substrate of O-N-Acetyl-GluN transferase (OGT) and converted 
to uridine-5-diphosphate-N-acetylglucosamine (UDP-GlucNAc), a precursor of 
glycoproteins, glycolipids, proteoglycans, and glycosaminoglycans[123]. High levels of 
glucose and N-acetylglucosamine-6-phosphate activity inhibit glucose-6-phosphate 
dehydrogenase and low NADPH-dependent GSH production, triggering an increase 
in the level of H2O2[124]. Glucosamine administration or overexpression of GFAT also 
leads to H2O2 accumulation, highlighting the role of the hexosamine pathway in 
oxidative stress[125]. Moreover, OGT activity has been associated with altered TGFβ 
gene expression, which induces NADPH oxidase (NOX) activation, suppression of the 
antioxidant system, and mitochondrial ROS production[126-128]. In fact, antioxidant 
treatment has shown beneficial effects against some adverse consequences of the 
hexosamine pathway[125]. Various inhibitors of the hexosamine pathway, such as the 
antineoplastic azaserine, the anthraquinone rhein, and the lipid-soluble thiamine 
derivative benfotiamine, have been evaluated in experimental animal models. In 
addition to the hexosamine pathway, those agents inhibit AGE formation and the PKC 
pathway[129-131]. However, the effectiveness of this therapeutic approach in DR has 
not been shown in clinical trials.

Inhibition of the PKC pathway is of interest. PKCs comprise a family of cAMP-
dependent protein kinases with multiple isoforms involved in the regulation of other 
proteins[2]. PKCs are activated when the second messenger is bound to its regulatory 
domain. Phosphatidylserine, calcium, and diacylglycerol (DAG) or phorbol esters are 
activators of PKC-α, β1, β2, and γ. Phosphatidylserine, DAG or phorbol 12-myristate 
13-acetate (PMA) activate PKC-δ, ε, θ, and η, while PKC-ζ and -ι/λ are not activated by 
calcium, DAG or PMA[132]. Cysteine residues are abundant in the PKC structure 
which makes the regulatory domain susceptible to redox modulation[2]. In fact, 
hyperglycemia can activate some PKC isoforms directly through DAG, or indirectly by 
the oxidative stress generated through AGE production and the polyol pathway[133,
134]. PKC contributes to redox injury of retinas exposed to chronic hyperglycemia at 
different levels, triggering the signs of DR. For example, PKC-β is an activator of NOX, 
and the overproduction of O2

•− increases the formation of peroxynitrite to induce 
endothelial changes[135-137]. PKC-δ is involved in the death of capillary cells and 
perycites, with subsequent formation of microaneurysms[138,139]. PKC-β and PKC-ζ 
are involved in VEGF-dependent changes of the retinal barrier[140]. Moreover, PKC 
induces the overexpression of plasminogen activator-1 and the activation of NF- κB in 
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vascular smooth muscle and endothelial cells, pericytes, and mesangial cells[134]. 
Inhibition of PKC has been considered as an effective approach to treat DR. The highly 
selective PKC-β inhibitor, ruboxistaurin mesylate, is one of the most studied. Initial 
clinical studies showed its potential in the prevention of vision loss induced by DR
[141]. However, in 2007 the European Medicines Agency declared a minimum benefit 
in the treatment of moderately severe to severe non-proliferative DR[142]. In any case, 
knowledge of the role of the various isoforms of PKC is incomplete and offers another 
therapeutic target to be considered.

Lipid alterations
Lipids play a crucial role in the maintenance and development of retinal functions. The 
plasma membranes of the outer segments of retina photoreceptors contain high levels 
of polyunsaturated fatty acids (PUFAs). The most abundant PUFAs in the retina are 
ω3-docohexaenoic (DHA), ω3-eicosapentaenoic (EPA), and ω6-arachidonic (AA), with 
DHA being predominant[143-146]. The functions of PUFAs in the retina have been 
demonstrated in numerous studies. PUFA supplementation has protective and 
therapeutic effects against proliferative and degenerative retinal diseases, possibly 
resulting from their antioxidant and anti-inflammatory properties[147-150]. In 
addition, DHA deficiency has been associated with structural and functional 
abnormalities in the visual system[149]. ROS formed during oxidative stress can 
oxidize PUFAs because of the presence of susceptible carbon double bonds in the 
molecular structure[44,150]. The free radical chain reaction results in lipid 
peroxidation and acts to amplify the generation of lipid radical species, causing PUFA 
degradation into a variety of potentially harmful oxidation products[42,146]. The 
increase of ROS in DR, together with the high PUFA content in the membranes of the 
photoreceptors, triggers an increase of lipid peroxidation[42,44,151]. In fact, patients 
with DR have higher lipid peroxidation than those without retinal disease[151-153]. 
Moreover, a number of published papers indicate that lipid peroxidation has serious 
pathophysiological effects that contribute to the development of DR[149,154-158], and 
there is increasing evidence of the importance of products of lipid peroxidation as 
mediators in the development of neovascularization in DR[149,159,160].

