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Abstract
The long-term success of standard anticancer monotherapeutic strategies has been 
hampered by intolerable side effects, resistance to treatment and cancer relapse. 
These monotherapeutic strategies shrink the tumor bulk but do not effectively 
eliminate the population of self-renewing cancer stem cells (CSCs) that are 
normally present within the tumor. These surviving CSCs develop mechanisms of 
resistance to treatment and refuel the tumor, thus causing cancer relapse. To 
ensure durable tumor control, research has moved away from adopting the 
monotreatment paradigm towards developing and using combination therapy. 
Combining different therapeutic modalities has demonstrated significant 
therapeutic outcomes by strengthening the anti-tumor potential of monotreatment 
against cancer and cancer stem cells, mitigating their toxic adverse effects, and 
ultimately overcoming resistance. Recently, there has been growing interest in 
combining natural products from different sources or with clinically used che-
motherapeutics to further improve treatment efficacy and tolerability. Thymo-
quinone (TQ), the main bioactive constituent of Nigella sativa, has gained great 
attention in combination therapy research after demonstrating its low toxicity to 
normal cells and remarkable anticancer efficacy in extensive preclinical studies in 
addition to its ability to target chemoresistant CSCs. Here, we provide an 
overview of the therapeutic responses resulting from combining TQ with conven-
tional therapeutic agents such as alkylating agents, antimetabolites and antimicro-
tubules as well as with topoisomerase inhibitors and non-coding RNA. We also 
review data on anticancer effects of TQ when combined with ionizing radiation 
and several natural products such as vitamin D3, melatonin and other compounds 
derived from Chinese medicinal plants. The focus of this review is on two 
outcomes of TQ combination therapy, namely eradicating CSCs and treating 
various types of cancers. In conclusion, the ability of TQ to potentiate the an-
ticancer activity of many chemotherapeutic agents and sensitize cancer cells to 
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radiotherapy makes it a promising molecule that could be used in combination 
therapy to overcome resistance to standard chemotherapeutic agents and reduce 
their associated toxicities.
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Core Tip: There has been great interest in integrating thymoquinone (TQ) in combi-
nation therapy particularly to target cancer stem cells, which are known to be respon-
sible for resistance to treatment and cancer recurrence. The combination of TQ with 
standard chemotherapeutics and other natural products has exhibited promising anti-
cancer responses. TQ was also shown to sensitize cancer cells to radiotherapy and help 
in overcoming major limitations that restrict the potency of chemotherapy, which are 
chemoresistance and treatment associated toxic effects.

Citation: Fatfat Z, Fatfat M, Gali-Muhtasib H. Therapeutic potential of thymoquinone in 
combination therapy against cancer and cancer stem cells. World J Clin Oncol 2021; 12(7): 
522-543
URL: https://www.wjgnet.com/2218-4333/full/v12/i7/522.htm
DOI: https://dx.doi.org/10.5306/wjco.v12.i7.522

INTRODUCTION
Cancer incidence and mortality are still growing worldwide despite the monumental 
efforts and the significant progress made in developing therapeutic strategies and 
improving detection techniques for combatting this disease. Around 19 million new 
cases and nearly 10 million deaths are estimated globally in 2020[1]. The conventional 
therapeutic strategies used to treat cancer are surgery, radiotherapy and chemo-
therapy, in addition to targeted and hormonal therapy. The effectiveness of these 
approaches has been found to be limited when used in monotherapy strategies due to 
cancer resistance, tumor relapse and treatment-induced toxicities[2-6]. Ample evidence 
has demonstrated that the intratumoral heterogeneity is a prominent contributor to 
cancer resistance to monotherapy and tumor recurrence[7]. The tumor consists of a 
heterogeneous population of cells that show distinct genetic, epigenetic, and phe-
notypic features in addition to different sensitivity to the standard therapeutic mo-
dalities[8-11]. A growing body of literature has supported the role of cancer stem cells 
(CSCs) in generating this intratumoral heterogeneity. These CSCs are characterized by 
their ability to self- renew and to differentiate into various lineages of cancer cells 
composing the tumor. They are also resistant to the widely used therapeutics measures
[12].

Over the last few decades, there has been increased interest in combining cancer 
treatments rather than using single therapeutic agents. A monotherapeutic strategy 
having one mode of action eradicates only one subpopulation of tumor cells. Other 
subpopulations which are less sensitive can escape the treatment and reform a re-
sistant tumor, thus resulting in cancer relapse and treatment failure. In contrast, 
combined therapeutic agents act simultaneously on multiple targets and eradicate 
several subpopulations of tumor cells. This results in improving their therapeutic 
efficacy, limiting their toxicity by lowering the effective therapeutic dose of each agent, 
preventing the development of resistance and consequently ensuring an effective 
eradication of the complex heterogeneous nature of the tumor[13]. Bioactive natural 
products are attracting considerable attention in cancer therapy because they are less 
toxic and more available and cost effective when compared to synthetic monotargeted 
drugs[14]. Natural therapeutics have been found to exert effective antineoplastic 
activity and to potentiate the anticancer effect of conventional therapeutics against 
CSCs and cancer cells[15,16]. Around 38% of the anticancer drugs approved during 
the last 40 years are either natural products per se, their derivatives or have a pharma-
cophore derived from a natural product[17].

https://www.wjgnet.com/2218-4333/full/v12/i7/522.htm
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Thymoquinone (TQ), the major bioactive compound extracted from Nigella sativa 
essential oil, has shown promising antitumor activity in vitro and in vivo against a wide 
range of cancer types[18]. What makes TQ an attractive therapeutic agent is its safe 
profile. It was found to be non-toxic to several normal cells including normal mouse 
kidney cells[19], normal human lung fibroblasts[20] and normal human intestinal cells
[21]. TQ exerts its antineoplastic effects through several modes of action, and its exact 
molecular target is not known yet. It inhibits cancer cell proliferation and blocks the 
cell cycle progression. In addition, TQ induces apoptosis by generating reactive 
oxygen species (ROS), causing DNA damage, upregulating pro-apoptotic factors, 
activating caspases and causing poly (ADP-ribose) polymerases (PARP) cleavage, 
disrupting mitochondrial membrane integrity besides modulating several pathways 
such as p53, wingless/integrated (Wnt), mitogen-activated protein kinase, signal 
transducer and activator of transcription 3 (STAT3)[22]. It also interrupts metastasis by 
downregulating the epithelial to mesenchymal transition transcription factors twist-
related protein 1 (TWIST1) and E-Cadherin, and inhibits angiogenesis by suppressing 
the nuclear factor kappa B (NFkB) pathway[22]. Interestingly, TQ was found to inhibit 
the proliferation of several chemoresistant cancer cells and induce apoptosis in colon 
CSCs that are resistant to the conventional chemotherapeutic drug 5-fluorouracil (5-
FU)[23,24].

These effective anticancer properties of TQ made it an interesting therapeutic 
candidate for combination therapy with standard therapeutic agents or other natural 
products to improve cancer treatment efficacy and safety (Figure 1). Here, we shed 
light on the combinatorial effects of TQ on the activity of these therapeutic agents used 
in treating CSCs and cancer cells.

TQ EFFECTS AGAINST CANCER CELLS 
TQ in combination with conventional chemotherapeutic agents
The mode of action of each chemotherapeutic agent as well as the cellular and 
molecular mechanisms of action of the combination treatment are presented in Table 1.

Alkylating agents 
Cyclophosphamide[25]: Cyclophosphamide has been used in treating a broad 
spectrum of cancers including leukemia, lymphoma, breast and ovarian cancers[26]. In 
a study conducted by Khan et al[27], TQ was found to amplify the growth inhibitory 
effects of low doses of cyclophosphamide in breast cancer cells. This combination 
upregulated the expression of phosphatase and tensin homolog (PTEN) and downreg-
ulated the phosphorylation of its downstream signaling molecule Akt in addition to 
decreasing the expression of cyclin D1. The PTEN/phosphatidylinositol-3-kinase 
(PI3K)/Akt pathway is known to be an important tumorigenic pathway responsible 
for cell cycle progression, survival, and migration of malignant cells[28].

