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Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood 
disorder as well as a common cause of suicide. Chronic stress, inflammation, and 
intestinal dysbiosis have all been shown to play crucial roles in the patho-
physiology of MDD. Although conventional antidepressants are widely used in 
the clinic, they can take weeks to months to produce therapeutic effects. The 
discovery that ketamine promotes fast and sustaining antidepressant responses is 
one of the most important breakthroughs in the pharmacotherapy of MDD. 
However, the adverse psychomimetic/dissociative and neurotoxic effects of 
ketamine discourage its chronic use. Therefore, agmatine, an endogenous 
glutamatergic modulator, has been postulated to elicit fast behavioral and 
synaptogenic effects by stimulating the mechanistic target of rapamycin complex 
1 signaling pathway, similar to ketamine. However, recent evidence has 
demonstrated that the modulation of the NLR family pyrin domain containing 3 
inflammasome and gut microbiota, which have been shown to play a crucial role 
in the pathophysiology of MDD, may also participate in the antidepressant-like 
effects of both ketamine and agmatine. This review seeks to provide evidence 
about the mechanisms that may underlie the fast antidepressant-like responses of 
agmatine in preclinical studies. Considering the anti-inflammatory properties of 
agmatine, it may also be further investigated as a useful compound for the 
management of MDD associated with a pro-inflammatory state. Moreover, the 
fast antidepressant-like response of agmatine noted in animal models should be 
investigated in clinical studies.

Key Words: Agmatine; Fast-acting antidepressants; Ketamine; Major depressive disorder; 
Microbiota-gut-brain axis; Neuroinflammation

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.5498/wjp.v11.i11.981
http://orcid.org/0000-0002-6493-516
http://orcid.org/0000-0002-6493-516
http://orcid.org/0000-0002-1632-4865
http://orcid.org/0000-0002-1632-4865
http://orcid.org/0000-0001-6285-8780
http://orcid.org/0000-0001-6285-8780
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:alsrodri@gmail.com


Valverde AP et al. Agmatine as a rapid-onset antidepressant

WJP https://www.wjgnet.com 982 November 19, 2021 Volume 11 Issue 11

reviewed

Specialty type: Psychiatry

Country/Territory of origin: Brazil

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): 0 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: March 2, 2021 
Peer-review started: March 2, 2021 
First decision: June 5, 2021 
Revised: June 9, 2021 
Accepted: August 23, 2021 
Article in press: August 23, 2021 
Published online: November 19, 
2021

P-Reviewer: Bernstein HG 
S-Editor: Zhang H 
L-Editor: A 
P-Editor: Yu HG

Core Tip: One of the main challenges in the advancement of antidepressant therapy is 
the establishment of safe and effective fast-acting antidepressants. Ketamine is a 
prototype for rapid-onset antidepressant responses. Agmatine has been shown to 
produce fast antidepressant-like effect by stimulating mechanistic target of rapamycin 
complex 1 signaling pathway, similar to ketamine. Moreover, NLR family pyrin 
domain containing 3 and microbiota-gut-brain axis may be novel targets for fast antide-
pressant responses. These targets have also been postulated to play a role in the antide-
pressant effect of both ketamine and agmatine.
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INTRODUCTION
Major depressive disorder (MDD) affects more than 300 million people and is a major 
cause of disability and suicidal deaths worldwide[1]. Despite the high prevalence of 
this psychiatric disorder, its neurobiological basis remains to be fully elucidated, and 
its treatment remains a challenge. Although the monoaminergic hypothesis of MDD 
has played a crucial role in its pharmacotherapy, it is now considered overly simplistic
[2]. One of the limitations of this hypothesis is the fact that the drugs currently used to 
treat MDD exert their therapeutic effect only after 3-4 wk and many patients fail to 
respond to these drugs. Antidepressants also feature side effects that may include 
nausea, dizziness, insomnia, weight gain, sleep disturbances, and sexual dysfunction. 
This scenario underscores the strong demand for developing novel antidepressants 
with a fast antidepressant response, better efficacy, and fewer adverse effects[3,4].

In this regard, the year 2000 marked a turning point in the history of MDD pharma-
cotherapy, and Berman et al[5] showed for the first time that a single dose of ketamine, 
an N-methyl-d-aspartic acid (NMDA) receptor antagonist, produced a fast-acting 
antidepressant response in MDD patients. This discovery was reinforced by several 
subsequent studies that demonstrated that a single dose of ketamine elicited rapid and 
long-lasting antidepressant effects, even in treatment-resistant patients with suicidal 
ideation[6-8]. Although the discovery of ketamine is considered the major 
breakthrough in MDD pharmacotherapy and opened new perspectives to manage 
refractory patients at risk of suicide, ketamine has knock-on effects that limit its 
widespread clinical use[9]. For these reasons, ketamine has emerged as a prototype for 
screening novel fast-acting antidepressant agents. Agmatine, an endogenous 
neuromodulator, shares some common molecular mechanisms with ketamine and the 
ability to elicit fast antidepressant-like effects in preclinical studies[10]. Therefore, 
agmatine could be a novel candidate to elicit fast antidepressant responses.