The role of lipid peroxidation in DR has been extensively studied, the determination 
of lipid peroxidation products, including aldehydes such as 4-hydroxynonenal (4-
HNE) or malondialdehyde (MDA), and F2-isoprostanes (F2-IsoP) such as 8-iso-PGF2α in 
plasma, urine, or the retina[161]. 4-HNE, an end product of nonenzymatic lipid 
peroxidation of ω6 PUFAs like linoleic acid and amino acids, has been shown to be 
extremely reactive with DNA, RNA, and proteins in the retina[39,162-165]. Zhou et al
[166] reported that 4-HNE activates the canonical WNT pathway through oxidative 
stress in a rat model, playing a pathogenic role in the development of DR. Previous 
studies by that group have shown that blockade of WNT signaling attenuated retinal 
inflammation and neovascularization in DR in humans and animal models[167]. In 
fact, inhibition of the WNT pathway by peroxisome proliferator-activated receptor 
alpha (PPARα) overexpression induced anti-inflammatory and antifibrosis effects
[168]. The retinal protective role of PPARα has been demonstrated both in vitro and in 
vivo. Chronic hyperglycemia in experimental animal models of diabetes or treatment 
of retinal cell lines with high glucose concentrations reduces PPARα mRNA and 
protein expression levels. The use of PPARα agonists, such as fenofibrate, have been 
discussed as a treatment of DR by preventing microvascular damage[169,170]. Overex-
pression of PPARα was found to reduce ROS production, apoptosis induced by 
oxidative stress, and downregulation of NOX4 expression[171]. It also inhibited cell 
proliferation, migration, and had anti-angiogenic effects[172]. The data suggest that 
the WNT pathway and PPARα represent a new target for therapeutical intervention of 
DR[167].

Other studies suggest that 4-HNE retinal damage in DR could result from the 
induction of p53-mediated apoptosis in retinal pigment epithelial cells[173]. It has also 
been shown that 4-HNE attenuated β2-adrenoceptor-mediated vasodilation of rat 
retinal arterioles, which would contribute to the retinal vascular dysfunction observed 
in patients with diabetes mellitus[174].

Several studies of possible new treatments of DR have focusing on protecting effects 
damage associated with 4-HNE. Chiang et al[175] reported that fucoxanthin, a marine 
carotenoid extracted from seaweed, effectively protected against the effects of 4-HNE- 
and high glucose-induced DR in ARPE-19 human retinal epithelial cells through the 
antioxidant ability of this compound. Pter was also shown to reduce 4HNE levels in 
the retina of a rabbit model of type 1 diabetes mellitus, preventing early DR alterations
[47]. MDA is a product of the peroxidative decomposition of PUFAs. It is a highly 
reactive molecule that forms covalent bonds with the amino acids of endogenous 
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proteins[42,48]. MDA possesses cytotoxic, hepatotoxic, mutagenic, and genotoxic 
properties, and can alter proteins, DNA, RNA, and many other biomolecules[176,177]. 
MDA concentration as a final product of lipid oxidation is routinely determined by 
thiobarbituric acid assay or chromatography-mass spectrometry[176-178]. There are no 
studies of its mechanism of action in DR. It has only been used as a biomarker of lipid 
peroxidation in biological samples.

Since its discovery, F2-IsoP has become one of the most reliable biomarkers of lipid 
peroxidation and oxidative stress in in vitro studies and in animal models[179-181]. F2-
IsoP comprises a family of prostaglandin-like compounds produced by nonenzymatic 
peroxidation of amino acids in membrane phospholipids[181]. One of the most studied 
F2-IsoP is 8-iso-PGF2α (also known as 8-epi-PGF2α or 15-F2t-isoprostane), which has been 
shown to be involved in inflammation and immunity in various diseases[48,181]. In 
DR, 8-iso-PGF2α is produced by COX activity and enzymatic oxidation of PGF2α[182]. It 
has been shown to be a potent vasoconstrictor in the retina by increasing thromboxane 
A2 formation through the activation of Ca2+ influx[182-184].