Temozolomide[29]: Temozolomide (TMZ) has been approved by the Food and Drug 
Administration for the treatment of glioblastoma multiforme[30]. However, the anti-
cancer efficacy of TMZ has been limited by cancer resistance[31]. TQ was found to be a 
potent enhancer of the anti-proliferative and apoptotic activity of TMZ in glioblastoma 
cells. The modulation of the apoptotic players including ROS generation, disruption of 
mitochondrial membrane potential, activation of p53, caspases 9 and 3 was more 
pronounced in combination treatment compared to separate treatments[32]. Moreover, 
combining TQ and TMZ caused a stronger inhibitory effect on glioblastoma cells 
migration, invasion and adhesion than each drug alone. This synergistic inhibitory 
effect was found to be associated with a decrease in the expression and secretion of 
matrix metalloproteinases MMP-2 and MMP-9[33] known to promote metastatic 
spread and to contribute to angiogenesis[34]. Interestingly, TQ was found to block 
TMZ-induced autophagy, which was suggested to be a prosurvival mechanism of cell 
resistance to TMZ. TQ suppressed TMZ-induced expression of key players in the 
autophagy pathway beclin-1 and autophagy-related 7[35].

Cisplatin[36]: Cisplatin (CDDP) is one of the most used chemotherapeutic drugs in the 
treatment of a wide range of cancer types[37]. The primary dose-limiting side effect of 
CDDP is the dose- dependent nephrotoxicity, which restricts the use of high doses of 
CDDP to increase its anticancer activity[38]. Numerous studies have demonstrated the 
anti-neoplastic efficacy of combining TQ with CDDP in different types of cancers as an 
alternative way to increase CDDP potency. In ovarian cancer, these two agents were 
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Table 1 Mode of action of the chemotherapeutic agents and cellular and molecular mechanism of action of the combination treatment 
in preclinical and clinical studies

Chemotherapeutic 
agent Mode of action Patients or animal model or 

cell lines

Cellular and molecular 
mechanism of action of the 
combination treatment

Ref.

Cyclophosphamide Alkylates guanine base and 
causes the formation of 
DNA crosslinks leading to 
cell death

SKBR-3 and MDA-231 breast 
cancer cells

Increases the percentage of cells in 
G1 and sub- G1 phases. 
Downregulates the phosphorylation 
of Akt and the expression of cyclin 
D1 and upregulates PTEN

Emadi et al[25], Khan 
et al[27]

Temozolomide Methylates DNA at specific 
sites on guanine and 
adenine bases causing cell 
demise

U87MG human glioblastoma 
multiforme cells

Increases the mitochondrial 
membrane potential disruption, 
cytochrome c release, ROS 
generation, DNA fragmentation and 
Bax/Bcl-2 ratio. Activates p53, 
caspases 9 and 3 and reduces NO and 
GSH levels. Reduces the expression 
and secretion of MMP-2 and MMP-9. 
Downregulates beclin-1 and ATG-7

Stupp et al[29], 
Khazaei et al[32], 
Pazhouhi et al[33], 
Pazhouhi et al[35]

Cisplatin Interacts with purine bases 
and forms DNA crosslinks 
resulting in cell death

ID8-NGL mouse ovarian cancer 
cells. OVCAR3 and NCI/ADR-
RES human ovarian cancer 
cells. BL/6 mice injected with 
ID8-NGL cells

Increases the level of Bax, pH2AX 
(ser139), cleaved caspase 3 and 
PARP. Decreases the level of PCNA 
and Ki67

Siddik et al[36], 
Wilson et al[39]

Eca-109 human esophageal 
cancer cells. BALB/c nude mice 
inoculated with Eca-109 cells

Decreases the expression of p-STAT3, 
p-JAK2, Bcl-2, survivin and cyclin 
D1. Increases the expression of Bax 
and activates caspases 3, 7 and 9. 
Induces chromatin condensation and 
nuclear fragmentation

Hu et al[40]

NCI-H460 non-small lung 
cancer cells. SCID mice injected 
with NCI-H460 cancer cells

Reduces the ratio of phosphor-Ser529 
NFkB/NFkB

Jafri et al[42]

UMSCC-14C head and neck 
squamous cancer cells and 
normal oral epithelial cells

Increases p53 and caspase 9 
expression. Decreases Bcl-2 
expression

Alaufi et al[43]

SGC-7901 human gastric cancer 
cells. BALB/c mice implanted 
with gastric cancer cells

Increases the level of Bax, AIF, 
cytochrome c, cleaved caspases 9 and 
3. Decreases the level of cyclin D1, 
Bcl-2, procaspases 9 and 3. Inhibits 
PI3K/Akt signaling pathway and 
downregulates P-gp by upregulating 
PTEN

Ma et al[44]

5-Fluorouracil A pyrimidine analogue 
inhibiting the activity of 
thymidylate synthase 
enzyme causing the 
disruption of DNA 
synthesis and cell death

BGC-823, SGC-7901, MGC-803 
and HGC-27 human gastric 
cancer cells. BALB/c athymic 
nude mice inoculated with 
gastric cancer cells

Increases the release of mitochondrial 
cytochrome c and the level of Bax, 
caspases 3 and 9. Decreases the level 
of Bcl-2 and induces nuclear 
fragmentation and chromatin 
condensation

Wilson et al[45], Lei et 
al[48]

Azoxymethane-induced 
colorectal tumors in Wistar rats

Increases the expression of DKK-1, 
CDNK-1A, TGF-β1, TGF-βRII, Smad4 
and GPx. Decreases the expression of 
Wnt, β-catenin, NFκB, COX-2, iNOS, 
VEGF and TBRAS

Kensara et al[49]

HCT116, HT29 and SW620 
human colon cancer cellsSW837 
rectal cancer cells. Normal 
human intestinal epithelial 
cells. CAM tumors derived 
from HCT116 cells

Downregulates Wnt/β-catenin and 
PI3K/Akt pathways

Ndreshkjana et al[50]

FADU nasopharyngeal cancer 
cells

Decreases the level of GSH Williams et al[51]

MG63 human osteosarcoma 
cells

Sarman et al[52]

A deoxycytidine analog 
preventing chain 
elongation during DNA 

Gemcitabine PANC-1 and MIA PaCa-2 
human pancreatic cancer cells

Downregulates PKM2 and decreases 
the expression of procaspase 3 and 
PARP

Moysan et al[53], 
Pandita et al[56]
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synthesis causing cell 
death

PANC-1, BxPC-3, and AsPC-1 
human pancreatic cancer cell 
lines. BALB/c nude mice 
injected with PANC-1 cells

Downregulates Notch1, NICD, Bcl-2, 
Bcl-xL and XIAP. Inactivates 
Akt/mTOR/S6 signaling pathway 
and decreases the phosphorylation 
and nuclear translocation of p65. 
Upregulates PTEN, caspases 3 and 9 
and Bax and increases cytochrome c 
release

Mu et al[57]

MCF-7 and T47D human breast 
cancer cells

Increases pre-G1 cell population Bashmail et al[58]

Paclitaxel Inhibits microtubules 
disassembly and induces 
mitotic arrest

4T1 mouse breast cancer cells. 
Ehrlich tumor cells. Balb/c 
mice injected with Ehrlich 
tumor ascites cells

Increases the level of full length and 
cleaved caspases 3, 7 and 12 and 
PARP. Reduces phosphorylated p65 
and Akt1. Modulates genes involved 
in apoptosis, cytokine -cytokine 
receptor interaction, Fas signaling, 
p53 signaling and JAK/STAT 
signaling