Therefore, this narrative review presents evidence that agmatine has a rapid antide-
pressant effect and provides an overview of the possible mechanisms underlying this 
effect versus those already described for ketamine. The PubMed, SCOPUS, and 
SciSearch databases were searched for original manuscripts and contemporary reviews 
published in English.

KETAMINE AS A PROTOTYPE RAPID-ACTING ANTIDEPRESSANT AGENT
A milestone for the development of drugs with a rapid antidepressant effect has 
emerged over the past two decades[5,6]. Berman et al[5] demonstrated for the first time 
that a single subanesthetic dose of ketamine elicited fast (within 4 h) and long-lasting 
(for up to 3 d) antidepressant effects in MDD patients. These findings were reinforced 
and extended by Zarate et al[6], who showed that a single dose of ketamine effectively 
improved the MDD symptoms in treatment-refractory patients, as evidenced by an 
effect observed within 110 min that was sustained for up to 7 d. Importantly, a rapid 
resolution of suicidal ideation after a single infusion of ketamine in patients with 
treatment-resistant MDD was also observed, supporting the premise that ketamine has 

https://www.wjgnet.com/2220-3206/full/v11/i11/981.htm
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rapid beneficial effects even in severely depressed individuals at risk of suicide[7,8]. 
Due to the ability of ketamine to alleviate MDD symptoms, several research groups 
have investigated its underlying molecular mechanisms.

Although ketamine has been well characterized as an NMDA receptor antagonist, 
its molecular effects extend far beyond this level. It is worth noting that this drug has a 
window of therapeutic efficacy that surpasses its short half-life of a few hours[11,12]. 
Experimental studies have provided evidence that the antidepressant-like effect of 
ketamine depends on mechanistic target of rapamycin complex 1 (mTORC1) 
activation, a key pathway required for protein synthesis–dependent synaptic plasticity 
[13-15]. It has been postulated that ketamine, by antagonizing NMDA receptors in 
GABAergic interneurons, attenuates the inhibitory action of this system on glutama-
tergic tonus. This blockade causes the disinhibition of pyramidal cells, which causes a 
burst of glutamatergic transmission[11]. In particular, the glutamate released under 
these conditions preferentially stimulates alpha-amino-3-hydroxy-methyl-5-4-
isoxazole propionic acid (AMPA) receptors, promoting a transient sodium influx that 
depolarizes the cell and activates the voltage-dependent calcium channels (VDCC). 
This event causes the exocytosis of synaptic vesicles containing the brain-derived 
neurotrophic factor (BDNF) in the synaptic cleft, as a result of calcium influx by VDCC
[16].

BDNF activates tropomyosin receptor kinase B (TrkB), which stimulates the 
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTORC1 signaling 
pathway[12]. In turn, mTORC1 controls the translation of proteins involved in new 
dendritic spine formation and synaptogenesis [e.g., postsynaptic density protein-95 
kDa (PSD-95), glutamate AMPA receptor subunit 1 (GluA1), and synapsin] by 
activating the 70-kDa ribosomal protein S6 kinase (p70S6K) and inhibiting the 
eukaryotic initiation factor 4E-binding protein[13,14,17]. Although mTORC1-
dependent synaptogenesis induced by ketamine was first demonstrated in the 
prefrontal cortex of rodents[13,15], it has been shown that similar events also occur in 
the hippocampus[18-20]. Therefore, these findings suggest that targeting the 
mTORC1-driven signaling pathway may produce rapid-onset and long-lasting antide-
pressant-like responses. The molecular mechanisms underlying ketamine’s antide-
pressant responses are shown in Figure 1.

Importantly, almost 20 years after the groundbreaking discovery that ketamine 
effectively produces rapid and sustained antidepressant effects, particularly in March 
2019, the United States Food and Drug Administration approved the use of (S)-
ketamine nasal spray (Spravato™) for treatment-resistant MDD. In the same year, (S)-
ketamine nasal spray was approved for use in treatment-resistant depression in 
Europe[21]. Despite the fast and long-lasting antidepressant effects of ketamine, there 
is much concern about its abuse potential and serious adverse effects[9]. For this 
reason, ketamine is only available through a restricted distribution system, limiting its 
widespread clinical use. Although there are some drawbacks associated with its use, it 
may serve as a prototype for screening novel fast antidepressant agents. Given this 
scenario, the search for ketamine-like compounds has emerged as a promising 
therapeutic strategy. In this regard, our research group and others have shown that 
agmatine is also able to produce fast antidepressant responses and shares some 
mechanisms of action with ketamine[10].