Further research is needed to clarify the pathophysiological activity of PUFA 
derivatives in DR. Nevertheless, it seems that inhibition of the formation of these 
highly cytotoxic molecules could be a possible therapeutic strategy for the 
management of DR. In fact, Pter has been recently reported to be able to restore the 
control levels of a large group of specific neuronal and retinal lipid peroxidation 
markers in diabetic rabbits[185]. This suggests that this polyphenol could protect the 
retina, preventing early lipid peroxidation damage in DR development.

GLP1R
In recent years, new pharmacological therapies have been developed as effective 
treatments for type 2 diabetes. Glucagon-like peptide 1 receptor agonists (GLP1RAs) 
have emerged as a safe treatment, and some agonists have been incorporated into the 
clinical guidelines of the American Diabetes Association and the European Association 
for the Study of Diabetes. Furthermore, preclinical studies have shown the benefits of 
GLP1R activation on diabetic vascular complications such as DR[186]. Actually, the 
benefits are broad. GLP1R activation, independent of homeostatic glycemic control, 
can reduce the harmful consequences of diabetes on the retina, such as oxidative 
stress, neurodegeneration, inflammation, BRB breakdown, or angiogenesis[187-190].

The AKT pathway is a target of GLP1R activation and is essential for retinal 
neuroprotection in early DR development[188]. AKT phosphorylates a number of 
heterogeneous substrates including E2 ubiquitin ligases, transcription factors, protein 
and lipid kinases, metabolic enzymes, etc., showing that AKT not only regulates a 
physiological process, but also controls multiple cellular functions. The first AKT 
substrate reported was GSK3[191]. Inactivation of GSK3 by AKT-phosphorylation has 
been shown to regulate transcription factors such as Nrf2, which is needed for DR 
development[192]. Moreover, in vitro and in vivo studies have demonstrated the 
ability of GLP1 to protect neurons from aggregation by β-amyloid peptide and against 
AGEs, as well as being able to reduce hyperphosphorylation of the tau protein by 
regulating GSK3β. It is believed that the mechanism of action of GLP1 is the activation 
of the PI3K/AKT signaling pathway, which is capable of phosphorylating and 
inactivating GSK3β[193]. Although further studies are needed to understand the 
importance and possible modulation of PI3K/AKT/GSK3β/Nrf2 pathway by GLP1R, 
these observations allow us to develop hypotheses of the key effects that modulation 
of Nrf2 by GLP1R agonists have on DR development.

Epigenetic modifications
Although glycemic control may be achieved, chronic hyperglycemia during the first 
few months may be enough exposure to develop stable and heritable epigenetic 
modifications capable of altering gene expression and becoming a potential major 
factor of DR development[194]. The alterations occur on chromosomes without 
changes in the DNA sequence and are the basis of the known “metabolic memory”. 
The identified molecular mechanisms underlying these long-term effects act at 
different levels that include DNA methylation, post translational modifications of 
histones or regulation by noncoding (nc)RNAs[195]. For example, the low retinal 
histone acetylation of H3 induced by hyperglycemia for 6 mo did not recover after 6 
mo of good glycemic control[196]. Likewise, euglycemia was unable to recover the 
DNA hypomethylation and unusual gene expression induced by hyperglycemia[197].

DNA methylation status is controlled by the activity of DNA methyltransferase 
(DNMT) enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-
methinione, and DNA demethylases. Imbalanced activity in diabetes, induces 
alterations in specific genes that triggers aberrant expression related to DR. For 
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example, chronic hyperglycemia in the retina stimulates the binding of DNMT1 and 
the DNA demethylase ten-eleven-translocation (TET) 2 to the promoter of Ras-related 
C3 botulinum toxin substrate (Rac1)[198]. Methylation induced by DNMT1 is rapidly 
reversed by TET2, triggering hypomethylation of the promoter and allowing Rac1 
transcription, which induces NOX, and relevant effectors in DR development[199]. In 
fact, the mitochondrial damage initiated by NOX-2 activation has been associated with 
early DR development while its inhibition protects endothelial retinal cells from 
diabetes-induced apoptosis[200].

Although diabetes induces a global state of DNA hypomethylation, different states 
of methylation for specific CpG islands are closely related to DR development. An 
increase in the expression and activity of DNMTs has been observed in DR[201-203]. 
Based on that, inhibition of DNMTs can be a possible protective therapy against the 
development of DR. For example, 5-aza-2'-deoxycytidine, a nonselective inhibitor of 
DNMTs, re-establishes the expression of genes hypermethylated by hyperglycemia 
and related to DR development, such as SOD2 and glutathione S-transferase theta 1 
(GSTT1), which protects against oxidative stress[203].