Ojima et al[59], 
Şakalar et al[63]

MCF-7 and T47D human breast 
cancer cells

Increases pre-G1 cell population. 
Increases the level of cleaved caspase 
3 and PARP and the expression of 
beclin-1 and LC3-II

Bashmail et al[64]

MCF-7 human breast cancer 
cells

Soni et al[65]

Docetaxel Inhibits microtubules 
disassembly and induces 
mitotic arrest

DU-145 human prostate cancer 
cells

Blocks PI3K/Akt signaling pathway 
and induces DNA fragmentation

Ojima et al[59], 
Dirican et al[69]

DU-145 and C4-2B human 
prostate cancer cells

Inhibits PI3K/Akt signaling 
pathway. Increases the expression of 
Bax, Bid, caspase 3 and PARP and 
decreases the expression of Bcl-xL

Singh et al[70]

MCF-7 and MDA-MB-231 
human breast cancer cells

Induces DNA damage, cells 
shrinkage, nuclear fragments, 
apoptotic bodies and cytoplasmic 
vacuolation

Alkhatib et al[71]

MCF-7 and MDA-MB-231 
human breast cancer cells

Zafar et al[72]

MCF-7 and MDA-MB-231 
human breast cancer cells. 
Balb/c mice healthy or injected 
with Ehrlich ascites carcinoma 
cells

Induces nuclear fragmentation and 
restores the levels of oxidative stress 
parameters MDA, SOD and GSH. 
Prevents the alteration of blood cell 
count and serum biochemical 
parameters AST, ALT, creatinine and 
BUN

Zafar et al[73]

MCF-7 breast cancer cells Odeh et al[74]

Cabazitaxel Inhibits microtubules 
disassembly and induces 
mitotic arrest

MCF-7 and MDA-MB-231 
human breast cancer cells

Induces DNA fragmentation and 
increases the sub-G1 population

Ojima et al[59], 
Kommineni et al[78]

Doxorubicin Intercalates DNA, inhibits 
topoisomerase II, forms 
free radicals when reduced 
leading to cell cycle arrest 
and cell death

Human HTLV-1 positive (HuT-
102) and HTLV-1 negative 
(Jurkat) CD4+ malignant T-cell 
lines. NOD/SCID mice 
inoculated with HuT-102 tumor 
cells

Increases the sub-G1 population and 
induces ROS production. Disrupts 
the mitochondrial membrane 
potential. Downregulates the 
expression of NFkΒ and Ki67 and 
increases the phosphorylation of p53

Meredith et al[79], 
Fatfat et al[83]

HL-60 acute myeloid leukemia 
cells. Dox resistant HT-29 colon 
carcinoma cells. MCF-7/TOPO 
multi-drug resistant breast 
cancer cells

Induces caspases 3 and 8 activity and 
ROS generation. Disrupts the 
mitochondrial membrane potential

Effenberger-
Neidnicht et al[84]

BALB/c OlaHsd-foxn1 nude 
mice injected with MDA-MB-
231 breast cancer cells

Induces p38 MAPK phosphorylation 
and inhibit the expression of XIAP, 
survivin, Bcl-xL and Bcl-2

Woo et al[85]

SMMC-7721 and HepG2 
hepatocarcinoma cells and 
human normal liver cells HL-

Increases caspase 3 and PARP 
cleavage

Jehan et al[86]
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7702

MDA-MB-231 human breast 
cancer cells. MCF-10A and 3T3 
non-neoplastic cells

Induces cell shrinkage, membrane 
blebbing and apoptotic bodies and 
disrupts the cell membrane. Increases 
the Sub-G0 population

Ibiyeye et al[87]

MCF-7 human breast 
adenocarcinoma and HEPG2 
human hepatocellular 
carcinoma. Albino mice 
implanted with Heps murine 
liver cancer cells

Decreases NFkB level and increases 
that of caspase 3. Increases the level 
of renal antioxidant enzymes SOD 
and catalase. Modulates the level of 
renal oxidative stress biomarkers 
GSH and MDA. Decreases the level 
of nephrotoxicity biomarkers BUN 
and serum creatinine

Zidan et al[88]

Albino transplanted with 
Ehrlich carcinoma cells

Upregulates p53 and reduces the 
level of Bcl-2. Decreases the level of 
cardiac MDA. Decreases the serum 
level of cardiac markers lactate and 
creatine

El-Ashmawy et al[89]

Topotecan Inhibits DNA 
topoisomerase I and causes 
the formation of 
irreversible DNA double 
stranded breaks resulting 
in cell death. Inhibits 
hypoxia-inducible factor 1α

U937 acute myelogenous 
leukemia cells

Increases the sub-G1 population. 
Increases the expression level of 
Bax/Bcl-2, p53 and p21 and the 
cleavage of caspases 3 and 9

Robati et al[90], 
Khalife et al[95]

HT-29 human colon cancer 
cells

Increases the sub-G1 population. Has 
no effect on p53, Bax and Bcl-2 
expression

Khalife et al[96]

Bortezomib Inhibits the proteasome U266, H929, KMS, RPMI-8226, 
RPMI-8226-Dox-6 
(doxorubicin-resistant clone), 
RPMI-8226-LR-5 (a melphalan-
resistant clone) human multiple 
myeloma cells. Balb/c mice 
implanted with U266 cells

Increases the sub-G1 population and 
the cleavage of caspase 3 and PARP. 
Reduces the phosphorylation of 
NFkB (p65) and the expression of 
Ki67, VEGF, Bcl-2 and the serum 
levels of IL-6 and TNF-α

Siveen et al[99]

Imatinib Inhibits tyrosine kinase HCT116 human colorectal 
cancer cells

Decreases the expression of ABCB1, 
ABCG2 and hOCT1. Increases the 
uptake/efflux ratio of imatinib

Thabet et al[103]

Tamoxifen Competes with estrogen 
and estradiol for the 
binding to their receptors 
and modulates their 
signaling pathway

MCF-7 and MDA-MB-231 
human breast cancer cells

Day et al[104], Ganji-
Harsini et al[106]

MCF-7, MDA-MB-231, MDA-
MB-468, T47D, NIH/3T3 and 
HaCaT human breast cancer 
cells. Athymic BALB/c mice 
injected with MDA-MB-231 
cells

Decreases the expression of XIAP 
and the level of p-Akt, p-Bad, p-
MAPK and p-GSK-3β and 
downregulates the expression of Bcl-
xL, Bcl-2 and Ki67. Increases the 
cleavage of caspase 9 and PARP and 
induces the expression of Bax, AIF, 
cytochrome c and p27. Increases the 
percentage of cells in sub-G1 phase 
and the fragmentation of DNA

Rajput et al[107]

Breast cancer patients Increases the tumor tissue catalase, 
SOD and caspase 3. Decreases the 
tumor tissue Bcl-2, TGF-β1, MDA, 
TNF-α and IL-6

Kabel et al[108]

Zoledronic acid Inhibits osteoclast-
mediated bone resorption

PC-3 and DU- 145 human 
prostate cancer cells

Increases DNA fragmentation and 
activates caspases 3 and 7

Polascik et al[109], 
Dirican et al[112]

Arsenic trioxide Human HTLV-I positive (HuT-
102 and C91) and HTLV-I 
negative (CEM and Jurkat) 
malignant T-cell lines. NOD 
SCID mice inoculated with 
HuT-102 cells

Increases the percentage of cells in 
Pre-G1 phase, the disruption of the 
mitochondrial membrane potential 
and the cleavage of PARP and 
caspase 3. Upregulates p53, Bax and 
downregulates XIAP and Bcl- 2

Houssein et al[117]