AGMATINE AS A NOVEL CANDIDATE FOR FAST ANTIDEPRESSANT 
RESPONSES
Agmatine, a cationic amine produced from the L-arginine in a reaction catalyzed by 
the enzyme arginine decarboxylase, is widely distributed in human tissues, including 
the brain[22-24]. For almost a century, it was wrongly believed that agmatine was 
produced by bacteria, plants, and fish but not mammals[25]. Agmatine was 
“rediscovered” in 1994 during the search for an endogenous ligand for imidazoline 
binding sites[24]. In this study, a molecule was isolated from the mammalian brain 
and identified as agmatine[24]. This was the starting point for many studies that have 
evaluated the biological properties and possible beneficial effects of agmatine on a 
wide variety of diseases[26].

Soon after providing evidence of the presence of agmatine in mammalian nervous 
tissue, Piletz et al[27] documented its neuroprotective effects. The neuroprotective 
effects of agmatine reportedly involve protection mechanisms against excitotoxicity, 
since agmatine may block NMDA receptors and inhibit the increase in intracellular 
calcium concentrations in different neuronal cell cultures[28-30]. The NMDA receptor 
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Figure 1 Supposed intracellular signaling pathway implicated in ketamine’s antidepressant-like effects. A: Ketamine antagonizes N-methyl-D-
aspartic acid receptors in GABAergic interneurons, which in turn attenuate the inhibitory action of this system on glutamatergic tonus. Subsequently, the disinhibition 
of pyramidal cells results in a burst of glutamatergic transmission; B: The glutamate released in the synaptic cleft preferentially stimulates alpha-amino-3-hydroxy-
methyl-5-4-isoxazole propionic acid (AMPA) receptors, which promotes a transient sodium influx that depolarizes the neurons and activates voltage-dependent 
calcium channels. C: This event causes the exocytosis of synaptic vesicles containing brain-derived neurotrophic factor (BDNF) in the synaptic cleft[16,122]. BDNF 
culminates in protein kinase B activation that can phosphorylate and activate mechanistic target of rapamycin complex 1 (mTORC1). In turn, mTORC1 
phosphorylates the 70-kDa ribosomal protein S6 kinase at Thr389, which regulates synaptic protein synthesis such as AMPA receptor subunit 1 and postsynaptic 
density-95, which contribute to dendritic spine formation and synaptogenesis[17,13]. NMDA: N-methyl-D-aspartic acid; AMPA: Alpha-amino-3-hydroxy-methyl-5-4-
isoxazole propionic acid; BDNF: Brain-derived neurotrophic factor; VDCC: Voltage-dependent calcium channels; PI3K: Phosphatidylinositol 3-kinase; Akt: Protein 
kinase B; TrkB: Tropomyosin receptor kinase B; GluA1: Glutamate AMPA receptor subunit 1; mTORC1: mechanistic target of rapamycin complex 1; PSD-95: 
postsynaptic density protein-95 kDa.

is an ion channel controlled by glutamatergic excitation, which is essential for the 
normal functioning of the central nervous system (CNS), including cognitive function, 
locomotion, and breathing[31-33]. This type of receptor is located on the membranes of 
neuronal and glial cells[34], and is implicated in the development and maintenance of 
acute and chronic diseases of the CNS, such as stroke, Parkinson’s disease, Alzhei-
mer’s disease, MDD, and schizophrenia[34]. Under excitotoxic conditions, the increase 
in extracellular glutamate intensifies NMDA receptor activation, causing an influx of 
Ca2+ and Na+[34]. NMDA receptor stimulation also activates nitric oxide (NO) 
production pathways by activating nitric oxide synthase, thereby generating NO, one 
of the main mediators of cellular death[35,36]. The inhibition of NO synthesis is 
potentially beneficial in the treatment of brain disorders associated with its overpro-
duction. Several studies have shown that the neuroprotective properties of agmatine 
in several neurodegenerative diseases are related to its ability to antagonize NMDA 
receptors and inhibit NO synthesis as well as its potential to counteract the effects of 
oxidative stress[37].

The first evidence of the antidepressant effects of agmatine was reported in a study 
that examined its impact on behavioral tests related to depression (immobility time in 
the tail suspension test and forced swimming test) in mice[38]. Since then, other 
studies have confirmed the antidepressant efficacy of agmatine in behavioral tests in 
rodents[39-41]. Subsequent studies implicated several molecular targets in the antide-
pressant effect of agmatine, namely the modulation of: (1) K+ channels[42]; (2) NO 
synthesis[43,44]; and (3) several neurotransmitter receptors including NMDA 
receptors[38,45], AMPA receptors[46,47], GABA receptors[48], serotonin receptors[49,
50], and opioid system receptors[51].
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In 2010, a human clinical trial showed the safety of oral agmatine[52]. In 2013, 
Shopsin et al[53] provided the first evidence that agmatine may effectively treat MDD, 
but this study included only three patients. None of these three patients treated with 
agmatine relapsed after the joint administration of a serotonin-depleting drug, 
indicating that the mechanism underlying the antidepressant action of agmatine is 
likely unrelated to the serotonergic system[53]. It was also reported that 8-wk 
treatment with the standard antidepressant bupropion normalized plasma agmatine 
levels[54]. In brain autopsies of chronically depressed patients, Bernstein et al[55] 
reported a significant increase in agmatinase immunoreactivity in hippocampal 
neurons, suggesting the role of the agmatinergic system in MDD pathophysiology. 
However, it was not possible to determine the exact reason why levels of this enzyme 
increased in hippocampal neurons due to the use of antidepressants.