Changes in the pattern of acetylation and methylation are the most studied post 
translational modifications of histones. Overall, the acetylation of histones H3 and H4 
and di or tri-methylation of H3K4 are related to euchromatin status. Low acetylation 
and high methylation levels are associated with silent heterochromatin. Experimental 
models of DR have provided contradictory results for histone acetylation. For 
example, Zhong and Kowluru[196] revealed reduced global acetylation, but Kadiyala 
et al[204] observed augmented histone acetylation in diabetic retinas. So far, in vivo 
experimental results for histone acetylation in DR remain contradictory[194,205].

Histone methylation is associated with transcriptional activation or repression 
depending on the type of residue and the number of methyl groups. Hence, the 
methylation of H3K4, H3K48, and H3K79 have been considered activation marks, 
while that of H3K9 and H3K27 are associated with transcriptional repression[206]. For 
example, decreased levels of H3K4me1 and H3K4me3 at the GCL promoter in diabetic 
rats compromised Nrf2 binding, triggering low transcription of the enzyme and 
reduced levels of GSH in the retina[207]. Moreover, the overexpression of matrix 
metalloproteinase-9, a proapoptotic enzyme in the development of DR, is caused by a 
decrease in H3K9me2 and an increase in acetyl H3K9, which facilitates the binding of 
NF-κB p65[208].

Thus, hyperglycemia-induced differential histone methylation or acetylation 
appears to regulate expression of several genes in cellular pathways that contribute to 
the development of diabetic retinopathy. In fact, the polyisoprenylated benzophenone 
derivative garcinol, prevents histone acetylation involved in the metabolic memory in 
DR[209]. In that sense, histone deacetylase inhibitors like resveratrol, curcumin, and 
genistein are also being considered as targets for treatment of DR[210].

A low percentage of cellular transcribed RNA is ncRNA, RNA sequences with 
different but important cell functions. Long ncRNA and small ncRNA, such as circular 
RNA, or miRNA, are essential in the pathological processes of diabetic complications, 
including atherosclerosis, microvascular dysfunction, and DR[211]. The most well-
studied are miRNAs[212], sequences of approximately 18-25 nucleotides partially 
complementary to mRNAs able to block their translation and activate their 
degradation in collaboration with the ribonucleoprotein complex RNA-induced 
silencing complex[213]. There are numerous examples of the importance of their role 
in DR. Experimental models of DR have shown that downregulation of miR126, miR-
146a, and miR200b is associated with retinal neovascularization through increased 
VEGF production[214]. The expression of miR-20b-5p, a modulator of cell prolif-
eration, apoptosis, differentiation, and angiogenesis, is upregulated in the retinal 
endothelial cells of diabetic rats and patients with DR, inducing a decrease in tight 
junction proteins that increases BRB permeability and the microvascular leakage 
observed in DR[215]. Although the expression and physiological function of circular 
RNA is not yet fully elucidated, the molecules serve as miRNA or RNA-binding 
protein sponges to modulate expression or translation of regulatory proteins[216]. 
Circular DNMT3B, a reducer of the expression of miR-20b-5p, is downregulated in 
diabetes and its overexpression improves the vascular dysfunction induced in diabetic 
retinas, an interesting potential strategy for treatment of DR[215]. The possibility of 
using siRNAs to target some miRNAs mentioned above has also been considered. 
However, no methods are currently available for in vivo treatments[209]. In addition, 
double-stranded miRNA mimics and anti-mRNA antisense oligodeoxyribonucleotide 
are being used to target specific miRNA in other diseases, and therefore can also be 
studied for the treatment of DR[210].



Rodríguez ML et al. Cellular targets in DR

WJD https://www.wjgnet.com 1452 September 15, 2021 Volume 12 Issue 9

Table 1 Summary of alterations, targets, and novel therapies

Contributors in DR 
development Retinal alterations Targets Possible novel therapies

ROS accumulation Low nuclear levels of Nrf2, 
antioxidant enzymes activities, and 
GLP1R expression. Retinal cell death, 
retinal ischemia, retinal 
neovascularization, DME

Nrf2 activation, Keap1 knockdown, 
inhibition and/or neutralization of ROS 
generation, GLP1R activation, 
reinforcement of the antioxidant defense 
system

Green tea polyphenols, resveratrol, curcumin, 
quercetin, tannins, pterostilbene, GLP1R 
agonist, RS9, dh404, triterpenoids, salvianolic 
acids, sulforaphane

Synthesis of 
proinflammatory 
molecules

Vascular permeability, BRB 
breakdown, capillary pericyte loss, 
neovascularization