PTEN: Phosphatase and tensin homolog; ROS: Reactive oxygen species; Bax: Bcl-2-associated X protein; NO: Nitric oxide; GSH: Glutathione; MMP: Matrix 
metalloproteinase; ATG-7: Autophagy-related 7; pH2AX: Phospho-histone 2AX; PCNA: Proliferating cell nuclear antigen; JAK2: Janus kinase 2; STAT3: 
Signal transducer and activator of transcription 3; NFkB: Nuclear factor kappa B; PI3K: Phosphatidylinositol-3-kinase; AIF: Apoptosis inducing factor; 
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PARP: Poly (ADP-ribose) polymerases; CAM: Chorioallantoic membrane; MAPK: Mitogen-activated protein kinase; COX-2: Cyclooxygenase 2; iNOS: 
Inducible nitric oxide synthase; VEGF: Vascular endothelial growth factor; TBRAS: Thiobarbituric acid reactive substances; DKK-1: Dickkopf-related 
protein-1; CDNK-1A: Cyclin-dependent kinase inhibitor 1A; TGF-β1: Tak transforming growth factor beta 1; TGF-βRII: Transforming growth factor, beta 
receptor II; GPx: Glutathione peroxidase; GSH: Glutathione; XIAP: X-linked inhibitor of apoptosis protein; mTOR: Mammalian target of rapamycin; PKM2: 
Pyruvate kinase M2; Bid: BH3 interacting-domain death agonist; AST: Aspartate transaminase; ALT: Alanine transaminase; MDA: Malondialdehyde; SOD: 
Superoxide dismutase; BUN: Blood urea nitrogen; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor alpha; GSK-3β: Glycogen synthase kinase 3 beta; 
ABCB1A: ATP-binding cassette subfamily B member 1; ABCG2: ATP-binding cassette subfamily G member 2; hOCT1: Human organic cation transporter 1.

Figure 1 Thymoquinone in combination therapy against different types of cancer. A: Thymoquinone in combination with conventional chemothe-
rapeutic drugs; B: Thymoquinone in combination with natural products. TQ: Thymoquinone; CYC: Cyclophosphamide; TMZ: Temozolomide; CDDP: Cisplatin; BTZ: 
Bortezomib; 5-FU: 5-Fluorouracil; GCB: Gemcitabine; PAC: Paclitaxel; DTX: Docetaxel; CBZ: Cabazitaxel; TP: Topotecan; DOX: Doxorubicin; ZA: Zoledronic acid; 
TAM: Tamoxifen; As: Arsenic trioxide; IM: Imatinib; Vit D3: Vitamin D3; Mel: Melatonin; Res: Resveratrol; Pip: Piperine; Ams: Artemisinin; Art: Artesunic acid; Dio: 
Diosgenin; Gen: Genistein; I3M: Indirubin3monoxime; FA: Ferulic acid; Emo: Emodin; Sel: Selenium.

found to synergize to induce apoptosis in vitro and in a mouse syngeneic model. The 
combination was more effective in increasing the levels of Bcl-2-associated X protein 
(Bax), phospho-histone 2AX on serine 139, cleaved caspase 3 and PARP and in down-
regulating proliferating cell nuclear antigen compared to CDDP alone[39]. A study 
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conducted by Hu et al[40] found that TQ enhanced the apoptotic effect of CDDP in 
esophageal carcinoma in vitro and in vivo through downregulating JAK2/STAT3 
pathway known to be involved in cancer cell proliferation, survival, angiogenesis and 
metastasis[41]. Another study showed the synergistic inhibitory effects of the com-
bination of TQ and CDDP on the proliferation of non-small lung cancer cells and on 
the growth of lung cancer xenografts through the suppression of NFkB[42]. The 
improvement of CDDP-induced apoptosis by TQ was also demonstrated in oral 
squamous carcinoma cells. The combination was more potent in upregulating p53 and 
caspase 9 and downregulating Bcl-2 than CDDP alone[43]. In addition, combining TQ 
with CDDP resulted in a superior anti-neoplastic activity in gastric cancer in vitro and 
in vivo by further upregulating PTEN expression compared to CDDP alone[44].

Antimetabolites
5-FU[45]: 5-FU is the third most frequently used chemotherapeutic drug in the treat-
ment of a variety of solid cancers, but its clinical efficacy is hampered by drug re-
sistance and treatment-associated toxicities[46,47]. It is the second most frequent 
chemotherapeutic agent that causes cardiotoxicity symptoms[46]. The potential 
chemomodulatory effects of TQ on 5-FU anticancer activity have been investigated in 
various cancer types. TQ was reported to chemosensitize gastric cancer cells to 5-FU-
induced apoptosis by upregulating Bax, caspases 3 and 9 and downregulating Bcl-2
[48]. Moreover, the combination of TQ with 5-FU synergistically suppressed azoxy-
methane-induced colorectal tumors initiation and development in rats without causing 
nephro- and hepato-toxicities. The dual combination enhanced the decrease in the 
expression level of pro-oncogenic genes [Wnt, β-catenin, NFkB, cyclooxygenase 2 
(COX-2), inducible nitric oxide synthase (iNOS), vascular endothelial growth factor 
(VEGF), and thiobarbituric acid reactive substances] and the increase in the expression 
level of anti-oncogenic genes [dickkopf-related protein-1 (DKK-1), cyclin-dependent 
kinase inhibitor 1A (CDNK-1A), transforming growth factor beta 1 (TGF-β1), transfor-
ming growth factor, beta receptor II (TGF-βRII), Smad4, and glutathione peroxidase] 
compared to separate treatments[49]. In another study, Ndreshkjana et al[50] linked 5-
FU with TQ by esterification to form a new hybrid molecule SARB and tested it on 
colon cancer cells. Both combination and hybrid treatments enhanced the cytotoxic 
effects of single agents in vitro, while SARB was more effective in suppressing the 
growth of chorioallantoic membrane xenografts in vivo. The cytotoxic effects of 5-FU, 
TQ and the natural product epigallocatechin-3-gallate in triple and double combin-
ations were evaluated in nasopharyngeal cancer cells. The results revealed that the 
triple combination had the most potent effect in reducing the total number of cancer 
cells, and the dual combination of TQ and 5-FU was more effective than the com-
bination of TQ and epigallocatechin-3-gallate[51]. In addition, TQ augmented the 
apoptotic effects of each of 5-FU and the alkylating agent oxaliplatin in osteosarcoma 
cells. Interestingly, combining TQ with low doses of each of these drugs was found to 
produce the same anticancer efficacy as higher doses of these agents[52]. Therefore, 
this treatment strategy may help in alleviating 5-FU and oxaliplatin undesired adverse 
effects.

Gemcitabine[53]: Gemcitabine (GCB) has been approved for treating different types of 
cancer including pancreatic and breast cancers[54]. The therapeutic application of GCB 
was compromised by several drawbacks including its short half-life in the blood 
circulation, poor membrane permeability in addition to the development of chemores-
istance[55]. TQ and GCB were found to induce synergistic apoptosis in GCB sensitive 
and resistant pancreatic cancer cells by downregulating pyruvate kinase M2 expre-
ssion[56]. In another study, pretreatment of pancreatic cancer cells with TQ followed 
by low doses of GCB resulted in a synergistic apoptotic and growth inhibitory 
responses in vitro and in vivo by downregulating Notch1/PTEN, PI3K/Akt/mam-
malian target of rapamycin and NFkB mediated signaling pathways[57]. In the context 
of breast cancer, TQ boosted the apoptotic activity of GCB against T47D cells. While in 
the apoptosis defective MCF-7 cells, the combination of TQ with GCB induced 
significant cell death by autophagy[58].