In 2018, a gas chromatography–mass spectrometry study quantified agmatine levels 
in the brains of post-mortem humans who died by suicide and showed reduced 
agmatine levels in the suicide cortex regardless of these individuals formerly meeting 
the criteria for MDD versus controls[56].

Weiss et al[57] presented evidence of the activity of the agmatinergic system in 
habenular nuclei and investigated the actions of agmatine and agmatinase in the rat 
and human habenular systems. It is important to highlight that the role of habenular 
nuclei in mental disorders, including MDD, has already been considered[58,59]. In this 
study, agmatine was demonstrated responsible for the strong decrease in the 
spontaneous action potential of medial habenular neurons by activating type I1 
imidazoline receptors. It was also reported that increased activity of the agmatinergic 
system in habenular nuclei may strengthen the dopaminergic activity of the midbrain. 
This evidence suggests dysregulation in the habenular-interpeduncular axis in patients 
with MDD[57].

In summary, these results present the possible role of agmatine in the neurobiology 
of MDD and highlight the possible benefits of agmatine as antidepressant therapy.

Recent evidence has also demonstrated the possible fast antidepressant-like actions 
of agmatine (Figure 2)[10]. In this context, Neis et al[46] reported that the antide-
pressant-like effect of agmatine administered orally to mice subjected to the tail 
suspension test is dependent on the modulation of molecular targets associated with 
the fast antidepressant-like effect displayed by ketamine. In particular, the antide-
pressant-like effect elicited by the acute administration of agmatine in the tail 
suspension test appears to involve inhibition of NMDA receptors since it enhanced the 
antidepressant potency of MK-801 (an NMDA receptor antagonist) up to 100-fold[60]. 
Moreover, the antidepressant-like effect of agmatine in the tail suspension test is 
dependent on AMPA and TrkB receptor activation since the administration of 6,7-
dinitroquinoxaline-2,3-dione (DNQX; an AMPA receptor antagonist) or K-252a (a TrkB 
receptor antagonist) completely abolished its antidepressant-like response[46]. A 
single dose of agmatine also increased BDNF levels in the prefrontal cortex of mice, 
and its antidepressant-like effect in the tail suspension test was abrogated by the 
administration of anti-BDNF antibody. Of note, the antidepressant-like effect of agm-
atine is also dependent on PI3K/Akt/glycogen synthase kinase-3β (GSK-3β)/ mTOR 
signaling. In particular, the administration of LY294002 (a PI3K inhibitor) or 
rapamycin (a selective mTOR inhibitor) completely abrogated the behavioral 
responses of agmatine in the tail suspension test. Combined treatment with a sub-
effective dose of agmatine and lithium chloride (a non-selective GSK-3β inhibitor) or 
AR-A014418 (a selective GSK-3β inhibitor) produced an antidepressant-like effect in 
the tail suspension test[46]. Importantly, these behavioral responses were accom-
panied by an increase in BDNF, GluA1, and PSD-95 immunocontent in the prefrontal 
cortex of mice[46].

Supporting the assumption that agmatine could elicit a fast antidepressant-like 
effect, a study by Neis et al[61] demonstrated that a single dose of agmatine effectively 
reversed the depressive-like behavior induced by chronic unpredictable stress. In this 
study, mice were exposed to the stress protocol for 14 d and received a single oral dose 
of agmatine, ketamine, or fluoxetine. The results indicated that a single dose of 
agmatine or ketamine (after 24 h), but not fluoxetine, counteracted the depressive-like 
behavior induced by the stress protocol in the tail suspension test[61].