Inhibition of inflammatory pathways COX-2 inhibitors, tetracyclines (minocycline 
and doxycycline), IL-6 inhibitors (EBI-031 and 
tocilizumab), anti-TNF-α therapy, 
canakinumab (selective IL-1β antibody), 
fenofibrate (PPARα agonist)

Increased production 
of AGE/RAGE

Aberrant extracellular crosslinking of 
extracellular matrix proteins, 
increased vascular stiffness, release 
of proinflammatory cytokines and 
proangiogenic factors

Low the production of AGEs Curcumin, epigallocatechin 3-gallate, 
quercetin, kaempferol and resveratrol

Activation of the 
polyol pathway

Retinal capillary osmotic damage 
and cell death

Inhibition of the polyol pathway Pterostilbene

Increased flux through 
the hexosamine 
pathway

Neuro-vascular dysfunctions Inhibition of the hexosamine pathway Azaserine (antineoplastic), rhein 
(anthraquinone), benfotiamine (lipid-soluble 
thiamine derivative) 

Activation of the PKC 
pathway

Endothelial alterations, cell demise of 
capillary cells and pericytes, 
formation of microaneurysms, 
VEGF-dependent retinal barrier 
alterations

Inhibition of PKC pathway Ruboxistaurin mesylate (PKC-β inhibitor)

Lipid peroxidation Generation of lipid radical species, 
apoptosis in retinal pigment 
epithelial cells, retinal vascular 
dysfunction, development of 
neovascularization

Inhibition of the formation of lipid 
peroxides in the retina

Fucoxanthin, pterostilbene

DNA methylation Increased expression and activity of 
DNMTs

Inhibition of DNMTs 5-aza-2'-deoxycytidine

Histone methylation 
and acetylation

Decreased levels of H3K4me1 and 
H3K4me3 at glutamate-cysteine 
ligase promoter or decreased levels 
of H3K9me2 and increased levels in 
acetyl H3K9

Regulation of histone 
methylation/acetylation

Garcinol, resveratrol, curcumin, genistein

Regulation by ncRNA 
(miRNA and circular 
RNA)

Downregulation of miR126, miR-
146a, and miR200b; retinal 
upregulation of miR-20b-5p, 
neovascularization and 
microvascular leakage

Modulation of miRNAs expression, 
overexpression of circular DNMT3B

siRNAs,double-stranded miRNA mimics and 
anti-mRNA antisense 
oligodeoxyribonucleotide

AGE/RAGE: Advanced glycation end products/receptors; BRB: Blood-retinal barrier; COX-2: Cyclooxygenase-2; dh404: Dihydro-CDDO-trifluoroethyl 
amide; DME: Diabetic macular edema; DNMT: DNA methyltransferases; GLP1R: Glucagon-like peptide-1 receptor; IL: Interleukin; Keap1: Kelch-like 
enoyl-CoA hydratase associated protein 1; miRNA: microRNA; ncRNA: noncoding RNAs; Nrf2: Nuclear factor erythroid 2-related factor 2; PKC: Protein 
kinase C; PPARα: Peroxisome proliferator-activated receptor α; ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor α; VEGF: Vascular endothelial 
growth factor.

With the increase in evidence on the importance of epigenetic modifications in DR, a 
better understanding of their effects has great potential for establishing new targets 
against this pathology. Fortunately, advances are being made in the use of mimics and 
inhibitors in different chronic diseases and cancer that will undoubtedly contribute to 
a better understanding of the role of epigenetic changes in DR.

CONCLUSION
With the global increase in the prevalence of diabetes, an increase in associated 
complications such as DR is expected. Although in recent decades considerable 
advances have been made in the treatment of the disease, current therapeutic 
approaches focus on advanced stages in which the retina can present irreparable 
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damage at the neuronal and vascular level. Furthermore, the recommended treatments 
for DR have serious limitations such us long-term side effects, the high cost involved, 
or patient discomfort. Hence the need for the development of new therapeutic 
approaches (Table 1). Considering the current state of knowledge, treatments for 
diabetic retinopathy should go beyond acting on a single etiological cause such as 
neovascularization. New treatments should present a set of advantages that facilitate 
their administration without the need for special facilities. Ideal treatments would be 
noninvasive, effective, affordable, and accessible to the global population. Recognizing 
the importance of redox imbalance in the development and progression of DR offers a 
new direction for tackling the condition. One such option that should be explored is 
action directed at cellular targets that participate in modulating or altering the 
pathology, so that the progression of the disease can be delayed or even prevented.
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