Antimicrotubules 
Paclitaxel[59]: Paclitaxel (PAC) is widely used for the treatment of several cancer types 
including breast, ovary, colorectal and lung cancers[60]. The major challenges that 
restrict its curative effect are chemoresistance and adverse effects that are mainly 
caused by the polyethylated castor oil that is usually added to its formulation to 
increase its solubility[61,62]. Three studies have evaluated the potential of the combin-
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atorial effect of TQ and PAC in breast cancer. TQ-PAC combination produced a 
synergistic anticancer activity through the modulation of genes involved in apoptosis, 
cytokine-cytokine receptor interaction, Fas signaling, p53 signaling and JAK/STAT 
signaling[63]. In another study, combining TQ with PAC augmented the necrotic and 
caspase dependent- apoptotic responses in T47D breast cancer cells compared to PAC 
alone. While in the apoptosis defective MCF-7 cells, both individual and combined 
treatments induced significant cell death by autophagy[64]. The co-encapsulation of 
TQ and PAC in polymeric biodegradable poly (lactide-co-glycolide) nanoparticles 
lowered PAC effective anticancer dose and reduced cancer cell viability more effec-
tively than PAC loaded nanoparticles or its free counterpart[65]. Therefore, this 
therapeutic approach may help in hijacking the toxicities associated with the clinical 
use of PAC.

Docetaxel: Docetaxel (DTX) has been approved for the treatment of different type of 
tumors including prostate cancer and breast cancer[66]. However, low water solu-
bility, treatment related toxicities and drug resistance limit its application in clinical 
practice[61,67,68]. TQ was found to potentiate the apoptotic activity of DTX in prostate 
cancer cells by inducing a more prominent suppression of the signaling pathway 
PI3K/Akt compared to DTX alone[69]. Co-treatment of prostate cancer cells with these 
two agents resulted in a greater upregulation of Bax, BH3 interacting-domain death 
agonist (Bid), caspase 3 and PARP and a higher downregulation of Bcl-xL compared to 
individual treatments[70]. To enhance drug solubility, increase their efficacy and 
reduce DTX toxicities, multiple nanoparticle drug delivery systems for the co-delivery 
of TQ and DTX have been developed and evaluated on breast cancer cells. Loading TQ 
and DTX into a borage nanoemulsion delivery system allowed the lowering of the 
required effective dose of DTX and enhanced cell death in cancer cells through 
simultaneous stimulation of apoptosis and autophagy[71]. In another study, co-
encapsulating TQ and DTX in low-molecular-weight chitosan coated lipid nano-
capsules was found to exhibit stronger cytotoxic and anti-angiogenic responses in 
cancer cells compared to the free single treatments[72]. The co-delivery of TQ and DTX 
in pegylated lipid nanocapsules produced more effective apoptotic and anti-migratory 
effects in cancer cells in addition to a higher tumor growth inhibition in mice bearing 
Ehrlich ascites carcinoma compared to free single treatments. Interestingly, these dual 
drugs loaded lipid nanocapsules prevented the development of DTX-induced hemato-
logical, hepato- and nephro- toxicities, an indicator of their protective potential[73]. 
Moreover, TQ and DTX were co-encapsulated into pegylated liposomes and tested 
against MCF-7 breast cancer cells. The half maximal inhibitor concentration of each of 
TQ and DTX co-loaded into liposomes were lower than those of the free individual 
drugs[74].

Cabazitaxel: Cabazitaxel (CBZ) was approved as the second line therapy for metastatic 
castration-resistant prostate cancer[75]. However, its low aqueous solubility, poor 
membrane permeability, and severe side effects like neutropenia and anemia are the 
challenging drawbacks for successful cancer management[76,77]. Combining TQ with 
CBZ caused synergistic apoptotic effects in breast cancer cells. To address the drug 
delivery challenge, TQ and CBZ were co-loaded in lipospheres. The combined drugs 
loaded lipospheres had enhanced apoptotic effects compared to the drug combination 
in solution[78].

Cytotoxic antibiotics 
Doxorubicin[79]: Doxorubicin (DOX) is a primarily adopted chemotherapeutic agent 
for treating a wide spectrum of solid and liquid tumors[80]. Despite the robust anti-
cancer activity of DOX, chemoresistance and severe side effects especially cardio-
toxicity weakened its potency[81]. Nearly 11% of the patients treated with this agent 
develop acute cardiotoxicity[82]. Several studies demonstrated the powerful combin-
atorial effect of TQ on the anticancer efficacy of DOX. Combining TQ with DOX 
allowed the lowering of DOX dose by up to 2-fold while maintaining its anticancer 
potential against adult T cell leukemia (ATL). TQ and DOX synergized to induce 
caspases and ROS mediated apoptosis in human T-lymphotropic virus-1 positive and 
human T-lymphotropic virus-1 negative CD4+ malignant T cell lines in vitro in 
addition to suppressing the growth of an ATL xenograft in mice[83]. In addition, co-
treatment of HL-60 acute myeloid leukemia cells with TQ and DOX induced two 
consecutives waves of caspase 3 activity in addition to more than 7-fold increase in 
ROS generation compared to DOX alone[84]. In breast cancer, TQ potentiated the anti-
tumor activity of DOX in vivo by inducing apoptosis and inhibiting tumor cell prolif-
eration to a larger extent than separate treatments[85]. Recently, TQ was shown to 
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improve the apoptotic effect of subtoxic doses of DOX in hepatocarcinoma cells by 
further increasing the cleavage of caspase 3 and PARP in addition to reducing DOX-
induced cytotoxicity to normal liver cells[86]. This synergistic inhibitory effect of TQ 
and DOX combination was also observed in chemoresistant cancer cells. TQ aug-
mented DOX cell growth inhibitory effect by 2- and 1.2-fold in multi-drug resistant 
breast cancer cells and in DOX resistant colorectal cancer cells, respectively[84]. To 
enhance the synergistic effect of these two agents, two nanodrug delivery systems 
have been developed. Loading TQ and DOX in cockle shell-derived aragonite calcium 
carbonate nanoparticles (ACNP) showed higher efficacy in inducing apoptosis and 
reducing migration and invasion in breast cancer cells than the free drugs or the single 
drug loaded ACNP while being non-toxic to non-neoplastic cells[87]. In addition, 
incorporating TQ and DOX into F2 gel (poly-N-acetyl glucosamine) nanofibers 
exhibited superior cellular growth inhibition and apoptosis in breast and liver cancer 
cells compared to free drugs and single drug loaded nanoparticles. The anticancer 
potency of this nanodrug co-delivery system was further demonstrated in two in vivo 
cancer models. The dual loading TQ and DOX nanoparticles enhanced tumor 
suppression via apoptosis in mice bearing liver carcinoma by decreasing NFkB level 
and increasing caspase 3 as well as in mice bearing solid Ehrlich carcinoma by 
attenuating Bcl-2 level and up-regulating p53. Interestingly, this treatment also 
reduced the nephro- and cardio-toxicities induced by DOX through the attenuation of 
the oxidative stress[88,89].

Topoisomerase inhibitor
Topotecan[90]: Topotecan (TP) was approved for the second-line treatment of small 
cell lung cancer and was recommended to treat platinum resistant ovarian cancer[91,
92]. The instability of the chemical structure of TP in aqueous solutions and in the 
plasma reduces its anticancer efficacy and causes side effects[93,94]. TQ was found to 
boost the anti-proliferative and apoptotic effects of non-cytotoxic doses of TP in acute 
myelogenous leukemia and in colon cancer cells. This effect was exerted by upregu-
lation of p53 and Bax, downregulation of Bcl-2, increase in the cleavage of caspases 9 
and 3 in leukemia cells and through p53- and Bax/Bcl-2-independent mechanisms in 
colon cancer cells. In addition, pretreatment of leukemia cells with TQ followed by TP 
was found to be more effective than the simultaneous application of both therapeutic 
agents[95,96].