Expanding upon these findings, Neis et al[62] reinforced the ability of agmatine to 
rapidly reverse the depressive-like behavior induced by the 21-d administration of 
corticosterone, a pharmacological model of stress in mice. In the tail suspension test, a 
single dose of agmatine or ketamine abolished the depressive-like behavior of mice 
chronically exposed to corticosterone. In addition, treatment increased GluA1 
immunocontent in the hippocampus of control animals[62]. Notably, a single dose of 
fluoxetine did not produce the same effects as ketamine or agmatine[62]. Chronic 
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Figure 2 Putative signaling pathways implicated in the rapid-acting antidepressant-like effects of agmatine. A: The antidepressant-like effect 
elicited by the acute administration of agmatine in the tail suspension test appears to involve inhibition of N-methyl-D-aspartic acid (NMDA) receptors since it 
enhanced the antidepressant potency of MK-801 (an NMDA receptor antagonist) by up to 100-fold[60]. Moreover, agmatine's antidepressant-like effect in the tail 
suspension test is dependent on the activation of alpha-amino-3-hydroxy-methyl-5-4-isoxazole propionic acid (AMPA) and tropomyosin receptor kinase B (TrkB) 
receptors since the administration of 6,7-dinitroquinoxaline-2,3-dione (DNQX; an AMPA receptor antagonist) or K-252a (a TrkB receptor antagonist) completely 
abolished its antidepressant-like response. The antibody anti-brain-derived neurotrophic factor (BDNF) also abolished the antidepressant-like effect elicited by 
agmatine in the tail suspension test[46]. Of note, the antidepressant-like effect of agmatine is also dependent on phosphatidylinositol 3-kinase (PI3K)/protein kinase B 
(Akt)/ glycogen synthase kinase-3β/mechanistic target of rapamycin (mTOR) signaling. In particular, the administration of LY294002 (a PI3K inhibitor) or rapamycin (a 
selective mTOR inhibitor) completely abrogated the behavioral responses of agmatine in the tail suspension test. The combined treatment with a sub-effective dose of 
agmatine and lithium chloride (10 mg/kg, po; a non-selective GSK-3β inhibitor) or AR-A014418 (a selective GSK-3β inhibitor) produced an antidepressant-like effect 
in the tail suspension test[46]. Importantly, these behavioral responses were accompanied by an increase in the BDNF, glutamate AMPA receptor subunit 1 and 
postsynaptic density protein-95 kDa immunocontent in the prefrontal cortex of the mice[46]; B: Reinforcing the notion that ketamine and agmatine share common 
behavioral responses and molecular targets, the ability of agmatine to potentiate the antidepressant and synaptic actions of ketamine was also demonstrated[47]. In 
particular, the combined administration of subthreshold doses of agmatine and ketamine produced a fast (starting in 1 h) and sustained (lasting up to 7 d) 
antidepressant-like effect in the tail suspension test. These behavioral responses were associated with stimulation of the Akt/70-kDa ribosomal protein S6 kinase 
signaling pathway and increased synaptic protein synthesis in the prefrontal cortex in a time-dependent manner. More importantly, the combined administration of 
sub-effective doses of agmatine and ketamine raised the dendritic arbor and spine densities and effectively remodeled the dendritic spinal architecture in the 
prefrontal cortex[47]. NMDA: N-methyl-D-aspartic acid; AMPA: Alpha-amino-3-hydroxy-methyl-5-4-isoxazole propionic acid; BDNF: Brain-derived neurotrophic factor; 
VDCC: Voltage-dependent calcium channels; PI3K: Phosphatidylinositol 3-kinase; Akt: Protein kinase B; TrkB: Tropomyosin receptor kinase B; GluA1: Glutamate 
AMPA receptor subunit 1; mTORC1: mechanistic target of rapamycin complex 1; PSD-95: postsynaptic density protein-95 kDa; GSK-3β: Glycogen synthase kinase-3
β.

unpredictable stress and chronic corticosterone administration models are sensitive to 
chronic but not acute administration of conventional antidepressants, but a single dose 
of ketamine sufficiently produced antidepressant responses in these models[62]. 
Moreover, a single dose of agmatine or ketamine counteracted the depressive-like 
phenotype of cAMP-responsive element binding protein–regulated transcription 
coactivator 1 knockout mice in the forced swimming test, reinforcing the notion that 
agmatine could have a rapid antidepressant-like effect[63].

Subsequent studies provided novel evidence that a low-dose combination of 
ketamine plus agmatine produced neuroprotective, antidepressant-like, and 
synaptogenic effects[11,64,65]. A study using the HT-22 mouse hippocampal neuronal 
cell line reported that the combined use of sub-effective concentrations of ketamine 
and agmatine prevented the neuronal damage caused by corticosterone[64]. Of note, 
this effect was associated with increased phosphorylation of Akt (Ser473), p70S6K 
(Thr389), and PSD-95 immunocontent[65]. These data support the idea that ketamine 
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and agmatine share common molecular targets and could work in tandem to protect 
neuronal cells from the harmful effects of corticosterone by activating Akt/ 
mTORC1/p70S6K signaling, resulting in synaptic protein expression[11,65].

Reinforcing these findings, Freitas et al[47] investigated the ability of agmatine to 
potentiate the effects of the antidepressant and synaptic actions of ketamine in mice. 
Of special interest, the combination of single subthreshold doses of ketamine and 
agmatine exerted antidepressant-like and pro-synaptogenic actions in a time-
dependent manner. In particular, agmatine plus ketamine produced fast (1 and 24 h) 
and sustained (7-d) antidepressant-like effects in the tail suspension test[47]. 
Furthermore, this combined treatment increased p70S6K phosphorylation and GluA1 
immunocontent in the prefrontal cortex 1 h after treatment. This same protocol 
increased the PSD-95 immunocontent, an effect that persisted for up to 7 d. The 
combined treatment also increased the complexity of the dendritic branches after 24 h, 
and this effect lasted up to 7 d. Likewise, ketamine plus agmatine treatment effectively 
increased the dendritic spinal density after 1 h later, a response that lasted up to 24 h
[47]. These results reinforce the notion that agmatine and ketamine share common 
molecular targets and expand the findings regarding the ability of agmatine to 
enhance the antidepressant-like and synaptic actions of ketamine[47].