Proteasome inhibitor
Bortezomib: Bortezomib (BTZ) was approved for the treatment of multiple myeloma
[97]. It acts by inhibiting NFkB pathway known to be constitutively activated in 
multiple myeloma due to genetic aberrations in its components[98]. TQ was found to 
augment the apoptotic activity of BTZ in multiple myeloma cells in vitro by enhancing 
caspase 3 activation and PARP cleavage. In a xenograft multiple myeloma mouse 
model, TQ potentiated the anti-neoplastic effects of BTZ by further suppressing NFkB 
and consequently downregulating the proliferative (Ki67), anti-apoptotic (Bcl-2), 
angiogenic (VEGF) and inflammatory (interleukin-6 and tumor necrosis factor-α) 
effectors. The authors further showed that TQ reduced the proliferation of BTZ 
resistant multiple myeloma cells[99].

Tyrosine kinase inhibitor
Imatinib: Imatinib (IM) is a potent tyrosine kinase inhibitor that was approved for 
treating chronic myeloid leukemia and gastrointestinal stromal tumors[100]. Resis-
tance to IM was reported to develop in cancer patients through several mechanisms 
including the modulation of the expression of drug efflux and influx transporters[101,
102]. In a study conducted by Thabet et al[103], TQ was found to improve the anti-
proliferative and apoptotic effects of IM in colorectal cancer cells in vitro. Interestingly, 
this was accompanied by a significant decrease in the expression of the drug 
transporters ATP-binding cassette (ABC) subfamily B member (ABCB) 1, ABCG2 and 
human organic cation transporter 1 leading to a significant increase in IM uptake 
/efflux ratio compared to IM alone.

Hormone receptor modulator
Tamoxifen[104]: Tamoxifen (TAM) is one of the first-line therapies for hormone 
receptor-positive breast cancer patients[105]. A synergistic apoptotic effect was 
observed by combining TQ and TAM in breast cancer cells in vitro regardless of 
hormone receptor status[106]. Apoptosis was induced through synergistic inhibition of 
X-linked inhibitor of apoptosis protein (XIAP) resulting in caspase 9 activation and 
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PARP cleavage along with PI3K/Akt pathway inhibition, which caused the downreg-
ulation of Bcl-xL, Bcl-2, and upregulation of Bax, apoptosis inducing factor, cyto-
chrome c and p27. TQ was also found to enhance TAM anti-angiogenic, anti-migratory 
and anti-invasive effects in breast cancer[107]. In addition, treating breast cancer 
patients with a combination of TQ and TAM resulted in greater increase in 5-year 
survival rate and decrease in relapse rate of patients compared to single treatments. At 
the molecular level, the dual treatment induced a higher increase in tumor tissue 
antioxidant enzymes (catalase and superoxide dismutase) and increased caspase 3 
expression compared to individual treatments. Moreover, the combination of TQ and 
TAM enhanced the decrease in tumor tissue Bcl-2, TGF-β1, lipid peroxidation product 
malondialdehyde and pro-inflammatory cytokines tumor necrosis factor-α and 
interleukin-6 compared to each treatment alone[108].

Biphosphonate
Zoledronic acid: Zoledronic acid is a nitrogen-containing bisphosphonate that inhibits 
osteoclast-mediated bone resorption. It was approved to prevent and reduce the 
progression of skeletal complications associated with bone metastasis from solid 
tumors including prostate cancer[109]. Besides its anti-resorption activity, preclinical 
and clinical data demonstrated its anti-tumor effects in different types of cancer[110,
111]. TQ intensified the apoptotic activity of zoledronic acid in PC-3 (hormone 
resistant and chemotherapy sensitive) and DU-145 (hormone and chemotherapy 
resistant) prostate cancer cell lines through a synergistic increase in DNA fragmen-
tation in both cell lines and a synergistic activation of caspases 3 and 7 in PC-3 cells
[112].

Arsenic trioxide
Arsenic trioxide was approved for the treatment of acute promyelocytic leukemia
[113]. The combination of arsenic trioxide (As) with interferon alpha (IFN-α) was 
found to have an effective anti-neoplastic activity in ATL. As and IFN-α synergistically 
induced apoptosis in ATL leukemia cells in vitro and cured murine ATL[114,115]. A 
phase II trial involving patients with relapsed/refractory adult T-cell leukemia/lym-
phoma showed that the combination of As and IFN-α exhibited anticancer effects but 
caused significant toxicity[116]. Combining TQ with As and IFN-α induced synergistic 
apoptotic activity in vitro and in vivo and allowed the reduction of the toxic doses of 
As. TQ alone or TQ/As/IFN-α combination downregulated XIAP and Bcl-2, upre-
gulated Bax and induced cleavage of PARP and caspase 3[117], ultimately leading to 
enhanced apoptosis.

TQ in combination with ionizing radiation
Radiotherapy is a mainstay therapeutic modality for the treatment of early and 
advanced solid cancers. Nearly 50% of cancer patients receive radiotherapy during 
their treatment course[118]. However, its therapeutic potency was found to be 
compromised by the damage of the surrounding healthy tissue in addition to the 
development of radioresistance[119]. To overcome these challenges and enhance 
radiotherapy efficacy, exploring radiosensitizers, molecules that make cancer cells 
more susceptible to radiations, has attracted great attention[120]. Several studies 
demonstrated the radiosensitizing role of TQ on cancer cells in vitro. TQ augmented 
the anti-proliferative and apoptotic effects of ionizing radiation and further enriched 
the sub-G1 population in breast cancer cells[121]. In addition, sensitization with TQ 
prevented the radiation-induced metastatic progression of breast cancer cells through 
the restoration of the levels of TGF-β and its downstream effectors in addition to 
epithelial and mesenchymal markers[122]. In melanoma, TQ enhanced the apoptotic 
responses of low doses of gamma knife irradiation by further inhibiting the phos-
phorylation of STAT3, which is known to play a key role in cancer cell proliferation, 
survival, angiogenesis and metastasis[41]. It also improved the gamma knife irradia-
tion-induced immune response by further attenuating the secretion of tumor-related 
inflammatory cytokines[123]. The cellular and molecular mechanisms of action of TQ 
in combination with radiation and other therapeutic agents discussed in this review 
are presented in Table 2.

TQ in combination with non-coding RNA
Gene therapy is a modern therapeutic approach that demonstrated immense and 
impressive potential against cancer. It consists of delivering therapeutic genetic 
materials such as small interfering RNA (siRNA), microRNA, and anti-sense oligonuc-
leotides into cancer cells to restore target gene expression, which is modulated and 
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Table 2 Cellular and molecular mechanism of action of the combination treatment in preclinical studies

Therapeutic agent Animal model or cell line Cellular and molecular mechanism of action of 
the combination treatment Ref.