Taken together, these results support the hypothesis that agmatine can act as a 
ketamine-like compound, and further studies are crucial to investigate whether the 
rapid antidepressant effects of agmatine are reproducible in patients with MDD. 
Moreover, the use of agmatine in the clinic would be highly promising owing to its 
safety, even at high doses, without evident effects of toxicity[26,52].

BEYOND mTORC1 HYPOTHESIS
In addition to focusing on the importance of the mTORC1-mediated signaling 
pathway for the antidepressant effect of agmatine, some studies investigated other 
signaling pathways that may play a role in its antidepressant effect. Understanding 
other pathways influenced by agmatine is important to its establishment as a 
therapeutic alternative in the clinical setting.

Regarding the factors that may influence the mechanisms associated with MDD 
symptoms, neuroinflammation has received much attention in recent years. Neuroin-
flammation reportedly plays an essential role in several neuropathologies, such as 
multiple sclerosis, Alzheimer’s disease, and MDD[66,67]. It was demonstrated in both 
humans and animals that immunological challenges may induce depressive behavior
[68]. It is important to note that, since the 1990s, several studies reported a strong 
correlation between MDD and peripheral inflammatory markers[69,70].

In the last few years, three meta-analyses aimed to better understand the 
relationship between neuroinflammation and the development/maintenance of MDD. 
Kappelmann et al[71] published a meta-analysis in 2018 that analyzed data from four 
randomized controlled studies that examined the effects of pro-inflammatory cytokine 
inhibitors. In these studies, adalimumab and etanercept were used, and both 
treatments improved depressive symptoms in patients. In 2019, a randomized clinical 
study showed more pronounced antidepressant results in patients with higher high-
sensitivity C-reactive protein levels[72]. In this study, the use of anti-inflammatory 
drugs improved clinical signs of depression, such as motor retardation, suicidal 
thoughts, and depressed mood[72]. Another meta-analysis evaluated 36 studies and 
assessed the effects of anti-inflammatory drugs in almost 10000 patients[73]. The 
findings suggested that the use of anti-inflammatory drugs sufficiently reversed 
depressive symptoms. The latest meta-analysis combined 26 randomized clinical trials 
of over 1500 patients[74]. This study also verified the improvement in depressive 
symptoms in patients with anti-inflammatory agent use[74].

Therefore, inflammatory pathways play an important role in the development and 
maintenance of depressive symptoms. Increasing evidence has shown that agmatine 
also acts on neuroinflammatory-related pathways that may participate in rapid-onset 
antidepressant responses.

The early administration of agmatine for 7 d prevented the depressive-like behavior 
caused by lipopolysaccharide (LPS) challenge in mice[75]. Agmatine pretreatment 
counteracted LPS-induced neuroinflammation by preventing increases in interleukin 
(IL)-1β and tumor necrosis factor (TNF)-α level in the murine brain. In addition, 
agmatine positively regulates BDNF levels in the hippocampus[75]. In another study, 
agmatine pretreatment also normalized LPS-induced sickness behavior in rats in 
addition to decreasing serum concentrations of IL-6 and TNF-α[76]. Zarifkar et al[77] 
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reported that agmatine prevented LPS-induced spatial memory impairment and 
hippocampal caspase-3 activation in LPS-treated rats. It is also noteworthy that 
agmatine effectively inhibited the LPS-induced production of nitrite and decreased 
body temperature in rats in a dose-dependent manner[78].

Notably, Neis et al[45] showed that agmatine effectively counteracted the 
depressive-like behavior induced by the pro-inflammatory cytokine TNF-α in mice. In 
this study, the combined treatment of sub-effective doses of agmatine and fluoxetine, 
imipramine, bupropion, MK-801, or 7-nitroindazole resulted in a synergistic antide-
pressant-like effect in mice subjected to TNF-α administration[45].

Agmatine also exhibits anti-inflammatory effects in other disease models. In 
particular, in a type 2 diabetes mellitus (T2DM) model induced by a high-fat diet for 12 
wk, anxiety- and depressive-like behaviors were associated with an increase in pro-
inflammatory cytokines, such as IL-6 and TNF-α, as well as a decrease in the BDNF 
immunocontent in the rat hippocampus[79]. These parameters were inhibited by 
agmatine treatment in the last 4 wk of the protocol. In this study, agmatine levels in 
the hippocampus of rats subjected to the T2DM protocol were significantly lower than 
those in the control animals[79].

In an Alzheimer’s disease model, the administration of amyloid-β peptide (Aβ1-42) to 
mice caused depressive-like behavior in the forced swimming test, an effect parallel to 
an increase in the pro-inflammatory cytokines IL-6 and TNF-α in the hippocampus
[80]. Both depressive-like behavior and pro-inflammatory markers were reversed by 
agmatine treatment, suggesting that the anti-inflammatory properties of agmatine may 
be related to its antidepressant effect. Notably, this study also detected lower concen-
trations of agmatine in the brains of animals injected with Aβ1-42[80]. These data point 
to the action of agmatine in neuroinflammatory processes, as a pharmacological 
strategy to decrease depressive-like behavior, including that associated with comorbid 
diseases, such as T2DM and Alzheimer’s disease.

It is important to note that the activation of various types of inflammasomes is a 
critical target in the inflammatory response. Inflammasomes are involved in the 
development of several neurological diseases, including MDD[81,82]. Among them, 
the NLR family pyrin domain containing 3 (NLRP3) inflammasome is the most closely 
related to MDD due to the exaggerated activation of inflammatory and immunological 
responses that contribute to the pathogenesis and progression of this disorder[83]. A 
compelling study reported that depressive-like behavior in mice subjected to LPS 
administration is related to NLRP3-dependent caspase-1 activation[84]. Accordingly, 
anxiety-like behavior reportedly occurs in rats exposed to neonatal inflammation or 
inflammatory stress early in life triggered by NLRP3 inflammasome activation in 
animals’ brains[85]. Altogether, evidence suggests that the NLRP3 inflammasome 
plays an essential role in the neurobiology of MDD and may be a potential target for 
antidepressant treatment.

In this regard, ketamine was shown to exert an antidepressant effect in the LPS-
induced model via suppressing the NLRP3 inflammasome and upregulating AMPA 
receptors[86]. Importantly, in this study, the authors postulated that ketamine might 
increase AMPA receptor expression through the NLRP3 inflammasome, suggesting 
that NLRP3 could be a target in fast-acting antidepressant treatment[86].

The possibility that agmatine exerts antidepressant effects by modulating neuroin-
flammatory mechanisms has also been investigated. Sahin et al[43] investigated the 
effects of agmatine in a model of restraint stress–induced depressive-like behavior. The 
authors demonstrated that agmatine rescued anti-inflammatory cytokine IL-4 and IL-
10 levels that were impaired by stress[43]. Moreover, the 6-wk treatment with 
agmatine counteracted the depressive-like behavior of animals exposed to chronic 
unpredictable stress by suppressing NLRP3 and IL-1β[43].

The exact role of the NLRP3 inflammasome–driven signaling pathway in MDD 
pathophysiology and antidepressant responses is still not well established. However, it 
has been proposed that the gut microbiota may influence activation of the NLRP3 
inflammasome and neuroinflammatory processes through the microbiota-gut-brain 
axis.

The microbiome, a complex ecosystem in the human gut, includes bacteria, viruses, 
archaea, and fungi. The bacteria present in this system regulate aspects of the host’s 
health, mainly brain development and functioning[87,88]. The microbiome is a 
dynamic structure that is affected by delivery type, sex, age, nutrition, stress, and 
medications[89]. These interferences can compromise the balance between pathogenic 
and commensal bacteria[90], promoting the development of a process called dysbiosis, 
which can change the permeability of the intestinal wall, allowing bacteria and their 
products to leak into the sterile cavity and activate the immune response[91]. Immune 
response activation increases the levels of pro-inflammatory cytokines, which, together 
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with other toxic metabolites, damage the blood–brain barrier and trigger neuroinflam-
mation[92].

The immune and brain mechanisms involved in intestinal dysbiosis may include 
microglial activation[93]. Microglia are responsible for releasing pro-inflammatory 
cytokines in the brain when activated by stress, a mechanism that is altered in MDD
[94,95]. On the other hand, a balanced and healthy microbiota can regulate the 
activation of these stress response pathways through the synthesis of hormones and 
neurotransmitters, minimizing the effects of such stressors[96].

Studies have shown that there is a “microbiota of MDD” due to the difference in 
composition between depressed patients and healthy controls. In a microbiome study 
of patients with MDD and irritable bowel syndrome, less bacterial diversity, an effect 
associated with increased levels of bacteria from the phylum Bacteroidetes, and 
increased colon inflammation were noted in patients compared to healthy controls
[97]. In a Chinese cohort, the microbiota of patients with MDD showed higher concen-
tration of Proteobacteria and decreased concentrations of Firmicutes[98].

Several studies have suggested the direct modulation of bacteria in the immune 
system. Proteo mirabilis, a proteobacterium, can activate the NLRP3 inflammasome and 
interleukin IL-1b production[99]. Other components of Proteobacteria, such as the LPS 
produced by Pseudomonas, are related to the development of MDD symptoms via 
activation of the NLRP3 inflammasome and pro-inflammatory immunoglobulins[93]. 
In patients with MDD, an increase in some Bacteroidetes species (Parabacteroidetes and 
Alistepes) reportedly converts tryptophan to indole, which can influence the 
availability of tryptophan in the body and affect serotonergic balance[100]. Other 
studies confirmed an increase in Alistepes bacteria in patients with MDD, chronic 
fatigue syndrome, irritable bowel syndrome, and stress models[101,102].