Radiation MCF-7 and T47D human breast cancer 
cells

Increases the percentage of cells in sub-G1 phase Velho-Pereira et al[121]

MCF-7 and MDA-MB-231 human breast 
cancer cells

Restores the expression levels of TGF-β and its 
downstream molecules NFkB, Smad2, Snail and 
Twist, adhesion molecules E-cadherin and cytokeratin 
19, mesenchymal markers integrin αV, MMP-9, and 
MMP-2

Rajput et al[122]

B16-F10 melanoma cells Inhibits the phosphorylation of JAK2 and STAT3. 
Increases the expression of caspase 3 and Bax. Reduce 
the expression of Bcl-2 and survivin and the level of 
VEGF-A, MCP-1, TGF-β1, RANTES and IL-1β. Induces 
DNA damage

Hatiboglu et al[123]

microRNA-34a BT-549 metastatic breast cancer cells Targets and downregulates TWIST1 and ZEB1 Imani et al[126]

Akt-siRNA Akt-overexpressing MCF-7 and T47D. 
Tamoxifen resistant MCF-7 and T47D 
breast cancer cells. BALB/c mice injected 
with MCF-7/TAM cells

Reduces Akt expression and MDM-2 activation. 
Activates p53, increases the level of Bax and Bim and 
decreases the level of Bcl-2 and Ki67

Rajput et al[127]

Vitamin D3 Azoxymethane-induced colorectal 
tumors in Wistar rats

Reduces the level of Wnt, β-catenin, NFkB, COX-2, 
iNOS, VEGF and HSP-90 and increases that of DKK-1, 
CDNK-1A, TGF-β1, TGF-β/RII and Smad4

Mohamed et al[131]

Melatonin EMT6/P mouse breast cancer cells. 
Balb/C mice transplanted with EMT6/P 
cells

Reduces the expression of VEGF and the serum level 
of AST and ALT. Increases the serum level of IFN-α 
and decreases that of IL-4

Odeh et al[134]

Artemisinin CCRF-CEM and multidrug-resistant 
CEM/ADR5000 human leukemia cells. 
Healthy human foreskin fibroblasts

Fröhlich et al[136]

Artesunic acid HCT116, HT29, Caco-2, DLD-1 colon 
cancer cells. HCEC nonmalignant colon 
epithelial cells

Induces ROS generation, DNA damage, PARP and 
caspase 9 cleavage. Increases the level of ɣ-H2AX

Fröhlich et al[137]

Diosgenin A431 and Hep2 human squamous cell 
carcinoma. Swiss albino mice injected 
with sarcoma 180 cells

Induces DNA fragmentation and cytoskeletal changes. 
Decreases the expression of CD31 and Ki67

Das et al[138]

Emodin MCF-7, MDA-MB-231, MDA-MB-468 
and T47D human breast cancer cells. 
CAM inoculated with MCF-7 cells

Increases the percentage of cells in sub-G1 phase. 
Increases ROS generation, cytochrome c release, 
expression levels of p53, Bax and cleaved caspase 3. 
Reduces Bcl-2, pFAK and integrinβ1 expression level. 
Induces nuclear fragmentation, shrinkage, apoptotic 
body formation, chromatin condensation and 
membrane blebbing

Bhattacharjee et al[140]

Ferulic acid MDA-MB-231 human breast cancer cells Al-Mutairi et al[143]

Genistein CALC-62 and ACC448 human thyroid 
cells derived from anaplastic carcinoma 
CGTH-W1, ACC360 derived from 
follicular carcinoma

Reduces the expression level of human telomerase 
reverse transcriptase, VEGF-A and NFkB. Increases 
the expression level of PTEN and p21 and activates 
caspase 3

Ozturk et al[145]

Indirubin-3-monoxime A549 human lung cancer cells. HFL-1 
human fetal lung fibroblast. CD1-nude 
mice injected with A549 cells

Increases the percentage of cells in Sub-G0 phase. 
Reduces Bcl-2/Bax ratio, TNF-α release and p-Akt 
(s473), p-mTOR, NFkB/p65, caspase3 and p53 
expression level

Dera et al[147]

Piperine EMT6/P mouse mammary cancer cells. 
Balb/C female mice injected with 
EMT6/P cancer cells

Reduces VEGF expression. Increases IFN-γ and IL-2 
level and caspase 3 activity

Talib et al[149]

HepG2 human hepatocellular cancer 
cells

Increase ROS generation and decreases GSH and 
NADPH level

Das et al[151]

Resveratrol HepG2 human hepatocellular cancer 
cells

Increases caspase 3 activity. Decreases GSH and MDA 
level

Ismail et al[153]

EMT6/p mouse epithelial breast cancer 
cells. MCF-7 and T47D human epithelial 
breast cancer cells kidney epithelial cells. 
Balb/C mice injected with EMT6/p 
cancer cells

Induces DNA fragmentation and increases IFN-γ and 
IL-4 level. Reduces VEGF expression

Alobaedi et al[154]
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Selenium MG-63 human osteosarcoma cell line Increases cellular damage, and decreases the level of 
alkaline phosphatase and GSH

Barron et al[156]

PTEN: Phosphatase and tensin homolog; ROS: Reactive oxygen species; Bax: Bcl-2-associated X protein; GSH: Glutathione; MMP: Matrix 
metalloproteinases; ɣ-H2AX: Gamma-histone 2AX; JAK2: Janus kinase 2; STAT3: Signal transducer and activator of transcription 3; NFkB: Nuclear factor 
kappa B; COX-2: Cyclooxygenase 2; iNOS: Inducible nitric oxide synthase; VEGF: Vascular endothelial growth factor; DKK-1: Dickkopf-related protein-1; 
CDNK-1A: Cyclin-dependent kinase inhibitor 1A; TGF-β1: Transforming growth factor beta 1; TGF-βRII: Transforming growth factor beta receptor II; GSH: 
Glutathione; mTOR: Mammalian target of rapamycin; AST: Aspartate transaminase; ALT: Alanine transaminase; MDA: Malondialdehyde; IL: Interleukin; 
INF: Interferon; TNF-α: Tumor necrosis factor alpha; MCP-1: Monocyte chemoattractant protein-1; RANTES: Regulated on activation normal T cell 
expressed sequence; TWIST1: Twist-related protein 1; ZEB1: Zinc finger E-box binding homeobox 1; MDM-2: Mouse double minute 2; NADPH: 
Nicotinamide-adenine dinucleotide phosphate; CAM: Chorioallantoic membrane.

associated with tumorigenesis[124]. miR-34a is a tumor-suppressive microRNA found 
to be downregulated in numerous human cancers including breast cancer[125]. Re-
introducing miR-34a in metastatic breast cancer cells targeted and inhibited the 
expression of epithelial to mesenchymal transition-associated proteins TWIST1, zinc 
finger E-box binding homeobox 1 and NOTCH1 and suppressed breast cancer cell 
migration and invasion. Moreover, combining TQ with miR-34a synergistically 
downregulated TWIST1 and zinc finger E-box binding homeobox 1, suggesting the 
promising therapeutic potential of this combination against breast cancer metastasis
[126]. In another study, multilamellar gold niosomes were developed for the co-
delivery of therapeutic Akt-siRNA and TQ to overcome chemotherapeutic resistance 
induced by Akt overexpression in breast cancer. TQ-siRNA dual loaded niosomes 
produced stronger anti-proliferative and apoptotic effects in breast cancer in vitro and 
in vivo compared to free TQ and TQ loaded niosomes. The mechanism of the 
combination treatment involved an effective decrease of the cellular level of Akt which 
sensitized breast cancer cells to TQ toxicity leading to inhibition of mouse double 
minute 2 and therefore induction of p53-dependent apoptosis[127].

TQ in combination with natural molecules
Vitamins: Vitamin D3, the active metabolite of vitamin D, was reported to have potent 
chemopreventive effects against colorectal cancer in vitro and in vivo[128,129]. In 
addition, vitamin D supplementation was demonstrated to have clinically positive 
effects on survival outcomes in patients with colorectal cancer[130]. TQ was found to 
enhance the chemopreventive effect of vitamin D3 in suppressing the initiation and 
progression of colon tumors in an azoxymethane-induced rat model of colon cancer. 
The combination treatment significantly attenuated the number of grown tumors and 
large aberrant crypts foci. In addition, it decreased the level of pro-oncogenic (Wnt, β-
catenin, NFkB, heat shock protein 90 HSP-90) and angiogenic (VEGF, iNOS and COX2) 
biomarkers and increased the expression of anti-oncogenic (DKK-1, CDNK-1A, TGF-β
1, TGF-β/RII and Smad4) biomarkers compared with individual treatments[131].