The transplantation of fecal microbiota from patients diagnosed with MDD to germ-
free microbiota mice triggered anxious-, anhedonic-, and depressive-like behaviors in 
the animals[103,104]. This evidence suggests that the depressive phenotype may be 
transmitted by gut microbiota. These data show a close relationship between the 
composition of the gut microbiota and brain health, mainly in the pathological 
mechanisms involved in the development and maintenance of depressive symptoms. 
Furthermore, the immune system/NLRP3 inflammasome acts as an intermediary 
between gut dysbiosis and brain function.

Some studies have suggested that the ability of ketamine to elicit antidepressant 
effects may be mediated, at least in part, by modulation of the microbiota-gut-brain 
axis. Two studies that investigated the effects of ketamine administration in the gut 
microbiota of mice following the social defeat stress model reported that the treatment 
attenuated the alterations in Bacteroidales, Clostridiales, Ruminococcaceae, Deltaproteo-
bacteria, and Mollicutes bacterial levels in their feces[105,106]. Moreover, ketamine 
prevented the increase in the Clostridium and Butyricimonas species induced by the 
stress model[105,106]. Other studies showed that ketamine significantly amplified the 
number of healthy bacteria and decreased the number of opportunistic pathogens in 
Wistar rats[107]. In an inflammatory model of LPS-induced depressive-like behavior, 
ketamine improved the diversity of the gut microbiota, positively regulating this 
microsystem[108]. Together, these data suggest that ketamine influences the 
composition of the microbiota, a response that may underlie its antidepressant-like 
effects.

The relationship between gut microbiota and agmatine levels has emerged and may 
play a role in the ability of gut microbiota to influence mental health. Agmatine is 
produced and released by gut bacteria of the human microbiome[109] and can be 
obtained from ingested food[110,111]. The composition of the intestinal microbiota 
influences agmatine availability in the gut lumen for absorption, and the majority of 
agmatine in humans is believed to be derived from bacterial sources[27]. Interestingly, 
agmatine may also be obtained from foodstuffs, particularly fermented foods such as 
alcoholic beverages (wine, beer, sake), which suggests the role of yeast in its 
production[109]. The filamentous fungus Aspergillus oryzae, which is widely used for 
the production of various Asian fermented foods, can enhance agmatine ingestion
[112].

The consumption of fermented foods has beneficial effects on mental health[113]. 
The use of probiotics also reportedly exerts positive effects on depressive symptoms
[114,115]. The possibility that agmatine is produced in the gut following the 
consumption of fermented foods and probiotics may account, at least in part, for its 
anti-inflammatory and antidepressant effects should be investigated in future studies.

Metformin, the mainstay therapy for T2DM, reportedly influences the diversity and 
composition of the gut microbiota[116]. This drug has recently been shown to act on 
Escherichia coli, elevating agmatine production and increases the longevity of 
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Caenorhabditis elegans[117]. Metformin has been shown to produce antidepressant 
effects in depressed patients with diabetes mellitus[118] and proposed as an adjunctive 
antidepressant approach in nondiabetic patients with MDD[119]. It remains to be 
determined whether agmatine levels are higher in individuals taking metformin and, 
if so, whether it contributes to the antidepressant effect observed with metformin 
treatment.

CONCLUSION
Agmatine, an endogenous cationic amine, exerted antidepressant effects in several 
preclinical studies[26,120]. Considering that the microbiota composition and 
consumption of fermented foods, or even some drugs such as metformin, may 
influence agmatine levels in the gut[27,109-119], it remains to be established whether 
agmatine derived from these sources may positively impact mood and exert antide-
pressant effects. Therefore, modulation of the microbiota and, consequently, gut 
agmatine levels may represent a novel approach to mood regulation.

In addition to the fact that agmatine may be synthesized by gut microbiota, several 
studies have indicated that it is safe even when administered at high doses as a 
nutraceutical. The sulfate salt of agmatine has been used for bodybuilding[27] and the 
management of neuropathic pain at doses as high as 2.6 g/day[121]. The fact that 
agmatine also exhibits several beneficial effects for a wide spectrum of diseases[27] 
suggests that it is a promising therapeutic strategy for the management of MDD and 
several comorbid diseases and inflammatory clinical conditions such as diabetes, 
obesity, pain, and neurodegenerative diseases. Of particular relevance, compelling 
preclinical evidence has indicated that agmatine has the ability to counteract several 
neuroinflammatory markers induced by models of depression and shares with 
ketamine the ability to elicit fast antidepressant responses[46,47,61,62,75-80]. The 
possibility that agmatine may afford a rapid antidepressant effect would give it an 
advantage over conventional antidepressants that require several weeks to alleviate 
depressive symptoms. In preclinical studies, agmatine elicited a synergistic effect with 
ketamine in mice subjected to animal models of depression as well as cell culture, and 
pharmacological evidence has pointed to similar molecular mechanisms of these drugs
[46]. These properties of agmatine clearly warrant future clinical investigation of its 
beneficial effects for managing depressive symptoms as a monotherapy or adjunctive 
treatment. Therefore, clinical studies are warranted that investigate the possibility that 
agmatine may be combined with low doses of ketamine to diminish the side effects 
and provide synergistic antidepressant effects.
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