Hormones
Melatonin: Melatonin is a natural hormone involved in different biological activities 
including regulating the circadian rhythm[132]. Ample evidence revealed that 
melatonin exerts powerful anti-tumor effects through different modes of action 
including the activation of anticancer immune responses[133]. The combination of TQ 
with melatonin in breast cancer bearing mice resulted in 60% of cure in treated mice 
and produced a stronger apoptotic, necrotic and anti-angiogenetic response in 
addition to a more potent activation of T helper 1 mediated anticancer immune res-
ponse compared to separate treatments[134].

Plant-derived molecules
Numerous studies have tested the anti-neoplastic efficacy of combining TQ with other 
plant-derived molecules in different types of cancer. Artemisinin is a sesquiterpene 
lactone extracted from the Chinese medicinal plant Artemisia annua[135]. Fröhlich et al
[136,137] linked each of Artemisinin and its semisynthetic derivative artesunic acid 
with TQ via covalent bonds and tested the anticancer efficacy of the formed hybrid 
molecules in vitro. They found that the ether-linked artemisinin-TQ hybrid exhibited a 
potent and selective anti-proliferative activity that was superior to that of the conven-
tional drug DOX against sensitive and multidrug-resistant leukemia cells without 
being toxic to normal human foreskin fibroblasts[136]. They also found that the ester-
linked artesunic acid-TQ hybrid promoted apoptosis mediated by ROS-induced DNA 
damage in colon cancer cells while being non-toxic to normal colon epithelial cells. The 
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hybrid’s effect was found superior to each of the conventional drug 5-FU, the dual and 
individual treatments[137]. In another study, Das et al[138] demonstrated the syner-
gistic anti-proliferative and apoptotic potential of combining TQ with diosgenin, a 
natural steroidal saponin isolated from several plants such as Trigonella foenum-
graecum[139], in squamous cell carcinoma in vitro and in a sarcoma 180-induced mouse 
model. Recently, Bhattacharjee et al[140] investigated the combined effect of TQ with 
emodin, which is a natural anthraquinone obtained from various herbs including 
Rheum palmatum[141]. The results revealed that the dual treatment triggered a sy-
nergistic apoptotic response in breast cancer cells and enhanced the reduction of 
cancer cell migration compared to monotreatment by downregulating two important 
molecular players, namely focal adhesion kinase and integrin β1. In an ex ovo chorioal-
lantoic membrane xenograft model, TQ and emodin were found to suppress the tumor 
growth and limit the migration of tumor cells to the liver and lung of the chick embryo
[140]. Combining low doses of TQ and ferulic acid, obtained from Ferula asafetida plant
[142], potently inhibited the proliferation of breast cancer cells, while single treatments 
did not exhibit any inhibitory effects[143]. Moreover, it has been found that the 
combination of TQ and genistein, a flavonoid found in soybeans[144], resulted in a 
higher induction of apoptosis in thyroid cancer cells than treatment with either agent 
alone[145]. In lung cancer, the combination of TQ and indirubin-3-monoxime, a drug 
derived from the traditional Chinese herbal remedy Danggui Longhui Wan[146], 
resulted in synergistic apoptotic and anti-migratory effects in vitro and synergistic 
tumor growth suppression in vivo[147]. At the molecular level, the dual treatment 
decreased the phosphorylation of survival-regulatory proteins Akt, mammalian target 
of rapamycin and NFkB and activated caspase 3 and p53 in animal tumors[147]. 
Furthermore, combining TQ and piperine, the major alkaloid found in Piper nigrum L
[148], resulted in a synergistic inhibition of breast cancer in vitro and in vivo[149]. It 
induced a high degree of apoptosis and extensive necrosis, inhibited angiogenesis, and 
stimulated T helper 1 anticancer immune response with no liver and kidney toxicities. 
Interestingly, TQ was found to play the major role in inducing the caspase-mediated 
apoptosis[149]. In another study, the encapsulation of TQ and piperine in micro-
vehicles made of a natural polymer guar gum extracted from the seeds of Cymompsis 
tetraganolobus plant[150] synergistically reduced the viability of hepatocellular 
carcinoma cells[151]. This was associated with ROS generation as indicated by an 
enhanced decrease in the level of intracellular antioxidant glutathione and nicoti-
namide-adenine dinucleotide phosphate[151]. Two studies assessed the anticancer 
effectiveness of combining TQ with resveratrol, a stilbene polyphenolic compound 
extracted from over 70 plants including Polygonum cuspidatum[152]. TQ and 
resveratrol combination resulted in a greater cytotoxic effect on hepatocellular 
carcinoma cells compared to single treatments[153]. In addition, TQ and resveratrol 
synergized to effectively inhibit breast cancer in vitro and in vivo. The combined drugs 
induced apoptosis and necrosis, inhibited angiogenesis and stimulated the anticancer 
immune response without causing liver and kidney toxicities[154]. Co-treating 
osteosarcoma cells with TQ and selenium, a micronutrient/trace element found 
abundantly in Astragalus bisulcatus[155], was found to be effective in decreasing cell 
viability, inducing cellular damage, and attenuating the levels of alkaline phosphatase 
and glutathione[156].

TQ EFFECTS AGAINST CANCER STEM CELLS
TQ in combination with chemotherapeutic agents
TQ was found to potentiate the effects of each of GCB and PAC in depleting the CD44+

/CD24- CSCs population within MCF-7 and T47D breast cancer cells[58,64]. In another 
study, the co-delivery of DOX and TQ in ACNP effectively eradicated breast CSCs 
enriched from MDA-MB-231 cells cultured in 3D compared to single drug loaded 
ACNP and drug combinations in solution. The combined drugs loaded ACNP effi-
ciently attenuated the self-renewal potential of breast CSCs as evidenced by the 
decrease of their mammospheres forming efficiency. This was accompanied by the 
reduction of breast CSCs markers CD44 and CD24 expression and aldehyde dehydro-
genase 1 activity. In addition, the dual drugs loaded ACNP suppressed breast CSCs 
migration and invasion[157]. In colorectal cancer, combination of TQ and 5-FU as well 
as their hybrid SARB downregulated two major stem cell regulatory pathways Wnt/β-
catenin and PI3K/Akt. In addition, they were found to effectively reduce the self-
renewal potential of colorectal CSCs and eradicate CD133+ colorectal CSC population
[50].
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TQ in combination with natural products
The combined treatment of TQ and emodin improved the elimination of breast CSCs 
as demonstrated by the enhanced reduction in mammospheres forming efficiency and 
in CD44+/CD24- CSCS population compared to single treatments. Moreover, it down-
regulated the stemness promoting transcription factors Oct4 and SOX2[140].

CONCLUSION
We have emphasized the tremendous potential of TQ in augmenting the anti-
neoplastic effects of different therapeutic modalities against a wide range of cancer 
cells. TQ sensitized cancer cells to radiotherapy and improved outcomes of cancer 
resistance to conventional chemotherapeutic agents. The use of TQ in combination 
therapy also lowered the effective doses of standard chemotherapies which helped 
reduce their associated toxicities while maintaining their therapeutic effectiveness. The 
combination of TQ with other plant-derived molecules has shown interesting results 
and merits further investigation to introduce them as potential candidates for treating 
cancer. Although the studies investigating TQ potency in eliminating CSC in 
combination therapy are scarce, their results demonstrated great promise. Involving 
TQ in combination therapy could possibly further eliminate CSCs from tumors and 
prevent regrowth of neoplasms.

Despite its remarkable anticancer activity, studies reporting TQ anticancer 
therapeutic potential in clinical settings are still limited due mainly to its hydropho-
bicity and poor bioavailability. Few studies have supported combined therapies of TQ 
with nanoparticle formulations to circumvent the drug delivery challenges. These 
nanoparticles further enhanced the inhibitory effects of the combined agents against 
cancer or CSC in preclinical studies. Future efforts should be devoted to developing 
and testing these effective targeted nanoformulations of the combined agents 
including TQ for potential clinical translation.
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